Gamidulla I. ASLANOV, Nuraddin Kh. RAHIMOV

ON GREEN FUNCTION AND DISTRIBUTION OF EIGENVALUES OF THE SECOND ORDER PARTIAL OPERATOR- DIFFERENTIAL EQUATIONS OF ELLIPTIC TYPE IN HALF-SPACE

Abstract

Operator L generated by the expression

$$l(u) = -\sum_{i,j=1}^{3} \frac{\partial}{\partial x_{i}} \left(a_{ij}(x) \frac{\partial u}{\partial x_{j}} \right) + Q(x) u$$

and the boundary condition

$$u(x_1, x_2, x_3)|_{x_3=0} = 0$$

is considered in the Hilbert space $L_2(E_3^+, H)$.

Under some assumptions relative to the coefficients $a_{ij}(x)$ and operator potential Q(x) Green function is constructed, the discreteness of the spectrum is proved and the asymptotic formula for distribution function of eigenvalues of operator L is obtained.

Let E_3^+ be half-space $(x_3 \ge 0)$ of three- dimensional Euclidean space E_3 , H be a separable Hilbert space. Consider the following differential expression in the Hilbert space $L_2(E_3^+, H)$

$$l(u) = -\sum_{i,j=1}^{3} \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial u}{\partial x_j} \right) + Q(x) u$$
 (1)

with the boundary condition

$$u(x)|_{x_3=0} = u(x_1, x_2, x_3)|_{x_3=0} = 0$$
 (2)

It is assumed the fulfillment of the following conditions relative to the coefficients $a_{ij}(x)$ and operator function Q(x):

1) Real-valued functions $a_{ij}(x) = a_{ji}(x)$ have bounded partial derivatives $\frac{\partial a_{ij}(x)}{\partial x_k}$ (i, j, k = 1, 2, 3) on E_3^+ , moreover, the conditions of uniform ellipticity are satisfied, i.e. there exist m, M > 0 such that

$$m |\xi|^2 \le \sum_{i,j=1}^3 a_{ij}(x) \xi_i \xi_j \le M |\xi|^2.$$

- 2) For each $x \in E_3^+$ operators Q(x) have common everywhere dense domains and they are self-adjoint operators, $Q(x) \ge E$ and $Q^{-1}(x) \in \sigma_{\infty}$.
 - 3) For $|x \xi| \le 1$,

$$\|[Q(x) - Q(\xi)Q^{-a}(x)]\| \le B|x - \xi|.$$

[G.I.Aslanov, N.Kh.Rahimov]

4) For some l > 0 $Q(x) \in \sigma_1$ for all $x \in E_3^+$ and

$$\int\limits_{E_{3}^{+}}\left\Vert Q^{-l}\left(x\right) \right\Vert _{1}dx<\infty.$$

5) There exists such a function f that for $|x - \xi| \le 1$,

$$\left\| e^{-ctQ(\xi)} \right\|_{1} \le \left\| e^{-f(c)tQ(\xi)} \right\|_{1}$$

for all c > 0, t > 0.

6) For any fixed c > 0,

$$\int_{E_3^+} tre^{-ctQ(x)} dx = O\left(1\right) \int_{E_3^+} tre^{-tQ(x)} dx.$$

7) Let $\alpha_1(x) \leq \alpha_2(x) \leq ... \leq \alpha_n(x) \leq ...$ be eigenvalues of the operator Q(x) in H. Suppose that $\alpha_1(x)$, $\alpha_2(x)$, ..., $\alpha_n(x)$, ... are measurable functions.

We will introduce the denotation

$$\rho(\lambda) = \sum_{i=1}^{\infty} \int_{\{x:\alpha_i(x)<\lambda\}} \Phi(x) \left[\lambda - \alpha_i(x)\right]^{\frac{3}{2}} dx,$$

where
$$\Phi(x) = \int_{E_{2}^{+}}^{-\sum_{i,j=1}^{3} a_{ij}(x)\xi_{i}\xi_{j}} d\xi = \pi^{\frac{3}{2}} \left(\det \|a_{ij}(x)\|_{i,j=1}^{3} \right)^{-\frac{1}{2}}$$
.

Suppose that for some $a_0 > 0$ and sufficiently large $\lambda > 0$ the tauberian condition is fulfilled

$$\lambda \rho'(x) < a_0 \rho(\lambda) \tag{3}$$

If conditions 1)-7) are satisfied then it is proved that operator L generated by the expression (1) and boundary condition (2) has a discrete spectrum. Let $\lambda_1, \lambda_2, ..., \lambda_n, ...$ be eigenvalues of the operator L.

In the given paper the distribution of eigenvalues, i.e. asymptotic behaviour of distribution function $N(\lambda)$ as $\lambda \to \infty$ is studied. By definition, function $N(\lambda) = \sum_{\lambda \in \mathcal{N}} 1$ shows the number of eigenvalues less than λ .

With this purpose, at first, Green function of parabolic problem with the operator L is studied:

$$\frac{\partial u}{\partial t} = -Lu = -\left[L_0\left(x, \frac{\partial}{\partial x}\right) + L_1\left(x, \frac{\partial}{\partial x}\right) + Q(x)\right]u,$$

$$u(0, x) = \psi(x), \ x \in E_3^+, \ \psi(x) \in L_2\left(E_3^+; H\right).$$

One of the main results is

Theorem 1. If the coefficients of the differential expression (1) satisfy conditions 1)-5), then for $t \to +0$ the following asymptotic formula holds

$$G(x, y, t) = G_1(x - y, y, t)$$
(4)

 $\frac{}{[\text{On Green function of operator-differential equat.}]}$

where O(1) is an operator from σ_1 for each $x,y \in E_3^+$ and small t>0, whose σ_1 norm is bounded on x, y, t.

Here

$$G_1(x-y,y,t) = R(x-y)G_0(x-y,y,t)$$
,

R(x) is some smooth function satisfying the condition

$$R(x) = \begin{cases} 1 & \text{if } |x| \le \frac{1}{2}, \\ 0 & \text{if } |x| > 1. \end{cases}$$

 $G(x-y,\eta,t)$ is Green function of the problem with "frozen" coefficients

$$\frac{\partial u}{\partial t} = -L\left(\eta, \frac{\partial}{\partial x}\right)u,$$

$$u(0,x) = \psi(x), \ \psi(x) \in L_2(E_3^+, \ H).$$

This theorem particularly implies that the spectrum of the operator L is purely discrete one.

By means of theorem 1 and tauberian Keldysh M.V. theorem [3] the following main theorem is proved.

Theorem 2. If the coefficients $a_{ij}(x)$ and the operator function Q(x) satisfy the conditions 1)-7) and tauberian condition (3) is fulfilled, then for the number of eigenvalues $N(\lambda)$ of the operator L as $\lambda \to \infty$ the following asymptotic formula holds

$$N\left(\lambda\right)^{\sim} \frac{1}{\left(2\pi\right)^{3} \Gamma\left(\frac{5}{2}\right)} \sum_{i=1}^{\infty} \int_{\left\{x: \alpha_{i}\left(x\right) < \lambda\right\}} \Phi\left(x\right) \left[\lambda - \alpha_{i}\left(x\right)\right]^{\frac{3}{2}} dx.$$

The authors express their thanks to professor Bairamogly M. for the useful advices.

References

- [1]. Kostuchenko A.G. Asymptotic behaviour of spectral function of self-adjoint elliptic operators. In book "Chetvertaya matem. shkola", Kiev, 1968, pp. 42-117. (Russian)
- [2]. Kostuchenko A.G., Levitan B.M. On asymptotic behaviour of eigenvalues of Sturm- Liouville operator problem. Funkts. analiz i ego pril., 1967, v.1, No1, pp. 86-96. (Russian)
- [3]. Keldysh A.G. On one tauberian theorem. Trudy matem. instituta im. Steklova, 38, 1951, pp. 77-86. (Russian)
- [4]. Kurbanova R.D. The asymptotics of a number of eigenvalues of abstact Schrödinger operator in a half- space. AN AzSSR, IMM, Baku, 1983, Dep. VINITI, No6105-83, 27 p. (Russian)
- [5]. Bairamov A.M. On spectrum of the second order elliptic equation with the operator coefficients. Dep. in Az NIINTI, 1996, No2400- Az., 35 p. (Russian)

Gamidulla I. Aslanov

[G.I.Aslanov, N.Kh.Rahimov]

Institute of Mathematics and Mechanics of NAS of Azerbaijan.

9, F.Agayev str., Az1141, Baku, Azerbaijan.

Tel.: (9941) 382 444 (off.)

Nuraddin Kh. Rahimov

Lankaran State University.

50, General Hazi Aslanov str., AZ3730, Lankaran, Azerbaijan.

Received June 25, 2002; Revised March 31, 2003.

Translated by Azizova R.A.