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Vugar S. ALIYEV

ON COMPLETENESS OF ELEMENTARY

SOLUTIONS OF THE FOURTH ORDER

HOMOGENOUS OPERATOR-DIFFERENTIAL

EQUATIONS OF THE ELLIPTIC TYPE

Abstract

The conditions, providing, completeness of the decreasing elementary solu-
tions of one class of fourth order operator-differential equations are found. In
the work it is proved existence of the regular solution of corresponding homo-
geneous operator-differential equation, when the boundary conditions contain
operators, and it is proved a completeness of some arbitrary chains, constructed
by these boundary conditions.

Let H be a separable Hilbert space, A positively defined self-adjoint operator
in H. It is known that, the domain of the operator Aγ(γ > 0) becomes a Hilbert
Space Hγ with respect to the scalar products (x, y)γ = (Aγx,Aγy), x, y ∈ D(Aγ).
We’ll denote by L2(R+;Hγ) a set of all measurable Bohner vector-functions with

the values from Hγ , for which ‖f‖ =
(∞∫

0

‖f(t)‖2
γ dt

)1/2

<∞. Further, let L(X,Y )

define a set of linear restrictions of the operators acting from the Hilbert Space
X to another Y ;

∑
(.) be a spectrum of the operator (.);

∑
∞ be an ideal of the

completely continuous operators in L(H,H);
∑

p =
{
A : A ∈

∑
∞,

∞∑
n=1

sp
n(A) <∞

where sn(A) −s are numbers of the operator A}; in future everywhere u
′
, u

′′
, u

′′′

and u(4) are derivatives in the since of distributions theory [1].
Now let’s introduce the following sets:

W 4
2 (R+;H) = {u : u ∈ L2(R+;H4), u(4) ∈ L2(R+;H)},

W̊ 4
2 (R+;H) = {u : u ∈W 4

2 (R+;H), u(0) = u′(0) = u′′(0) = u′′′(0) = 0},

W 4,T,k
2 (R+;H) =

{
u : u ∈W 4

2 (R+;H), u(0) = Tu′′(0), u′(0) = Ku′′′(0),

T ∈ L(H3/2,H7/2),K ∈ L(H1/2,H5/2)
}
.

Each of these sets provided with norm

‖u‖W 4
2

=
(
‖u‖2

L2(R+;H4) +
∥∥∥u(4)

∥∥∥2

L2(R+;H)

)1/2

,

becomes a Hilbert space [1,p.29].
Now we’ll pass to the statement of the problems, which we are studying. Let

B1, B2, B3 ∈ L(H;H), then a domain of the operator bundle

P (λ) = λ4E + λ3B3A+ λ2B2A
2 + λB1A

3 +A4 (1)
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coincides with the space H4; here E single operator in H. In the theorem on the
completeness of decreasing elementary solutions of the equation

P (d/dt)u = u(4) +B3Au
′′′ +B2A

2u′′ +B1A
3u′ +A4u = 0 (2)

by fulfilling the boundary conditions:

u(0)− Tu′′(0) = ϕ,ϕ ∈ H7/2, u
′(0)−Ku′′′(0) = ψ,ψ ∈ H5/2 (3)

in the corresponding space of solutions of problem (2), (3) in supposition
A−1 ∈

∑
p.

To this end, at first we shall consider the operator-differential equation:

P (d/dt) = u(4) +B3Au
′′′ +B2A

2u′′ +B1A
3u′ +A4u = f, t ∈ R+ (4)

by fulfilling the boundary conditions

u(0) = Tu′′(0), u′(0) = Ku′′′(0) (5)

where almost everywhere f(t) ∈ H, u(t) ∈ H.
The questions on the completeness of the elementary solutions in the case when

the operators are in the boundary conditions are investigated for example, in the
work [5] for second order equations.

Definition 1. Problem (4), (5) is called regular solvable, if for each vector-
function f(t) ∈ L2(R+;H) there exists a unique vector-function u(t) ∈
∈ W 4,T,K

2 (R+;H), which satisfies equation (4) almost everywhere in R+, bound-
ary conditions (5) are fulfilled in the sense of convergence of the space H7/2,H5/2

and it holds the inequality

‖u‖W 4
2
≤ const ‖f‖L2

. (6)

Let’s find conditions, providing regular solvability of problem (4), (5).
First of all, we shall consider the equation

P0(d/dt)u = u(4) +A4u = f (7)

where f(t) ∈ L2(R+;H). Let’s denote by P0 the operator, acting from space
W 4,T,K

2 (R+;H) in L2(R+;H) by the following way:

P0u = P0(d/dt)u, u ∈W 4,T,K
2 (R+;H).

It’s true.
Theorem 1. Let C = A7/2TA−3/2, S = A5/2KA−1/2, these operators are com-

mutative, i.e. CS = SC and point −1 /∈
∑

(CS−S+C). Then operator P0 realizes
an isomorphism from the space W 4,T,K

2 (R+;H) on L2(R+;H).
Proof. The condition−1 /∈

∑
(CS−S+C) implies that homogeneous P0(d/dt) =

0 has just a zero solution from the spaceW 4,T,K
2 (R+;H), but at any f(t) ∈ L2(R+;H)
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equation (7) has solution from the space W 4,T,K
2 (R+;H), representable in the form

u(t) =
1

4
√

2

∫
0

∞
(
(1 + i)e−

1+i√
2
|t−s|A + (1− i)e−

1−i√
2
|t−s|A

)
A−3f(s)ds−

− i

4
√

2
e
− 1+i√

2
tA
A−7/2(CS − S + C + E)−1×

×[((C + iE)(S − iE) + (E + iC)(S + iE))×

×A1/2
∫
0

∞
e
− 1+i√

2
tA
f(s)ds+ 2(E + iC)(S − iE)A1/2

∫
0

∞
e
− 1−i√

2
sA
f(s)ds]+

+
i

4
√

2
e
− 1−i√

2
tA
A−7/2(CS − S + C + E)−1×

×
[
2(E − iC)(S + iE)A1/2

∫
0

∞
e
− 1+i√

2
sA
f(s)ds+

+((E − iC)(S − iE) + (E + iC)(E − iS))A1/2
∫
0

∞
e
− 1−i√

2
sA
f(s)ds

]
.

(8)

It is easy to check, that first number satisfies equation (7) and belongs to the
space W 4

2 (R+;H) (see [2,3,]). Further, from the inequality [6, p.208]∥∥∥∥∥∥A1/2

∫
0

∞
[exp(−tA)] f(t)dt

∥∥∥∥∥∥
H

≤ 1√
2
‖f‖L2

, (9)

∥∥∥A1/2 [exp(−tA)]ψ
∥∥∥

L2

≤ 1√
2
‖ψ‖ , ψ ∈ H, (10)

implies the inequality:∥∥∥∥∥∥A1/2

∫
0

∞ [
exp(−1± i√

2
tA)
]
f(t)dt

∥∥∥∥∥∥
H

≤ 1
4
√

2
‖f‖L2

, (11)

∥∥∥∥A4

[
exp(−1± i√

2
tA)
]
ψ

∥∥∥∥
L2

≤ 1
4
√

2
‖ψ‖7/2 , ψ ∈ H7/2. (12)

Consequently, the second and the third number in equality (8) also belong to the
space W 4

2 (R+;H).
Fulfilment of boundary conditions (5) can be checked directly. Boundedness of

the operator P0 follows from the inequality

‖P0u‖2
L2

=
∥∥∥u(4) +A4u

∥∥∥2

L2

≤ 2 ‖u‖2
W 4

2
(13)

Thus, an operator P0 is bounded and one-to-one acts from the space W 4
2 (R+;H)

on L2(R+;H) and by the Banach’s theorem on the inverse operator realizes isomor-
phism by these spaces.
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The theorem is proved.
This theorem implies that ‖P0u‖L2

is a norm of the space W 4
2 (R+;H), equivalent

to the original norm ‖u‖W 4
2
.

Now we’ll research problem (4), (5).
Theorem 2. Let conditions of theorem 1 be fulfilled and

3∑
j=1

‖Bj‖NT,K,j < 1,

where

NT,K,j = sup
0 6=u∈W 4,T,K

2 (R+;H)

(∥∥∥A4−ju(j)
∥∥∥

L2

/ ‖P0u‖L2

)
. (14)

Then problem (4), (5) is regular solvable.
Proof. Let’s write problem (4), (5) in the form of operator equation (P0 + P1)u =

f , where f(t) ∈ L2(R+;H), u(t) ∈ W 4,T,K
2 (R+;H). P1u =

3∑
j=1

BjA
4−ju(j) for

u ∈W 4,T,K
2 (R+;H). Since, the operator P0 has a bounded inverse P−1

0 by theorem
1, acting from L2(R+;H) on W 4,T,K

2 (R+;H), then after substitution u = P−1
0 υ we

shall obtain the following equation in L2(R+;H):

(E + P1P−1
0 )υ = f.

On the other hand∥∥P1P−1
0 υ

∥∥
L2

= ‖P1u‖L2
≤

3∑
j=1

‖Bj‖
∥∥A4−ju(j)

∥∥
L2
≤

≤
3∑

j=1
‖Bj‖NT,k,j ‖P0u‖ =

3∑
j=1

‖Bj‖NT,K,j ‖υ‖L2
.

Therefore, by fulfiling the inequality
3∑

j=1
‖Bj‖NT,K,j < 1 the operator E+P1P−1

0

is reversible and we can find u(t).
The theorem is proved.
Let’s denote by N0,j = sup

0 6=u∈W̊ 4
2 (R+;H)

(∥∥A4−ju(j)
∥∥

L2
/ ‖P0u‖L2

)
, j = 1, 2, 3.

Remark 1. It is obvious, that NT,K,j ≥ N0,j and

N0,j =

((
4

4− j

)4−j (4
j

)j
)−1/4

, j = 1, 2, 3

[7]. In suppositions A−1 ∈
∑

p the operator bundle P (λ) has a discrete spectrum,
and let λn (n = 1, 2, 3...) be characteristic numbers of bundle P (λ) from the left-
plane Π−, and x0,n, x1,n, .., xm,n be eigen and joined vectors, responding to the char-
acteristic number λn:

P (λn)x0,n = 0,
P∑

j=0

1
j!P

(j)(λn)xp−j,n = 0, p = 1, ...,m.
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Then the vector-functions

up,n(t) = eλnt

(
tp

p!
x0,n +

tp−1

(p− 1)!
x1,n + ...+ xp,n

)
, p = 0, 1, ...,m,

belong to the space W 4
2 (R+;H) and satisfy equation (2). They will be called ele-

mentary solutions of equation (2) [5]. It is obvious, that elementary solutions satisfy
the following boundary conditions:

u0,n(0)− Tu
′′
0,n(0) = x0,n − λ2

nTx0,n ≡ ϕ0,n,

u1,n(0)− Tu
′′
1,n(0) = x1,n − λ2

nTx1,n − 2λnTx0,n ≡ ϕ1,n,

up,n(0)− Tu
′′
p,n(0) = xp,n−

−λ2
nTxp,n − 2λnTxp−1,n − Txp−2,n ≡ ϕp,n, p = 2, ...,m,

u′0,n(0)−Ku
′′′
0,n(0) = λnx0,n − λ3

nKx0,n ≡ ψ0,n,

u′1,n(0)−Ku
′′′
1,n(0) = λnx1,n − λ3

nKx1,n + x0,n − 3λ2
nKx0,n ≡ ψ1,n,

u′2,n(0)−Ku
′′′
2,n(0) = λnx2,n − λ3

nKx2,n+

+x1,n − 3λ2
nKx1,n − 3λnKx0,n ≡ ψ2,n,

u′p,n(0)−Ku
′′′
p,n(0) = λnxp,n − λ3

nKxp,n + xp−1,n−

−3λ2
nKxp−1,n − 3λnKxp−2,n −Kxp−3,n ≡ ψp,n,

p = 3, ...,m.

(15)

By fulfilling the condition of theorem 2, it is easy to see, that problem (2), (3)
has a unique solution from the space W 4

2 (R+;H) at any ϕ ∈ H7/2, ψ ∈ H5/2. A set
of all such solutions we’ll denote by W4(P ).

From the theorem on the intermediate derivatives and about traces implies,
that a set W4(P ) is closed subspace of the space W 4

2 (R+;H). There it is stated,
a problem: when elementary solutions of problem (2) are complete in the space
W4(P )? It holds.

Theorem 3. Let C = A7/2TA−3/2, S = A5/2KA−1/2, these operators are com-

mutative, i.e. CS = SC,−1
∑

(CS − S + C),
3∑

j=1
‖Bj‖NT,K,j < 1 and one of the

conditions is fulfilled:
a) A−1 ∈

∑
ρ(0 < ρ ≤ 2) or b) Bj ∈

∑
∞, j = 1, 2, 3, A−1 ∈

∑
ρ(0 < ρ < ∞).

Then a system of elementary solutions of problem (2), (3) is complete in the space
W4(P ).

Proof. First of all, we shall prove, that the system {ϕp,n, ψp,n}, defined from
equality (15) is complete in the space H7/2 ⊕H5/2. If it is not so, then there exists
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a non-zero vector (ϕ̃, ψ̃) ∈ H7/2 ⊕ H5/2 such, that (ϕ̃, ϕp,n)7/2 + (ϕ̃, ψp,n)5/2 = 0.
Then from the expansion of the main part of resolvent at the neighborhoods of
characteristic numbers it follows, that (A7/2(E− λ̄2

T )P−1(λ̄))∗A7/2ϕ̃+ (A5/2(λ̄E−
λ̄

3
K)P−1(λ̄))∗A5/2ψ̃ will be holomorphic vector-function in the left half-plane Π−.

If u(t) is a solution of problem (2), (3), then it can be represented in the form

u(t) =
1

2πi

i∞∫
−i∞

û(λ) exp(λt)dλ, (16)

where
û(λ) = P−1(λ){

(
λ3E + λ2B3A+ λB2A

2 +B1A
3
)
u(0)+

+(λ2E + λB3A+B2A
2)u′(0) + (λE +B3A)u

′′
(0) + u′′′(0)}.

Taking into account Remark 1 from theorem 5 of the work [4] we’ll obtain that
by fulfilling the condition of the theorem the following statement holds:

1) P−1(λ) is represented in the form of ratio of two ρ order entire and minimal
type functions at order ρ;

2) there exists a number E >0 such, that the resolvent P−1(λ) is holomorphic at
the angles S±ε = {λ : λ = r exp(±iθ), π/2 < θ < π/2 + E , r > 0} and at the same
angles admits the estimations

∥∥A7/2P−1(λ)
∥∥ ≤ c |λ|−1/2 ,

∥∥A5/2P−1(λ)
∥∥ ≤ c |λ|−3/2;

3) at the left half-plane there exists a system of rays {Ω}, including rays Γ±E =
{λ : λ = r exp(±i(π/2 + E)), r > 0}, such that the angle between neighbour rays is
less than π/ρ and on these rays of the functions

∥∥A7/2P−1(λ)
∥∥ and

∥∥A5/2P−1(λ)
∥∥

grow no faster than |λ|−1/2 and |λ|−3/2 correspondingly.
Taking into account all of this in equality (16), a contour of integration we can

substitute by Γ±E . Then at t > 0

(u(t)− Tu′′(t), ϕ̃)7/2 + (u′(t)−Ku′′′(t), ψ̃)5/2 =

=
1

2πi
∫

Γ±E

((
λ3E + λ2B3A+ λB2A

2 +B1A
3
)
u(0)+

+(λ2E + λB3A+B2A
2)u′(0)+

+(λE +B3A)u(0) + u′′′(0), (A7/2(E − λ2T )P−1(λ))∗A7/2ϕ̃+

+(A5/2(λE − λ3K)P−1(λ))∗A5/2ψ̃) exp(λt)dλ.

From the Frangmen-Lindelof’s theorem we obtain, that integrand function in
front of expλt is a polynomial, and therefore the integral equals zero at t > 0,
consequently, (u(t)− Tu′′(t), ϕ̃)7/2 +

(
u′(t)−Ku′′′(t), ψ̃

)
5/2

= 0, t > 0.

Passing to the limit at t → 0, by the theorem about traces we shall obtain
(ϕ, ψ̃)7/2 + (ψ, ψ̃)5/2 = 0,∀(ϕ,ψ) ∈ H7/2 ⊕ H5/2. Therefore, ϕ̃ = ψ̃ = 0. Further,
from the uniqueness of the solution of problem (2), (3) and from the theorem about
traces it holds the inequality

c2(‖ϕ‖2
7/2 + ‖ψ‖2

5/2)
1/2 ≤ ‖u‖W 4

2
≤ c1

(
‖ϕ‖2

7/2 + ‖ψ‖2
5/2

)1/2
. (17)
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Since, the system {
(
ϕp,n, ψp,n

)
} is complete in H7/2 ⊕ H5/2, then for the given

E >0 there exists a number N and numbers cNp (E) such that∥∥∥∥∥ϕ−
N∑

n=1

∑
p

cNp (E)ϕp,n

∥∥∥∥∥
2

7/2

+

∥∥∥∥∥ψ −
N∑

n=1

∑
p

cNp (E)ψp,n

∥∥∥∥∥
2

5/2

1/2

< E . (18)

Taking into account equalities (3) and (5) in (17), from inequality (18) we’ll
obtain ∥∥∥∥∥u(t)−

N∑
n=1

∑
p

cNp (E)up,n(t)

∥∥∥∥∥
W 4

2

< c1E .

The theorem is proved.
The author expresses his thanks to prof. S.S.Mirzoyev for some useful discus-

sions.
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