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Nazila B. RASSOULOVA

ON ONE PROBLEM OF DYNAMICS OF

RECTANGULAR PRISM

Abstract

In the paper the solution of one problem from dynamics of rectangular prism
is given. Unlike the earlier considered problems in [1, 2] this problem is char-
acterized by the existence of free lateral conditions, that visibly complicates the
construction of solution. One original method for finding original by Laplace is
suggested.

The present paper is a continuation of a series of papers devoted to the elastic
rectangular beam dynamics [1, 2].

The exact analytical solution of dynamic problem of a rectangular beam is first
obtained in [1]. Since the Lame system of equations is integrated difficultly involving
free (single-type) boundaries, in the present paper [1] the lateral conditions are given
in a mixed form.

In the following paper [2] the problem is a little complicated by the existence
now of only two free lateral surfaces. In the same place the method which allows to
get the solution of problems in any form of loading is suggested.

In the present paper unlike the previous ones [1, 2] it is assumed, that all lateral
surfaces are free from efforts, but other conditions (front and initial) keep previous
meaning. Thus the considered statement is formulated by the following initially-
bounded problem of mathematical physics.

The Lame motion equation in the vector form:

ρ
∂2Ū

∂t2
= (λ+ µ) grad div Ū + µ∆Ū Ū = Ū (u, υ, w) (1)

are satisfied in the space occupied by the rectangular beam

−a ≤ x ≤ a − b ≤ y ≤ b; z > 0 for t > 0 .

For t > 0

Ū =
·
Ū = 0 (2)

σz = σ0 (x, y) f (t)
u = 0
υ = 0

 for z = 0 (3)

And finally:
σxx = σxy = σxz = 0 for x = ±a
σyx = σyy = σyz = 0 for y = ±b

(4)

where Ū is a displacement vector, {σ} is stress tensor, λ, µ are the Lame coefficients,
t is a time, ρ is a material density.
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Following [1,2] the problem (1)-(4) can be reduced to the integrating of more
simplified system:

(λ+ 2µ)H1ϕ = µqH2ψ2

H2ψ1 = 0
H0H2ψ2 = −σ0(x,y)

µ f̄ (p)

 (1′)

Here
Hi = ∂2

∂x2 + ∂2

∂y2
−
(
q2 + p2

c2i

)
; i = 1, 2

H0 = ∂2

∂x2 + ∂2

∂y2
− q2;

are Helmholtz operators and the three functions ϕ,ψ1, ψ2 and are connected with
double transformations (by the Laplace (p) and Fourier (q) operators) of the dis-
placement function:

ūs = ∂ϕ
∂x + ∂ψ1

∂y − q ∂ψ∂x ;
ῡs = ∂ϕ

∂y −
∂ψ1
∂x − q ∂ψ2

∂y ;

w̄c = qϕ− ∂2ψ2
∂x2 − ∂2ψ2

∂y2
.

(5)

Here, on the left part the index S corresponds the sine transformation, and the
index C − to cosine Fourier transformation.

For simplicity we accept, that σ0 (x, y) = const = σ0 we’ll write system (1) in
the form 

H0H1ϕ = − σ0q
λ+2µ f̄ (p)

H0H2ψ2 = −σ0
µ f̄ (p)

ψ1 ≡ 0
(1∗)

The first equation of the system has the evident partial solution

ϕ = − σ0

λ+ µ

f̄ (p)

q
(
p2

c21
+ q2

) (6)

which originate the normal stress on the bounds x = ±a; y = ±b

σϕxx = σϕyy = λσ0

(λ+2µ)

�
p2

c21
+q2

�qf̄ (p)

σϕxy = σϕxz = σϕyz = 0 .
(7)

The general homogeneous solution of the second equation of system (1*) in the
simplest form:

ψh2 = Ach

√
p2

c22
+ q2x+Bch

√
p2

c22
+ q2y (7∗)

can compensate stress (7) on the bounds x = ±a; y = ±b created by solution (6).
For this we should define the constants A and B properly from the conditions

σϕxx + σhxx = 0 for x = ±a
σϕyy + σhyy = 0 for y = ±b
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we find A = C (a) , B = C (b), where the function C (l) is denoted as

C (l) =
λσ0

(λ+ 2µ)
f̄ (p)(

p2

c21
+ q2

)
ch
√

p2

c22
+ q2 · l

(8)

However the solution ψh2 additionally creates the tangential stresses σxz and σyz
for x = ±a and y = ±b. As it is clarified only the solution of the form

ψ∗2 =
∞∑
k=0

Ak cos
(

1
2

+ k

)
π

a
x+

∞∑
k=0

Bk cos
(

1
2

+ k

)
π

b
y (9)

can completely satisfy the boundary conditions (4) together with the collection of
solutions (6) and (7*).

Therefore from all forms of partial solutions of the equation

H0H2ψ2 = −σ0

µ
f̄ (p)

we take that one which has the form (9).
The prime algebra satisfying the boundary conditions leads to the following

expression for coefficients of the series (9):

Ak = 2E1
(−1)k

πηk

�
η2
1k+q2+ p2

c22

�
(η2

1k+q2)

Bk = 2E2
(−1)k

πη2k

�
η2
2k+q2+ p2

c22

�
(η2

2k+q2)

(9∗)

where:

η1k =
(

1
2 + k

)
π
a ; η2k =

(
1
2 + k

)
π
b ; E1 = E1 (a) ; E2 = E2 (b) .

Ei (l) =
π
2
λσ0

(λ+2µ)µ
f̄(p)

p2

c21
+q2

p2

c22

th

r
p2

c22
+q2·lr

p2

c22
+q2

∞P
k=0

1

η2
ik

+

 
p2

c22

+q2

! q2−η2
ik

q2+η2
ik

, i = 1, 2 (10)

Granting that the solution ψ2 = const doesn’t generate any stresses in solid, the
general solution of the posed initially-bounded problem in transformed surfaces is
represented in the form:

ϕ = − σ0

λ+ 2µ
f̄ (p)

q
(
p2

c21
+ q2

) (11)

ψ2 = Ach

√
p2

c22
+ q2x+Bch

√
p2

c22
+ q2y +

∞∑
k=0

Ak cos η1kx+
∞∑
k=0

Bk cos η2ky , (12)

where A,B,Ak, Bk are the functions only of the transformed parameters p and q

defined above by formulas (8) and (9∗).
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Now we’ll find the inverse transformation of functions, constructing the general
solutions (11)-(12). The longitudinal potential (11) in solid generates only axial
movement of wϕ

wϕc = qϕ = − σ0
λ+2µ

f̄(p)
p2

c21
+q2

wϕ = − σ0
λ+2µ

t∫
0

f (t− τ)H
(
τ − z

ci

)
dτ

(13)

(13) represents the plane longitudinal wave propagating from the end wall along the
axis z with the velocity c1.

The finding of inverse Laplace transformations of the solution of type (7*) is not
difficult

ψh2 = Ach

√
p2

c21
+ q2x+Bch

√
p2

c21
+ q2y .

The expression of the form

ψh2 =
λσ0c

2
2

(λ+ 2µ)
f̄ (p)
p2

c21
+ q2

ch
ν (p)x
c2

ν2 (p) ch
ν (p) a
c2

, (14)

where v (p) =
√
p2 + c22q

2 is transformed by means of Efgoss formula [3].

Fa [ν (p)] =
ch

ν(p)x
c2

ν(p)ch
ν(p)a

c2

; g (p) = 1
ν(p) ;

g (p) e−τν(p)
◦
= ◦J0

(
c2q

√
t2 − τ2

)
H (t− τ) = g (t, τ) ;

Fa [νt (p)] g (p)
◦
= ◦

t∫
0

Fa (τ) J0

(
c2q

√
t2 − τ2

)
dτ ;

Fa (t) = Ga

(
t− x

a

)
+Ga

(
t+

x

a

)
;

Ga (t) = 1
2H (t) +

∞∑
k=0

(−1)k sin

 
k+

1
2

!
πc2t

a 
k+

1
2

! .

(15)

If we take into account, that

f̄ (p)
p2

c21+q2
◦
= ◦c1

t∫
0

f (t− τ)H
(
τ − z

a

)
dτ, (16)

the inverse transformation of the functions ψh1
2 can be represented in the form of

convolution of functions (15) and (16).
The question relatively to the second part of solution (7*) is solved analogously:

ψh2
2 = Bch

√
p2

c22
+ q2y

Fb [ν (p)] g (p)
◦
= ◦

t∫
0

[
Gb
(
τ − y

a

)
+G

(
τ + y

c2

)]
J0

(
c2q

√
t2 − τ2

)
dτ .

(17)
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Now we consider the expressions of the type:

∞∑
k=0

Ak cos η1k = Ẽ1

∞∑
k=0

(−1)k cos ηik(
η2

1k + q2 + p2

c22

) (
η2

1k + q2
) , (18)

where

Ẽ1 =
π

2
λσ0

(λ+ 2µ)µ
f̄ (p)
p2

c21
+ q2

p2

c22

th
√

p2

c22
+ q2a√

p2

c22
+ q2

∞∑
m=0

1

η2
1m+

�
p2

c22
+q2

�
, (19)

which represent solutions (8) for the big values of p and q whose originals now will
correspond the initial stage of loading.

Generally, allowing for the previous experience of finding inverse transformations
of remainder part of solutions we can fix, that the only difficulties to achieve the
aim is infinite sum in denominator of formula (19).

Really, the original from 1
p th

pa
c2

is the function:

1
p
th
pa

c2
◦=◦ H (t) + 2

∞∑
n=1

(−1)nH
(
t− 2na

c2

)
changing the sign in each time interval

2 (n− 1) a
c2

< t <
2na
c2

.

Let’s we turn to the expression containing the infinite sum in a denominator: we
substitute this sum for corresponding integral:

c22

c22
(

1
2 +m

)2 π2

a2 + ν2 (p2)
≈

∞∫
0

c22dx

c22
(

1
2 + x

)
π2

a2 + ν2 (p)
=

=
c2a

ν (p)π

(
π

2
− arctan

c2π

2ν (p) a

)
=

c2a

ν (p)π

[
π

2
− i

2
ln

1− i c2π
2ν(p)a

1 + i c2π
2ν(p)a

]
Now we consider the function:

R (p) = 1
2 [π − iν1 (p)]−1 ;

ν1 (p) = ln
(
1− 2ic2π

2pa+ic4π

)
.

The further process of finding the original R (p) is given below, without com-
ments:

e−τ1ν1(p) =
[
1− 2iciπ

2pa+ iciπ

]−τ1

; − 2iciπ
2pa+ iciπ

= ν2 (p) ;

ν8 (p) e−τ2ν2(p) = − ic2π
a
J0

(
i

√
2iciπτ2t

a

)
e−

iπcit

2a = g4 (t, τ2)
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F2 [ν2 (p)] =
[1 + ν2 (p)]−τ1

ν2 (p)

F2 (p) =
(1 + p)τ1

p
=

1
Γ (τ1)

t∫
0

e−uuτ1−1du =
1

Γ (τ1)
[Γ (τ1)− Γ (τ1, t)] = F2 (t, τ1)

g2 (p) = ν2 (p) ; g2 (p) e−τ2ν2(p) = g2 (t, τ2)

e−τ1ν1(p) = F2 [ν2 (p)] g2 (p) =

∞∫
0

F2 (τ2τ1) g (t, τ2) d (τ2) = g1 (t, τ1)

F1 [ν1 (p)] =
1
2

[π − iν1 (p)]−1 ; F1 (p) =
1

π
2 −

i
2p

= 2iH (t) e−πit; gi (p) = 1;

g2 (p) e−τ1ν1(p) = g1 (t, τ1) ; F1 (t) = 2e−πitH (t) ;

R (p) = F1 [ν2 (p)] g1 (p) = 2i

∞∫
0

e−πiτ1g1 (t, τ1) dτ1

J0

(
θi
√
i
)

= ber0θ + ibei0θ; θ =

√
2c2πτ2t

a
;

R (p) ◦=◦ R (t) =
c2π

a

∞∫
0

∞∫
0

e−iπ(
c2t
2a

−τ1) (ber0θ + ibei0θ)F2 (τ2, τ1) dτ2dτ1 .

Further, on the basis of tables given in [3] we can easily find the sine and cosine
originals of Fourier transformations.

References

[1]. Rassoulova N.B. The wave propagation in prismatic beam subjected to the
axial forces. Izv. ANRF, jur. ”Mekh. of solid”, pp.176-179. (Russian)

[2]. Rassoulova N.B. On dynamics of bar of rectangular cross section. Trans. of
ASME, Journal of App. Mech., 2001, July, v.68, pp.662-666.

[3]. Ditkin V.A., Prudnikov A.P. Integral transformations and operational calcu-
lus. Moscow, 1961. (Russian)

Nazila B. Rassoulova
Institute of Mathematics and Mechanics of NAS of Azerbaijan.
9, F.Agayev str., AZ1141, Baku, Azerbaijan.
Tel.: (99412) 394 720(off.)

Received April 29, 2003; Revised November 24, 2003.
Translated by Javadova I.V.


