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ON EXTREMUM CONDITIONS IN PROBLEMS OF
MATHEMATICAL PROGRAMMING

Abstract

In the paper using the distance function in class of ϕ−(α, β, ν, δ) -Lipschitzian
functions at the point the function of exact fine is constructed and the necessary
conditions of high order are obtained for extremum problems by involving the
limitations.

In Clark paper (see [1]) for extremum problems involving the limitations for the
first time the function of exact fine is constructed by using the distance function in
classes of Lipschitzian functions. In [2] Lipschitzian functions at the point were de-
termined and applied to the investigation of extremum problems with the limitation
(α, β, ν, δ) -Lipschitzian function at the point. In [3] the ϕ−(α, β, ν, δ) -Lipschitzian
functions at the point are determined and the extremum problems with limitations
are considered. In the given paper by using the distance function a number of the-
orems on exact fine, and also the necessary conditions of high order involving the
limitations are found.

1. About classes of ϕ − (α, β, ν, δ) -Lipschitzian functions. Let X be a Banach
space, C ⊂ X, f : X → R, ϕ : X → R, α > 0, ν > 0, β ≥ αν, δ > 0 and
B = {x ∈ X : ‖x‖ ≤ 1} .

The function f is called ϕ− (α, β, ν, δ) -Lipschitzian with the constant K at the
point x0, if f satisfies the condition

|f (x0 + x+ y)− f (x0 + x)− ϕ (x+ y) + ϕ (x)| ≤ K ‖y‖ν
(
‖x‖β−αν + ‖y‖

β−αν
α

)
for x, y ∈ δB. If ϕ = 0, then f we’ll call (α, β, ν, δ) Lipschitzian (see [2, 4]) with
the constant K at the point x0.

Note that if f satisfies ϕ−(α, β, ν, δ) -Lipschitzian condition at the point x0 then
f (x) − ϕ (x− x0) satisfies (α, β, ν, δ) -Lipschitzian condition at the point x0. It is
clear that if the functions fi, i = 1, n, at the point x0 are ϕi−(α, β, ν, δ) -Lipschitzian

functions, then
n∑
i=1
fi

n∑
i=1
ϕi − (α, β, ν, δ) -Lipschitzian function at the point x0.

If the derivative f ′′ (x0) in terms of Freshe exists then by the theorem on Taylor
formula the function ω (x) = 0

(
‖x‖2

)
holds, where 0(λ)

λ → 0 at λ ↓ 0 such that∣∣f (x0 + x+ y)− f (x0 + x)−
(
f ′ (x0) (x+ y) + ω (x+ y)

)
+ f ′ (x0)x+ ω (x)

∣∣ =
=
∣∣∣∣12f ′′ (x0) (x+ y, x+ y)− 1

2
f ′′ (x0) (x, x)

∣∣∣∣ ≤ ∥∥f ′′ (x0)
∥∥ · ‖y‖ (‖x‖+ ‖y‖) .

Therefore if we suppose ϕ (x) = f ′ (x0)x+ω (x) , then f satisfies ϕ− (1, 2, 1, δ) ,
δ > 0, the Lipschitzian condition at the point x0.

If the derivative f (3) (x0) in terms of Freshe exists then the function ω (x) =
0
(
‖x‖3

)
will be found such that f satisfies ϕ − (1, 3, 1, δ) , δ > 0, Lipschitzian

condition at the point x0, where ϕ (x) = f ′ (x0)x+ 1
2f

′′ (x0) (x, x) + ω (x) , 0(λ)
λ → 0

at λ ↓ 0.
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We’ll denote the set of all continuous bilinear symmetric functionals from X×X
to R by B

(
X2, R

)
. The set M ⊂ B

(
X2, R

)
is bounded if there exists a number

L > 0 such that |x∗2 (x, y)| ≤ L ‖x‖ · ‖y‖ at x∗2 ∈M.
Let the function f : X → R be representable in the form

f (x0 + x) = f (x0) + sup
x∗1∈M1

x∗1 (x) + sup
x∗2∈M2

x∗2 (x, x) + 0
(
‖x‖2

)
,

where M1 ⊂ X∗ and M2 ⊂ B
(
X2, R

)
are bounded sets, 0(λ)

λ → 0 at λ ↓ 0. Assume

ϕ (x) = sup
x∗1∈M1

x∗1 (x) + 0
(
‖x‖2

)
. Then it easily can be checked that f satisfies

ϕ− (1, 2, 1, δ) -Lipschitzian condition at the point x0, where δ > 0.
Lemma 1. Let Q ⊂ X be an open set, and Gato derivative of the function f

satisfies Holder condition of order α, 0 < α ≤ 1, on the set Q with the constant
L ≥ 0. Let x0 ∈ Q be some point, then there exists δ > 0 such that f satisfies
f ′ (x0)x− (1, 1 + α, 1, δ) Lipschitzian condition at the point x0 with the constant L.

Proof. Since Q is open and x0 ∈ Q then there exists such δ > 0 that x0+2δB ⊂
Q. Then by the the mean value theorem (see [5], p.38) we have

f (x)− f (y)− f ′ (y) (x− y) =

1∫
0

(
f ′ (y + t (x− y))− f ′ (y)

)
(x− y) dt

at x, y ∈ x0 + 2δB. Therefore

∣∣f (x)− f (y)− f ′ (y) (x− y)
∣∣ ≤ 1∫

0

∥∥f ′ (y + t (x− y))− f ′ (y)
∥∥ · ‖x− y‖ dt ≤

≤
1∫
0

L · ‖x− y‖1+α · tαdt =
L

1 + α
‖x− y‖1+α

for all x, y ∈ x0 + 2δB. Then it is clear that

∣∣f (x0 + x+ y)− f (x0 + x)− f ′ (x0 + x) y
∣∣ ≤ L

‖y‖1+α

1 + α

at x, y ∈ δB. Hence we have∣∣f (x0 + x+ y)− f (x0 + x)− f ′ (x0) (x+ y) + f ′ (x0)x
∣∣−

−
∣∣(f ′ (x0 + x)− f ′ (x0)

)
y
∣∣ ≤ L

‖y‖1+α

1 + α

Since∣∣(f ′ (x0 + x)− f ′ (x0)
)
y
∣∣ ≤ ∣∣∣∣(f ′ (x0 + x)− f ′ (x0)

)∣∣∣∣ · ‖y‖ ≤ L ‖x‖α · ‖y‖

then∣∣f (x0 + x+ y)− f (x0 + x)− f ′ (x0) (x+ y) + f ′ (x0)x
∣∣ ≤ L ‖y‖ (‖x‖α + ‖y‖α)
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at x, y ∈ δB, i.e., f satisfies f ′ (x0)x − (1, 1 + α, 1, δ) Lipschitzian condition at the
point x0. The lemma is proved.

2. Higher order necessary conditions. Denoting

Qα =
{

0 (·) : 0 (λ) ∈ R+ at λ ∈ R+ and
0 (λ)
λα

→ 0atλ ↓ 0
}

d (x) = inf {‖x− y‖ : y ∈ C} and let x0 ∈ C. Assume that

Kα (x0;C) =
{
x ∈ X : lim

λ↓0

d (x0 + λx)
λα

= 0
}
, Γα (x0;C) =

=
{
x ∈ X : lim

λ↓0

d (x0 + λx)
λα

= 0
}

Note that (see [2]) x ∈ Kα (x0;C) (α > 0) if and only if λx > 0 and 0 (x, λ) :
[0, λx] → X can be found such that x0 + λx + 0 (x, λ) ∈ C for any λ ∈ [0, λx] and
0(x,λ)
λα → 0 at λ ↓ 0. Also x ∈ Γα (x0;C) (α > 0) if and only if there exist the

sequences λi ↓ 0, {νi} ⊂ X such that 1
λα−1

i

‖νi − x‖ → 0 and x0 + λiνi ∈ C.

Assume that

Kα,β (x0;C,ϕ) = {x ∈ X : ∃λx > 0, ∃01 (x, λ) : [0, λx] → X, ∃02 (x, λ) : [0, λx] → R+

where 01(x,λ)
λα → 0, 02(x,λ)

λβ → 0 at λ ↓ 0, where x0 + λx + 01 (x, λ) ∈ C and
ϕ (λx+ 01 (x, λ)) ≤ 02 (x, λ) at 0 ≤ λ ≤ λx} ,

Γα,β (x0;C,ϕ) = {x ∈ X : ∃0 (x, λ) ∈ R+ where 0(x,λ)

λβ → 0, at λ ↓ 0 and ∃λi ↓
0, ∃ {νi} ⊂ X

where 1
λα−1

i

‖νi − x‖ → 0 that x0 + λiνi ∈ C, ϕ (λiνi) ≤ 0 (λi, x)}.
Theorem 1. Let f : X → R, ϕ : X → R, α > 0, ν > 0, β ≥ αν and x0

be the minimum point of the function f on the set C. And also assume that there
exist finite positive homogeneous functions ϕ1 : X → R of degree β−αν, 0 (·) ∈ Ω1

numbers δ > 0 and K such that

|f (x0 + x+ y)− f (x0 + x)− ϕ (x+ y) + ϕ (x)| ≤

≤ K ‖y‖ν
(
ϕ1 (x) + ‖y‖

β−αν
α

)
+ 0

(
‖x‖β

)
for x ∈ Kα,β (x0;C,ϕ) (x ∈ Γα,β (x0;C,ϕ)), ‖x‖ ≤ δ, y ∈ X, ‖y‖ ≤ ‖x‖ ,
x0 + x+ y ∈ C.

Then

f{β}−ϕ (x0;x) = lim
λ↓0

1
λβ

(f (x0 + λx)− ϕ (λx)− f (x0)) ≥ 0 at x ∈ Kα,β (x0;C,ϕ) ,

(
f{β}+ϕ (x0;x) = lim

λ↓0

1
λβ

(f (x0 + λx)− ϕ (λx)− f (x0)) ≥ 0 at x ∈ Γα,β (x0;C,ϕ)
)
.

Proof. If x ∈ Kα,β (x0;C,ϕ) then by the definition λx > 0, 01 (x, λ) : [0, λx] →
X, 02 (x, λ) : [0, λx] → R+ will be found, where 01(x,λ)

λα → 0, 02(x,λ)

λβ → 0 at λ ↓ 0



190
[M.A.Sadygov]

Transactions of NAS of Azerbaijan

that x0 + λx + 01 (x, λ) ∈ C and ϕ (λx+ 01 (x, λ)) ≤ 02 (x, λ) at 0 ≤ λ ≤ λx.
Therefore

f{β}−ϕ (x0;x) =

= lim
λ↓0

{
f (x0 + λx+ 01 (x, λ))− f (x0) + f (x0 + λx)− f (x0 + λx+ 01 (x, λ))

λβ
+

+
−ϕ (λx+ 01 (x, λ)) + 02 (x, λ) + ϕ (λx+ 01 (x, λ))− 02 (x, λ)− ϕ (λx)

λβ

}
≥

≥ lim
λ↓0

f (x0 + λx+ 01 (x, λ))− f (x0)− ϕ (λx+ 01 (x, λ)) + 02 (x, λ)
λβ

+

+lim
λ↓0

− (f (x0 + λx+ 01 (x, λ))− f (x0 + λx)− ϕ (λx+ 01 (x, λ)) + ϕ (λx))− 02 (x, λ)
λβ

≥

≥ lim
λ↓0

1
λβ

(f (x0 + λx+ 01 (x, λ))− f (x0)− ϕ (λx+ 01 (x, λ)) + 02 (x, λ))−

−lim
λ↓0

K

λβ

[
‖01 (x, λ)‖ν

(
λβ−ανϕ1 (x) + ‖01 (x, λ)‖

β−αν
α

)
+ 02 (x, λ) + 0

(
‖λx‖β

)]
≥ 0.

The second case is analogously proved. The theorem is proved.
Remark 1. From the proof of theorem 1 we have that if there exist λx > 0,

0 (x, λ) : [0, λx] → R+, where 0(x,λ)

λβ → 0 at λ ↓ 0, that

|f (x0 + λx+ 01 (λ))− f (x0 + λx)− ϕ (λx+ 01 (λ)) + ϕ (λx)| ≤ 0 (x, λ) ,

for any x ∈ Kα,β (x0;C,ϕ) ,

01 (·) ∈ Ωα =
{

0 (·) : 0 (λ) ∈ X at λ ∈ R+ and 0(λ)
λα → 0 at λ ↓ 0

}
and 0 ≤ λ ≤ λx,

then theorem 1 is also true.
Corollary 1. If x0 is the minimum point of the function f on the set C, and

if there exist α > 0, β > 0, ν > 0, δ > 0, K > 0, where β ≥ αν, the functions
0 (·) ∈ Ω1, and ϕ : X → R such that

|f (x0 + x+ y)− f (x0 + x)− ϕ (x+ y) + ϕ (x)| ≤

≤ K ‖y‖ν
(
‖x‖β−αν + ‖y‖

β−αν
α

)
+ 0

(
‖x‖β

)
for x ∈ Kα,β (x0;C,ϕ) (x ∈ Γα,β (x0;C,ϕ)) , ‖x‖ ≤ δ, y ∈ X, ‖y‖ ≤ ‖x‖ ,
x0 + x+ y ∈ C then

f{β}−ϕ (x0;x) = lim
λ↓0

f (x0 + λx)− ϕ (λx)− f (x0)
λβ

≥ 0 at Kα,β (x0;C,ϕ) ,

(
f{β}+ϕ (x0;x) = lim

λ↓0

f (x0 + λx)− ϕ (λx)− f (x0)
λβ

≥ 0 at Γα,β (x0;C,ϕ)
)
.

Let X = Rn, gi : Rn → R, i = 1,m. Consider the minimization of the function
f on the set C =

{
x ∈ Rn : gi (x) ≤ 0, i = 1, k, gi (x) = 0, i = k + 1,m

}
.

Assume that I (x0) =
{
i ∈ 1, k, gi (x0) = 0

}
and let f, g1, ..., gm be continu-

ously differentiable in some neighbourhood of the point x0 ∈ Rn, and the gradients
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g′i (x0) , i = k + 1,m, are be linearly independent. Then it is known that (see [6],
p.191)

K1 (x0;C) =
{
h ∈ Rn :

〈
g′i (x0) , h

〉
< 0, i ∈ I (x0) ,

〈
g′i (x0) , h

〉
= 0, i = k + 1,m

}
,

and conjugate cone is represented in the following form:

K∗
1 (x0;C) =

x∗ : x∗ = −
∑

i=I(x0)

λig
′
i (x0)−

m∑
i=k+1

λig
′
i (x0) , λi ≥ 0, i ∈ I (x0)

 .

By the condition there exist δ > 0 and K > 0 such that

|f (x0 + x+ y)− f (x0 + x)| ≤ K ‖y‖ at x, y ∈ δB.

Hence it follows that f satisfies the (α, α, 1, δ) -Lipschitzian condition at the
point x0. Therefore if x0 is the minimum point of the function f on the set C then
by corollary 1 we have that 〈f ′ (x0) , x〉 ≥ 0 at x ∈ K1 (x0;C). Then we’ll obtain
that there exist the numbers λ1 ≥ 0, ..., λk ≥ 0, λk+1, ..., λm, where λigi (x0) = 0 at

i = 1, k, such that f ′ (x0) +
m∑
i=1
λig

′
i (x0) = 0..

Assume L (x, λ) = f (x)+
m∑
i=1
λigi (x) , where λ = (λ1, ..., λm) and let the functions

f, gi, ..., gm be twice differentiable at the point x0. It is easily verified that there exist
δ > 0 and ω (x) = 0

(
‖x‖2

)
such that the function q (x) = L (x, λ) satisfies ω (x)−

(1, 2, 1, δ) Lipschitzian condition at the point x0. Denote ϕ (x) = −
m∑
i=1
λigi (x0 + x)+

ω (x). Then it is clear that the function f satisfies ϕ − (1, 2, 1, δ) -Lipschitzian
condition at the point x0. Applying corollary 1 we have that

lim
λ↓0

1
λ2

(
f (x0 + λx) +

m∑
i=1

λigi (x0 + λx)− ω (λx)− f (x0)−
m∑
i=1

λigi (x0)

)
≥ 0

at x ∈ K1,2 (x0;C,ϕ). Hence by Taylor theorem it follows the validity of the following
Proposition 1. Let functions f, g1, ..., gm be twice differentiable at the point

x0 ∈ Rn and continuously differentiable in some neighbourhood of the point x0, and
the gradients g′i (x0) , i = k + 1,m be linearly independent and K1 (x0;C) be not
empty. Then if x0 is a minimum point of the function f on the set C, then

〈Lxx (x0;λ)x, x〉 ≥ 0 at all x ∈ K1,2 (x0;C,ϕ) ,

where ϕ (x) = −
m∑
i=1
λigi (x0 + x) and at any λ1 ≥ 0, ..., λk ≥ 0, λk+1, ..., λm, satisfy-

ing the conditions f ′ (x0) +
m∑
i=1
λig

′
i (x0) = 0, λigi (x0) = 0 at i = 1, k..

Note that if under the condition of proposition 1 x ∈ K1,2 (x0;C,ϕ) then we can
easily check that 〈λig′i (x0) , x〉 = 0 for i = 1,m.

Remark 2. Note that from proposition 1 it follows the necessaty conditions of
the second order for classical problem on conditional extremum and for problem of
mathematical programming (see theorems 1.1.7 and theorems 4.2.7 [7]).
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3. Construction of function of exact fine. Assume that Cδ = {x ∈ X :
d (x) ≤ δ}. Denote some projection of the point x on the set C by prCx.

Theorem 2. Let X be Hilbert space, x0 be the minimum of the function f on a
closed set C, where either C is convex or X is finite dimensional; for every z ∈ ∂C
there exists the function ϕz : X → R such that f − ϕz satisfies the (α, β, ν, δ) -
Lipschitzian condition at the point z with the constant K and for any y ∈ Cδ\C
the inequality ϕz (prCy) − ϕz (y) ≤ 0 is fulfilled, where z =prCy. Then for every
λ ≥ K the function gλ (x) = f (x) + λ

(
d

β
α (x) + dβ−αν+ν (x)

)
attains minimum at

Cδ at the point x0 and if λ > K then any point minimizing gλ (x) on the set Cδ
belongs to C.

Proof. Assume the vice-verse. Let there exist the point y ∈ Cδ such that
gλ (y) < f (x0) , where λ ≥ k. Denote some projection of the point y by c on the set
C. Assume ψ = f − ϕc. Since ψ (y) = ψ (c+ y − c) , ψ (c) = ψ (c+ y − c+ c− y)
and ψ at the point c satisfies the (α, β, v, δ)-Lipschitzian condition, then we obtain:

f (c) ≤ f (y) + ϕc (c)− ϕc (y) +K ‖c− y‖v
(
‖c− y‖β−αv + ‖c− y‖

β−αv
α

)
≤

≤ f (y) + λ
(
‖c− y‖β+v−αv + ‖c− y‖

β
α

)
=

= f (y) + λ
(
dβ+v−αv (y) + d

β
α (y)

)
< f (x0) .

This contradicts the assumption that f reaches the minimum at the point x0 on
the set C. If λ > K and y ∈ Cδ also minimizes the functions gλ (x) on the set Cδ,
then from the first part of the theorem we obtain

f (y) + λ
(
d

β
α (y) + dβ+v−αv (y)

)
=

= f (x0) ≤ f (y) +
λ+K

2

(
d

β
α (y) + dβ+v−αv (y)

)
.

Hence we’ll obtain that d (y) = 0, i.e., y ∈ C. The theorem is proved.
Corollary 2. If the condition of theorem 2 and ψ ≡ 0 is satisfied then

f
{s}−
ψ (x0;x) ≥ 0 at x ∈ K sα

β
∩K s

β+v−αv
,

f
{s}+
ψ (x0;x) ≥ 0 at x ∈ Γ sα

β
∩K s

β+v−αv

(
x ∈ K sα

β
∩ Γ s

β+v−αv

)
.

Proof. It is evident that

0 ≤ lim
t↓0

g
λ
(x0 + tx)− g

λ
(x0)

ts
≤ lim

t↓0

f (x0 + tx)− f (x0)
ts

+

+λlim
t↓0

d
β
α (x0 + tx)

ts
+ λlim

t↓0

dβ+v−αv (x0 + tx)
ts

=

= f
{s}−
ψ (x0;x) + λlim

t↓0

(
d (x0 + tx)

t
sα
β

) β
α

+ λlim
t↓0

(
d (x0 + tx)

t
s

β+v−αv

)β+v−αv
.

Hence it follows that f{s}−ψ (x0;x) ≥ 0 at x ∈ K sα
β
∩ K s

β+v−αv
. The second

relation is analogously checked.
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Remark 3. Let Cδ = C∪B (x0; δ). Assume that f −ϕz satisfies the (α, β, v, δ)-
Lipschitzian condition at each point z =prCy at y ∈ B (x0; δ) \C then we can show
that the assertion of theorem 2 is also true.

Remark 4. Note that the condition of theorem 1 and 2 at ϕ (x) ≡ f (x0 + x)
and ϕz ≡ f is trivially satisfied. The proof of these theorems at the noted conditions
is also trivial.

Corollary 3. Let X be Hilbert space, x0 be minimum of the function f on
the closed set C, where C is convex or X finite-dimensional, and there exists the
function ϕ : X → R such that f − ϕ satisfies the (α, β, v, δ)-Lipschitzian condition
at each point z ∈ ∂C with the constant K, ϕ

(
pr

C
y
)
− ϕ (y) ≤ 0 at y ∈ Cδ. Then

for any λ ≥ K the function gλ (x) = f (x) + λ
(
d

β
α (x) + dβ−αv+v (x)

)
attains the

minimum on Cδ at the point x0 and if λ > K, then any point which minimizing
gλ (x) on the set Cδ belongs to C.

Corollary 4. Let X be Hilbert space, where x0 is the minimum of the function f
on the close set C, where either C is convex X is finite-dimensional, for every z ∈
∂C there exists the function ϕz : X → R such that f satisfies the ϕz − (α, β, v, δ) -
Lipschitzian condition at the point z with the constant K and for any y ∈ Cδ\C the
inequality ϕz

(
y − pr

C
y
)
≥ ϕz (0) is fulfilled, where z =prCy. Then for any λ ≥ K

the function gλ (x) = f (x) + λ
(
d

β
α (x) + dβ−αv+v (x)

)
attains minimum on Cδ at

the point x0 and if λ > K, then any point minimizing gλ (x) on the set Cδ belongs
to C.

Note that corollary 4 is the another formulation of theorem 2.
It is clear that if f satisfies ϕz − (α, β, v, δ) -Lipschitzian condition at the point

z with the constant K, then f (x) −ϕz (x− z) satisfies (α, β, v, δ) -Lipschitzian
condition at the point z with the constant K. Therefore the correctness of corollary
4 follows from theorem 2.

From lemma 1 and theorem 2 it follows the following
Corollary 5. Let X be Hilbert space, x0 be the minimum of the function f on

closed convex set C, int C 6= ∅, δ0 >δ > 0 and Gato derivative of the function f
satisfy Holder condition of order α (0 < α ≤ 1) on the set int Cδ0 with the constant
K, for any y ∈ Cδ\C the inequality f ′ (z) (z − y) ≤ 0 is fulfilled where z =prCy.Then
for any λ ≥ K the function gλ (x) = f (x) + 2λd1+α (x) attains minimum on Cδ at
the point x0, and if λ > K then any point minimizing gλ (x) = f (x) + 2λd1+α (x)
on the set Cδ belongs to C.

Note that if f is a continuous function at each point z ∈ ∂C and for any y ∈ Cδ\C
the inequality ϕz

(
pr

C̄
y
)
− ϕz (y) ≤ 0 is fulfilled, where z =pr

C̄
y then the first part

of theorem 2 is true without closure condition C.
Assume

f [2] (x0;x1, x2) = lim
y→x0

λ1↓0, λ2↓0

1
λ1λ2

(f (y + λ1x1 + λ2x2)− f (y + λ1x1)−

−f (y + λ2x2) + f (y) ,

∂2f (x0) =
{
x∗ ∈ B̄

(
X2, R

)
: f [2] (x0;x1, x2) ≥ x∗ (x1, x2) , x1, x2 ∈ X

}
.

We call the function f 2-Lipschitzian with the constant L in neighbourhood x0

if f for some ε > 0 satisfies the condition

|f (x+ x1 + x2)− f (x+ x1)− f (x+ x2) + f (x)| ≤ L ‖x1‖ · ‖x2‖ ,
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x1, x2 ∈ εB, x ∈ x0 + εB .

Corollary 6 follows from theorem 2, corollary 1.4.1. and proposition 1.1.7. [2].
Corollary 6. If the condition of theorem 2 is fulfilled at α = 1, β = 2, v > 0, C

is convex, λ ≥ K and f 2-Lipschitzian function in the neighbourhood x0 then

max
{
x∗ (x, x) : x∗ ∈ ∂2f (x0) + 2λ∂2d

2 (x0)
}
≥ 0 .

Proposition 2. Let X and Y be Hilbert space, Λ : X → Y be linearly continuous
surjective operator from X to Y, x∗1, ..., x

∗
s be elements of conjugate space X∗ and let

C =
{
x : 〈x∗i , x〉 ≤ 0, i = 1, s, Λx = 0

}
for every z ∈ ∂C there exists function ϕz :

X → R such that f−ϕz satisfies the (α, β, v, δ)−Lipschitzian condition at the point
z with the constant K and for any y ∈ Cδ\C the inequality ϕz

(
pr

C
y
)
− ϕz (y) ≤ 0

is fulfilled, where z =prCy. Then if the set of solutions of the problem f (x) → min,
x ∈ C is non empty then there exists such λ0 > 0 that at λ ≥ λ0 the set of solutions
of the problem

f (x) → min, x ∈ C

and the problem

f (x) + λ
(
ψ (x)

β
α + ψ (x)β+v−av

)
→ min, x ∈ Cδ

coincide, where ψ (x) =
s∑
i=1

〈x∗i , x〉+ + ‖Λx‖ , (g (x))+ = max {0, g (x)}.

Proof. By Hoffmann lemma (see [8], p.279) there exists such constant M in-

dependent of x that d (x) ≤ M

{
s∑
i=1

〈x∗i , x〉+ + ‖Λx‖
}

. Besides it is clear that

C = {x ∈ X : d (x) = 0} = {x ∈ X : ψ (x) = 0}. Therefore if the set of solutions
of the problem f (x) → min, x ∈ C is non empty, then by theorem 2 there ex-
ists such l0 > 0, that at λ ≥ l0 the set of solutions of the problem f (x) → min,
x ∈ C and problem f (x) + λ

(
dβ+v−αv (y) + d

β
α (y)

)
coincide. If we assume λ0 =

l0 max
{
Mβ+v−αv,M

β
α

}
then from here follows the correctness of assertion of propo-

sition 2.
Theorem 3. Let x0 be minimum of the function f on the set C for each z ∈ C,

there exists the function ϕz : X → R such that f − ϕz satisfies the (α, β, v, δ0)
Lipschitzian condition at the point z with the constant K and for any y ∈ Cδ\C
and ε > 0 there exists the point c ∈ C such that ‖c− y‖ ≤ d (y) + ε and ϕc (c) −
ϕc (y) ≤ 0, where δ0 > δ > 0. Then for any λ ≥ K the function gλ (x) = f (x) +
λ
(
d

β
α (x) + dβ−αv+v (x)

)
attains minimum on Cδ at the point x0 and if λ > K and

C is closed, then any point minimizing gλ (x) on the set Cδ belongs to C.
Proof. Assume the contradiction. Let there exist the point y ∈ Cδ and ε > 0

such that gλ (y) < f (x0)−λε, where λ ≥ K. Let’s take c ∈ C satisfying the inequal-
ities ‖y − c‖ ≤ δ0, ‖y − c‖

β
α +‖y − c‖β−αv+v ≤ d

β
α (y)+dβ−αv+v (y)+ε and ϕc (c)−

ϕc (y) ≤ 0. Assume ψ = f − ϕc Since ψ (y) = ψ (c+ y − c) , ψ (c+ y − c+ c− y)
and ψ at the point x0 satisfies (α, β, v, δ0)−Lipschitzian condition, then we obtain

f (c) ≤ f (y) + ϕc (c)− ϕc (y) +K ‖c− y‖v
(
‖c− y‖β−αv + ‖c− y‖

β−αv
α

)
≤

≤ f (y) + λ
(
‖c− y‖β+v−αv + ‖c− y‖

β
α

)
≤
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≤ f (y) + λ
(
dβ+v−αv (y) + d

β
α (y)

)
+ λε < f (x0) .

This contradicts the assumption that f attains the minimum at the point x0 on
the set C. If λ > K and y ∈ Cδ also minimize the function gλ (x) on the set Cδ then
from the first part of theorem we obtain

f (y) + λ
(
dβ+v−αv (y) + d

β
α (y)

)
= f (x0) ≤ f (y) +

λ+K

2

(
d

β
α (y) + dβ+v−αv (y)

)
Hence it follows that d (y) = 0, i.e., y ∈ C. The theorem is proved.
Consider the minimization of the function f on the set

{
x∈C: gi (x)≤0, i=1,m

}
where gi : X → R. Assume

F (y) = max

{
r0 (f (y)− f (x0)) +

m∑
i=1

rigi (y) : ri ≥ 0, i = 0,m,
m∑
i=1

ri = 1

}
.

Theorem 4. Let X be Hilbert Space and x0 minimize the function f on the set{
x ∈ C : gi (x) ≤ 0, i = 1,m

}
, where gi : X → R, C ⊂ X is closed at each point

x ∈ ∂C, f and gi, i = 1,m satisfy the (α, β, v, δ) -Lipschitzian condition with the
constant K. Besides either C is convex or X is finite-dimensional. Then for any
λ ≥ K the function gλ (x) = F (x) + λ

(
dβ+v−αv (x) + d

β
a (x)

)
attains minimum on

Cδ at the point x0 and if λ > K then any point minimizing gλ (x) on the set Cδ
belongs to C.

Proof. Let ri ≥ 0, i = 0,m and
m∑
i=1
ri = 1. Then, if x̄ ∈ ∂C, then we have that

∣∣∣∣r0 (f (x̄+ x+ y)− f (x0)) +
m∑
i=1
rigi (x̄+ x+ y)−

−r0 (f (x̄+ x)− f (x0))−
m∑
i=1
rigi (x̄+ x)

∣∣∣∣ ≤
≤ r0 |f (x̄+ x+ y)− f (x̄+ x)|+

m∑
i=1
ri |gi (x̄+ x+ y)− gi (x̄+ x)| ≤

≤ r0K ‖y‖v
(
‖x‖β−αv + ‖y‖

β−αv
α

)
+

m∑
i=1
riK ‖y‖v

(
‖x‖β−αv + ‖y‖

β−αv
α

)
=

= K ‖y‖v
(
‖x‖β−αv + ‖y‖

β−αv
α

)
at x, y ∈ δB. Therefore from lemma 1.2.2 [4] it follows that

|F (x̄+ x+ y)− F (x̄+ x)| ≤ K ‖y‖v
(
‖x‖β−αv + ‖y‖

β−αv
α

)
at x, y ∈ δB. Show that F is non-negative on the set C. Assume the opposite. Let
there exist ȳ ∈ C such that F (ȳ) < 0. Then f (ȳ)− f (x0) < 0 and gi (ȳ) < 0. And
this contradicts the assumption that x0 delivers the minimum of the function f on
the set

{
x ∈ C : gi (x) ≤ 0, i = i,m

}
. Obtain that F (y) ≥ 0 at y ∈ C. Besides

F (x0) = 0, i.e., x0 minimize the function F on the set C. Then from corollary 3 it
follows that for any λ ≥ K the function gλ (x) = F (x) + λ

(
d

β
a (x) + dβ+v−αv (x)

)
attains minimum on Cδ at the point x0 and if λ > K, then any point minimizing
gλ (x) on the set Cδ belongs to C. The theorem is proved.
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