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INTEGRAL GENERALIZATION OF THE SECOND
ORDER MATRIX DIFFERENTIAL EQUATION

Abstract

The generalization of some results from the theory of matrix differential
equations was realized in case of Volterra matrix integral equations with Stieltjes
integral on a finite segment.

Consider the matrix integral equation

Y (x) = c1 cos
√

λxI +
c2√
λ

sin
√

λxI +

x∫
0

sin
√

λ (x− t)√
λ

dF (t) Y (t) , (1)

where Y and F are square matrices of the order n× n, I is a unique matrix of the
same order, c1, c2 are some constants. Assume that F (x) is continuous from the
right (in the sense of continuity of each of its elements) matrix function of constrained
variation (in the sense of constrained variation of each of its elements) on any finite
segment from [0,∞). It is evident that if F (x) is an absolutely continuous matrix
function then integral equation (1) is equivalent to the boundary value problem
generated on a semi-axis [0,∞) by the matrix differential equation

Y ′′ + λY = V (x) Y (2)

and the boundary condition

Y (0) = c1I, Y ′ (0) = c2I, (3)

where V (x) = F ′ (x) ([1]).
Equation (1) is Volterra type integral equation with Stieltjes integral and it is a

generalization of problem (2), (3) in the class of integral equations. Such “Integral
generalization” of Sturm-Liouville type problems was investigated in [2]. In [3], [4]
the generalization of some results from the theory of ordinary differential equations
were executed in case of the Volterra integral equation with Stieltjes integral on the
finite segment.

1. Uniqueness and existence of solutions

Theorem 1.1. If F (x) is continuous from the right matrix function of con-
strained variation on the segment [0, b], then at the given c1, c2 equation (1) has a
unique solution in the class of continuous matrix functions on [0, b].

Let |λ| ≤ N . Since the expression (1) is even relative to
√

λ, then not losing
generality we assume that Im

√
λ ≥ 0.

Assume
Y (x) = exp

(
Im

√
λx
)

A (x) . (1.1)
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Then from (1) we’ll obtain

A (x) =
(

c1 cos
√

λx +
c2√
λ

sin
√

λx

)
e− Im

√
λxI +

1√
λ

x∫
0

sin
√

λ (x− t)×

×e− Im
√

λ(x−t)dF (t) A (t) . (1.2)

Let’s pass to the proof of the theorem. Assuming that there exist two solutions
Y1, Y2 we see that their difference which will be called Z (x, λ) would satisfy the
equation

Z (x, λ) =

x∫
0

sin
√

λ (x− t)√
λ

dF (t) Z (t, λ) (1.3)

or subject to (1.1), (1.2) the equation

B (x) =

x∫
0

sin
√

λ (x− t)√
λ

e− Im
√

λ(x−t)dF (t) B (t) , (1.4)

where B (x) = e− Im
√

λxZ (x, λ).
To perform estimations, introduce the norm (denote it |·|) for the matrix as the

sum of absolute values of all its elements.
Since F (x) is a function of constrained variation we can choose x1 > 0 such that

x1

x1∫
0

|dF (t)| < 1
2
. (1.5)

Here

x∫
0

|dF (t)| is a sum of overall variations of all elements the matrix F (t) on

the interval (0, x) and vanishes as x → 0+.
Assume that the maximum |B (x)| in [0, x1] is attained at the point x2. Then

from (1.4) replacing x by x2, using inequality∣∣∣∣∣sin
√

λx√
λ

∣∣∣∣∣ e− Im
√

λx ≤ x, when x ≥ 0, Im
√

λ ≥ 0, (1.5′)

we have
|B (x2)| ≤

1
2
|B (x2)| .

From this it follows that B (x2) = 0, consequently B (x) ≡ 0 in [0, x1], i.e.
Z (x, λ) = 0 in [0, x1]. Further let b′ be the upper bound of those x3 in [0, b] for
which B (x) ≡ 0 in [0, x3]. Then we can replace (1.4) by the equality

B (x) =

x∫
b′

sin
√

λ (x− t)√
λ

e− Im
√

λ(x−t)dF (t) B (t) (1.6)
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for b′ < x < b and making the same arguments we obtain that B (x) is equal to
zero at the right neighbourhood of the point b′, which results in contradiction. This
proves the uniqueness of the solution of equation (1).

Now prove the existence of the solution of matrix integral equation. At first
assume that F (x) is a step function with the finite number of jumps ak where
0 < a1 < a2 < ... < an < b. In this case equation (1) or (1.2) can be solved
recurrently. Write the equation (1.2) replacing the Stieljes integral by the sum

A (x) =
[
c1 cos

√
λx +

c2√
λ

sin
√

λx

]
e− Im

√
λxI+

+
∑
ak<x

sin
√

λ (x− ak)√
λ

e− Im
√

λ(x−ak) [F (ak)− F (ak − 0)]A (ak) . (1.7)

In particular

A (as+1) =
[
c1 cos

√
λas+1 +

c2√
λ

sin
√

λas+1

]
e− Im

√
λas+1I+

+
∑
k≤s

sin
√

λ (as+1 − ak)√
λ

e− Im
√

λ(as+1−ak) [F (ak)− F (ak − 0)]A (ak) (1.8)

and

A (0) = c1I, A (a1) =
[
c1 cos

√
λa1 +

c2√
λ

sin
√

λa1

]
e− Im

√
λa1I. (1.9)

Passing to the norm in (1.8) and using (1.5’) we’ll obtain the estimation of the
form

|A (as+1)| ≤ n |c1|+ n |c2| b + b
s∑
1

|F (ak)− F (ak − 0)| |A (ak)| . (1.10)

Denote

ω (x) =
∑
ak≤x

|F (ak)− F (ak − 0)| , c3 = (|c1|+ |c2| b) n.

It is proved by the mathematical induction that

|A (as)| ≤ c3 exp [bω (as−1)] , s = 2, 3, ... . (1.11)

Introducing in the right hand side of equality (1.7) this estimation in weakened
form |A (as)| ≤ c3 exp (bω (b)) , we obtain

|A (x)| ≤ c3 exp (2bω (b)) . (1.12)

Subject to (1.12) in (1.1)

|Y (x, λ)| ≤ c3 exp
(
Im

√
λb + 2bω (b)

)
. (1.12′)

We’ll need the obtained estimation in general case to which we’ll go on by means
of passage to limit.
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Now assume that F (x) is a matrix-function of constrained variation and contin-
uous from the right. In this case we approximate F (x) by means of sequence of step
matrix-functions Fm (x) , m = 1, 2, ..., choosen so that the number of their jumps
is at most m and they coincide with F (x) at the points obtained by dividing the
interval (0, b) into m equal parts and between these points they remain constant,
i.e.

Fm (x) = F

(
b · j

m

)
, b · j

m
≤ x < b · j + 1

m
, j = 0,m− 1

and we construct the corresponding solutions Ym (x, λ) in the form

Ym (x, λ) =
(

c1 cos
√

λx +
c2√
λ

sin
√

λx

)
I+

x∫
0

sin
√

λ (x− t)√
λ

dFm (t) Ym (t, λ) . (1.13)

By virtue of inequality (1.12′) Ym (x, λ) (m = 1, 2, ...) satisfy the estimation

|Ym (x, λ)| ≤ c3 exp
(
Jm

√
λb + 2bωm (b)

)
.

Since

ωm (b) =

b∫
0

|dFm (x)| ≤
b∫

0

|dF (x)| = ω (b) , (1.15)

then
|Ym (x, λ)| ≤ c3 exp

(
2bω (b) + Jm

√
λb
)

. (1.16)

Thus a family of functions Ym (x, λ) , m = 1, 2, ... is uniformly bounded.
From the equality (1.13) after simple calculations we have

|Ym (x2, λ)− Ym (x1, λ)| ≤ |x2 − x1| ×

×

eIm
√

λb

|c1|
√

λn + n |c2|+ 2 max
0≤x≤b

|Ym (x, λ)|
b∫

0

|dFm (t)|

 .

According to (1.15), (1.16) in the obtained inequality the coefficient on |x2 − x1|
is bounded uniformly with respect to m such that all Ym (x, λ) are uniformly con-
tinuous.

Now applying the principle of Arzeli compactness we conclude that there is
infinite sequence of values m such that Ym (x, λ) converge uniformly to limiting
function Y (x, λ). Since the estimation which obtained for Ym (x, λ) doesn’t depend
on m, then

|Y (x, λ)| ≤ c3 exp
{

2bω (b) + Im
√

λb
}

.

Now pass to the limit as m →∞ in equality (1.13) as m →∞. Since Y (t, λ)−
Ym (t, λ) → 0 uniformly, and Fm (t) are matrix-functions of uniformly bounded vari-
ation, then

x∫
0

sin
√

λ (x− t)√
λ

dFm (t) Ym (t, λ) →
x∫

0

sin
√

λ (x− t)√
λ

dF (t) Y (t, λ) .
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Thus, Y (x, λ) satisfies equation (1) and theorem 1.1 is completely proved.
Remark. Let now Fm (x) be absolutely continuous matrix-functions of uni-

formly bounded variation tending to F (x), i.e.

b∫
a

|dFm (x)| < const, Fm (x) → F (x) .

Then solution Ym (x, λ) of the integral equation

Ym (x) =
(

c1 cos
√

λx +
c2√
λ

sin
√

λx

)
I +

x∫
0

sin
√

λ (x− t)√
λ

dFm (t) Ym (t)

is the solution of the problem

−Y ′′
m + Vm (x) Ym = λYm,

Ym (0, λ) = c1I, Y ′
m (0, λ) = c2I ,

where Vm (x) = F ′m (x) (Vm (x) is a matrix of the order (n× n)).
It is obvious that a family of functions Ym (x, λ) n = 1, 2, ... is uniformly bounded

and equipotentially continuous. Then Ym (x, λ) converge uniformly to the limiting
function Y(x, λ) which satisfies equation (1).

Using the result of theorem 1.1 we proved theorem 1.2.
Theorem 1.2. Solution of equation (1) has a right derivative as 0 ≤ x ≤ b given

by the equality

Y ′ (x, λ) =
(
−c1

√
λ sin

√
λx + c2 cos

√
λx
)

I+

+

x∫
0

cos
√

λ (x− t) dF (t) Y (t, λ) , Y ′ (0, λ) = c2I. (1.16)

It is a two-sided derivative at the points, where F (x) is continuous or Y (x, λ) =
0.

Corollary. The right derivative Y ′ (x, λ) is uniformly bounded when 0 ≤ x ≤ b,
|λ| ≤ N, and it is a matrix-function of bounded variation.

Note that the special solutions of Sturm-Lioville equation were also studied in
[5], [6].

2. The identity for Wronskian

Theorem 2.1. Let F (x) be a continuous matrix-function of bounded variation
continuous from the right in the interval 0 ≤ x ≤ b, Y (x, λ) be unique solution of
equation (1), and Z (x, λ) be a solution of the equation

Z (x) =

(
c3 cos

√
λx + c4

sin
√

λx√
λ

)
I +

x∫
0

sin
√

λ (x− t)√
λ

Z (t) dF (t) , (2.1)
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where c3, c4 are some constants. Then when 0 ≤ x < b

W (Z, Y ) = Z ′ (x, λ) Y (x, λ)− Z (x, λ) Y ′ (x, λ) = (c1c4 − c2c3) I. (2.2)

The extremity of interval x = b needs the special consideration. If F (x) is
continuous when x = b then there exists a derivative from the left

Y ′ (b, λ) =
(
−c1

√
λ sin

√
λb + c2 cos

√
λb
)

I +

b∫
0

cos
√

λ (b− t) dF (t) Y (t, λ) (2.3)

(and analogously for Z ′ (b, λ)) which coincides with lim
x→b

Y ′ (x, λ) where Y ′ (x, λ) is

a right derivative and therefore (2.2) is true when x = b established by passage
to the limit as x → b. In the presence of the jump F (x) at the point x = b the
equality (2.2) is valid for Y ′ (b, λ) understood in the sense of equality (2.3), since
according to (2.3) the jump of the funciton Y ′ (x, λ) when x = b will be equal to
[F (b)− F (b− 0)]Y (b, λ).

Therefore the result of influence of this jump and the alike jump for matrix-
function Z ′ (x, λ) on Wronskian in equality (2.2) is jump which is equal to

{Z (b, λ) [F (b)− F (b− 0)]}Y (b, λ)− Z (b, λ) {[F (b)− F (b− 0)]Y (b, λ)} = 0,

so Wronskian is continuous at the point x = b even if F (x) has there jump, i.e. (2.2)
is true at the point x = b if Y ′ (b, λ) understood in the sense of equality (2.3).

We construct more general result from which the assertion of Theorem 2.1 will
follow

Theorem 2.2. If F (x) , F+ (x) are matrix-functions of bounded variation
continuous from the right in the interval 0 ≤ x ≤ b, Y (x, λ) is a solution of equation
(1) and Z (x, λ) is a solution of the equation

Z (x) =
(

c3 cos
√

λx +
c4√
λ

sin
√

λx

)
I +

x∫
0

sin
√

λ (x− t)√
λ

Z (t) dF+ (t) , (2.4)

then [
Z ′Y − ZY ′]x

0
=

x∫
0

Z (t, λ)
[
dF+ (t)− dF (t)

]
Y (t, λ) (2.5)

holds.
Proof. Taking into account that in the products Z ′Y, ZY ′ one of cofactors is

continuous and another one is of bounded variation, the left- hand side (2.5) can be
written in the form

[
Z ′Y − ZY ′]x

0
=

x∫
0

[
Z ′ (dY ) +

(
dZ ′
)
Y − Z

(
dY ′)− (dZ) Y ′] . (2.6)

Allowing for (1.19) and (2.4) we’ll obtain

x∫
0

Z
(
dY ′) = −λ

x∫
0

Z (t, λ) Y (t, λ) dt +

x∫
0

Z (t, λ) dF (t) Y (t, λ) . (2.7)
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Analogously

x∫
0

(
dZ ′
)
Y = −λ

x∫
0

Z (t, λ) Y (t, λ) dt +

x∫
0

Z (t, λ) dF+ (t) Y (t, λ) . (2.8)

Further from (1) integrating by parts we’ll obtain

Y (x, λ) = c1I +

x∫
0

((
−c1

√
λ sin

√
λt + c2 cos

√
λt
)

I+

+

t∫
0

cos
√

λ (t− s) dF (s) Y (s, λ)

 dt,

and this by virtue of (1.16) coincides with

Y (x, λ) = Y (0) +

x∫
0

Y ′ (t, λ) dt. (2.9)

We get the analogous equality for Z (x, λ). Taking into account (2.9) and anal-
ogous for Z (x, λ)

x∫
0

Z ′ (dY ) =

x∫
0

Z ′Y ′dt =

x∫
0

(dZ) Y ′. (2.10)

Putting in (2.6) equality (2.7)-(2.10) we’ll obtain the required equality.
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