MATHEMATICS

Adalat Sh. ABBASOV

CONDITIONS OF CORRECT SOLVABILITY OF A BOUNDARY VALUE PROBLEM FOR ONE CLASS OF THIRD ORDER OPERATOR-DIFFERENTIAL EQUATION

Abstract

In the paper we found sufficient conditions imposed on the coefficients of one class of third order operator-differential equations which provide correct and unique solvability of some initial boundary value problem posed for such equations.

Let H be separable Hilbert space, and A normal invertible operator in H. Then A can be represented in the form A = UC, where U is a unitary operator, and C is a positive defined self-adjoint operator. Denote

$$H_{\alpha} = D(C^{\alpha}), \quad (x,y)_{\alpha} = (C_x^{\alpha}, C_y^{\alpha}), \ \alpha \ge 0.$$

Let $L_2(R_+; H)$ be Hilbert space of vector-functions f(t) defined in $R_+ = (0, \infty)$ with values from H, measurable and

$$\|f\|_{L_2(R_+;H)} = \left(\int_0^\infty \|f(t)\|^2 dt\right)^{1/2} < D.$$

Further, we define Hilbert space [1]

$$W_2^3(R_+;H) = \left\{ u | u^{(3)} \in L_2(R_+;H), \quad A^3 u \in L_2(R_+;H) \right\}$$

and

$$\mathring{W}_{2}^{3}(R_{+};H) = \left\{ u | u \in W_{2}^{3}(R_{+};H), u(0) = 0 \right\}$$

with norm

$$\|u\|_{W_2^3(R_+;H)} = \left(\left\| u^{(3)} \right\|_{L_2(R_+;H)}^2 + \left\| A^3 u \right\|_{L_2(R_+;H)}^2 \right)^{1/2}$$

For $R = (-\infty, \infty)$, spaces $L_2(R; H)$ and $W_2^3(R; H)$ are considered analogously. Note that here and later on derivatives are understood in the sense of the theory of distributions.

Consider the following operator-differential equation in the space H

$$\frac{d^3u}{dt^3} + A^3u + A_1\frac{d^2u}{dt^2} + A_2\frac{du}{dt} + A_3u = f(t)$$
(1)

with the boundary condition

$$u\left(0\right) = 0\tag{2}$$

[A.Sh.Abbasov]

Definition 1. If for $f(t) \in L_2(R_+; H)$ there exists the vector function $u(t) \in L_2(R_+; H)$ $W_2^3(R_+;H)$, which satisfies equation (1) almost everywhere in R_+ , then u(t) is called a regular solution of equation (1).

Definition 2. If for any $f(t) \in L_2(R_+; H)$ there exists a regular solution of equation (1) which satisfies boundary condition (2)

$$\lim_{t \to 0} \|u(t)\|_{3/2} = 0$$

and the inequality

$$\|u\|_{W^3_2(R_+;H)} \le const \, \|f\|_{L_2(R_+;H)}$$

then problem (1)-(2) will be called regular solvable.

J3 . .

In the given paper we establish sufficient conditions, under which problem (1), (2) becomes regular solvable. When A is a positive-defined self-adjoint operator this problem in general from was considered in [2]. In the paper [3] operator-differential equation of even order was considered.

Denote

$$P_{0}u = \frac{d^{3}u}{dt^{3}} - A^{3}u, \qquad u \in \mathring{W}_{2}^{3}(R_{+}; H),$$
$$P_{1}u = A_{1}\frac{d^{3}u}{dt^{3}} + A_{2}\frac{du}{dt} + A_{3}u, \qquad u \in \mathring{W}_{2}^{3}(R_{+}; H).$$

Lemma 1. Let the normal operator A be invertible and it have a spectrum on angular sector

$$S_{\varepsilon} = \{\infty | \quad |\arg \lambda| \le \varepsilon\}, \quad 0 \le \varepsilon < \frac{\pi}{6}$$

Then operator P_0 isomorphically maps the space $\mathring{W}_2^3(R_+;H)$ on $L_2(R_+;H)$.

Proof. It is obvious that equation $P_0 u = 0$ has only trivial solution from the space $\mathring{W}_{2}^{3}(R_{+};H)$. On the other hand, equation $P_{0}u = f$, $f \in L_{2}(R_{+};H)$, $u \in \mathring{W}_{2}^{3}(R_{+};H)$ is always solvable. In fact, vector function

$$u_{1}(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left(-\xi^{3}E + A^{3}\right)^{-1} \left(\int_{0}^{\infty} f(s) e^{i(t-s)\xi} ds\right) d\xi$$

satisfies equation $P_0 u = f$ almost everywhere. Let us show that $u_1(t) \in W_2^3(R; H)$. According to Plancherel theorem it suffices to prove that

$$A^{3}\hat{u}_{1}(\xi) \in L_{2}(R;H), \quad \xi^{3}\hat{u}_{1}(3) \in L_{2}(R;H)$$

where $\hat{u}(\xi)$ is Fourier transformation of the vector function $u_1(t)$.

Obviously,

$$\|A^{2}\hat{u}_{1}(\xi)\|_{L_{2}(R;H)} = \|A^{2}(-i\xi^{3} + A^{3})^{-1}\hat{f}(\xi)\|_{L_{2}(R;H)} \leq \leq \sup_{\xi \in R} \|A^{3}(-i\xi^{3} + A^{3})^{-1}\| \|f\|_{L_{2}(R_{+};H)} ,$$
(3)

where $\hat{f}(\xi)$ is Fourier transformation of the vector function f(t).

Transactions of NAS of Azerbaijan $_$

[Conditions of a boundary value problem]

Since for any $\xi \in R$

$$\begin{split} \left\| A^3 \left(-i\xi^3 E + A^3 \right)^{-1} \right\| &= \sup_{\mu \in \sigma(A)} \left| \mu^3 \left(-i\xi^3 + \mu^3 \right)^{-1} \right| = \\ &= \sup_{\mu \in \sigma(A)} \left| \mu^3 \right| \left(\xi^6 + |\mu|^6 - 2\xi^3 \mu^3 \sin 3\varphi \right)^{-\frac{1}{2}} \right| \le \\ &\le \sup_{\mu \in \sigma(A)} \left| \mu^3 \right| \left(\xi^6 + |\mu|^6 - \left(\xi^6 + |\mu|^6 \sin^2 3\varepsilon \right) \right)^{-\frac{1}{2}} \right| = \frac{1}{\cos 3\varepsilon}, \end{split}$$

we obtain that inequality (3) implies $A^3u_1(t) \in L_2(R; H)$. One can similarly prove that $\frac{d^3u_1}{dt^3} \in L_2(R; H)$, i.e., $u_1(t) \in W_2^3(R; H)$. Denote by $u_2(t)$ the contraction of vector function $u_1(t)$ on $[0, \infty]$. Then $u_2(t) \in W_2^3(R_+; H)$. By the theorem of traces $u_2(0) \in H_{5/2}$ [1].

Then general solution of equation $P_0 u = f$ is represented in the form $u(t) = u_2(t) + e^{-tA}\varphi_0$, where $\varphi_0 \in H_{5/2}$. Since u(0) = 0 we obtain that $\varphi_0 \in H_{5/2}$. Thus $u(t) \in W_2^3(R_+; H)$. On the other hand

$$\|P_0 u\|_{L_2}^2 = \left\|\frac{d^3 u}{dt^3} - A^3 u\right\|_{L_2}^2 \le 2 \|u\|_{W_2^3(R_+;H_1)}^2$$

i.e. $P_0: \mathring{W}_2^3(R; H) \to L_2(R_+; H)$ is a continuous operator. Then the statement of the lemma follows from the Banach theorem on the inverse operator.

Lemma 2. For any $u \in \check{W}_2^3(R_+; H)$, the following inequalities

$$\|P_0 u\|_{L_2(R_+;H)}^2 \ge \|u\|_{W_2^3(R;H,)}^2 + \cos 3\varepsilon \|u'(0)\|_{3/2}^2 - \sin 3\varepsilon \|A^3 u\|_{L_2} \|u^{(3)}\|_{L_2}$$

hold.

Proof. Let $u \in \mathring{W}_2^3(R; H)$. Then

$$\|P_0 u\|_{L_2}^2 = \left\| u^{(3)} + A^3 u \right\|_{L_2}^2 = \|u\|_{W_2^3}^2 + 2\operatorname{Re}\left(u^{(3)}, A^{(3)} u\right)_{L_2} .$$
(4)

Since $u \in \mathring{W}_{2}^{3}(R; H)$ (u(0) = 0) using the integration by parts we have

$$(u^{(3)}, A^3 u)_{L_2} = (C^{3/2} u'(0), C^{3/2} U^3 u'(0)) - (A^{*3} u, u^3) =$$

= $(C^{3/2} u'(0), U^3 C^{3/2} u'(0)) - (A^3 u, u^{(3)}) + (A^{*3} u, u^{(3)}) .$

Hence

$$2 \operatorname{Re} \left(u^{(3)}, A^{3}u \right)_{L_{2}} \geq \cos 3\varepsilon \left\| u^{\prime}(0) \right\|_{3/2}^{2} - \left| \left(A^{3} - A^{*3} \right) u, u^{3} \right| \geq \\ \geq \cos 3\varepsilon \left\| u^{\prime}(0) \right\|_{3/2}^{2} - \left\| \left(A^{3} - A^{*3} \right) A^{-3} \right\| \left\| A^{3}u \right\|_{L_{2}} \geq \\ \geq \cos 3\varepsilon \left\| u^{\prime}(0) \right\|_{3/2} - \sin 3\varepsilon \left\| A^{3}u \right\|_{L_{2}} \left\| u^{(3)} \right\|_{L_{2}} .$$

5

[A.Sh.Abbasov]

Taking into account this inequality in (4) we obtain the statement of the lemma. **Lemma 3.** For any $u \in \mathring{W}_2^3(R_+; H)$, the following inequalities hold.

1)
$$||A^{3}u||_{L_{2}(R_{+};H)} \leq \frac{1}{\cos 3\varepsilon} ||P_{0}u||_{L_{2}(R_{+};H)}$$
 (5)

2)
$$\left\| u^{(3)} \right\|_{L_2(R_+;H)} \le \frac{1}{\cos 3\varepsilon} \left\| P_0 u \right\|_{L_2(R_+;H)}$$
 (6)

3)
$$\left\| A^2 \frac{du}{dt} \right\|_{L_2(R_+;H)} \le \frac{2^{1/3}}{\cos 3\varepsilon} \left\| P_0 u \right\|_{L_2(R_+;H)}$$
(7)

4)
$$\left\| A \frac{d^2 u}{dt^2} \right\|_{L_2(R_+;H)} \le \frac{2^{3/2}}{\cos 3\varepsilon} \left\| P_0 u \right\|_{L_2(R_+;H)}$$
 (8)

Proof. From lemma 2 using Cauchy's inequality we obtain

$$\|P_0 u\|_{L_2}^2 \ge \|u^{(3)}\|_{L_2}^2 + \|A^3 u\|_{L_2}^2 + + \cos 3\varepsilon \|u'(0)\|_{3/2}^2 - \left(\|u^{(3)}\|^2 + \sin^2 3\varepsilon \|A^3 u\|^2\right) = = \cos^2 3\varepsilon \|A^3 u\|_{L_2}^2 + \cos 3\varepsilon \|u'(0)\|_{3/2}^2 .$$

This implies the validity of inequality (5). Inequality (6) is proved analogously. Integrating by parts we obtain

$$\|A^{2}u'\|_{L_{2}}^{2} = \|C^{2}u'\|_{L_{2}}^{2} = -(C^{3}u, Cu^{4})_{L_{2}} \le \|C^{3}u\|_{L_{2}} \|Cu^{4}\|_{L_{2}} = = \|A^{3}u\|_{L_{2}} + \|Au^{4}\|_{L_{2}}.$$
(9)

The identity $(\lambda > 0)$

$$\begin{aligned} \left\|\lambda C^{2}u' + Cu'' + \frac{1}{\lambda}u^{(3)}\right\|_{L_{2}}^{2} &= \lambda^{2} \left\|C^{2}u'\right\|_{L_{2}}^{2} + \frac{1}{\lambda^{2}} \left\|u^{(3)}\right\|_{L_{2}}^{2} - \left\|Cu''\right\|_{L_{2}}^{2} - \left\|\sqrt{\lambda}C^{3/2}u'\left(0\right) + \frac{1}{\sqrt{\lambda}}C^{1/2}u''\left(0\right)\right\|^{2} \end{aligned}$$

implies that

$$\lambda^2 \left\| C^2 u' \right\|_{L_2}^2 + \frac{1}{\lambda^2} \left\| u^{(3)} \right\|_{L_2}^2 \ge \left\| C u'' \right\|_{L_2}^2$$
.

If we assume here $\lambda = \|C^2 u'\|_{L_2}^{-\frac{1}{2}} \|u^{(3)}\|_{L_2}^{\frac{1}{2}}$ we obtain

$$\|Cu''\|_{L_{2}}^{2} \leq 2 \|C^{2}u'_{L_{2}}\| \|u^{(3)}\|_{L_{2}}$$

$$\|Au''\|_{L_{2}}^{2} \leq 2 \|A^{2}u'\|_{L_{2}} \|u^{(3)}\|_{L_{2}} .$$

$$(10)$$

or

$$\left\|Au''\right\|_{L_{2}}^{2} \leq 2\left\|A^{2}u'\right\|_{L_{2}} \left\|u^{(3)}\right\|_{L_{2}}.$$
(10)

Taking into account inequality (10) in (9) subject to inequalities (5) and (6) we obtain

$$\left\|A^{2}u'\right\| \leq 2^{1/3} \left\|A^{3}u\right\|_{L_{2}}^{2/3} \left\|u^{(3)}\right\|_{L_{2}}^{\frac{1}{3}} \leq 2^{1/3} \frac{1}{\cos 3\varepsilon}.$$
(11)

6

Transactions of NAS of Azerbaijan ______ [Conditions of a boundary value problem]

Taking into account inequality (9) in (10) subject to (5) and (6) we have

$$\left\|Au''\right\|_{L_2} \le 2^{2/3} \left\|A^3 u\right\|_{L_2}^{1/3} \left\|u^{(3)}\right\|_{L_2}^{2/3} \le \frac{2^{2/3}}{\cos 3\varepsilon}.$$
 (12)

The lemma is proved.

Theorem. Let A be normal operator and its spectrum be contained in the angular sector $S_{\varepsilon} = \{\lambda \mid |\arg \lambda| \leq \varepsilon\} \ 0 \leq \varepsilon < \frac{\pi}{6}$, operators $B_1 = A_1 A^{-1}$, $B_2 = A_2 A^{-2}$, $B_3 = A_3 A^{-3}$ be bounded in H, moreover, the inequality

$$2^{2/3} \|B_1\| + 2^{1/3} \|B_2\| + \|B_3\| < \cos 3\varepsilon$$

hold. Then problem (1), (2) is regular solvable.

Proof. We write equation Pu = f in the form $(P_0 + P_0)u = f$.

After substitution $P_0 u = v$ we obtain equation $(E + P_1 P_0^{-1}) v = f$ in the space $L_2(R_+;H)$. By lemma 3

$$\|P_1 P_0^{-1} v\|_{L_2} = \|P_1 u\|_{L_2} \le \|B_1\| \|A u''\|_{L_2} + \|B_2\| \|A^2 u'\|_{L_2} + \|B_2\| \|A^3 u\|_{L_2} \le \left(2^{2/3} \|B_1\| + 2^{1/3} \|B_2\| + \|B_3\|\right) / \cos 3\varepsilon < 1$$

which means that the operator $E + P_1 P_0^{-1}$ is invertible and $u = P_0^{-1} (E + P_1 P_0^{-1})^{-1} f$.

The theorem is proved.

The author is grateful to professor Mirzoyev S.S. for useful discussions.

References

[1]. Lions J.L., Majenes E. Non homogeneous boundary value problems and their applications. M.: "Mir", 1971, 371 p. (Russian)

[2]. Mirzoyev S.S. On condition of sovability of boundary value problems for operator-differential equations// Mat. Soviet. Dokl., 1983, v.273, No12, pp.292-295. (Russian)

[3]. Gulmamedov V.Ya. On correct solvability of boundary value problems for the even order operator-differential equations. Transactions of AS of Azerbaijan, 1992, v.XIX (1-2), pp.70-75.

Adalat Sh. Abbasov

Institute of Mathematics and Mechanics of NAS of Azerbaijan. 9, F.Agayev str., AZ1141, Baku, Azerbaijan. Tel.: (99412) 394 720 (off.)

Received June 23, 2003; Revised December 22, 2003. Translated by Azizova R.A.

7