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ON SOLVABILITY OF ONE BOUNDARY-VALUE

PROBLEM FOR THE SECOND ORDER

OPERATOR-DIFFERENTIAL EQUATION

Abstract

In the paper the sufficient conditions are obtained in terms of coefficients

of one class operator-differential equation of the second order of elliptic type.

These conditions uniquely and correctly provide the solvability of some boundary-

value problem.

Let H be a separable Hilbert space, A be invertible operator in H. Then A has

polar expansion A = U |A|, where U is a unitary operator, |A| is positively defined

operator in H. Denote by Hα the scale of Hilbert space generated by the operator

|A|, i.e., Hα = D (|A|α) , (ϕ,ψ)α = (|A|α ϕ, |A|α ψ) , ϕ, ψ ∈ D (|A|α) .

Let t ∈ R1
+ = (0,∞) , x ∈ R1 = (−∞,∞) and consider in the half-space

R2
+ = (0, ,∞)× (−∞,∞) ≡ R1

+ ×R1 the boundary-value problem −∂2u
∂t2

− ∂2u
∂x2 +A2u+A1,0

∂u
∂t +A0,1

∂u
∂x +A1,1

∂2u
∂t∂x +A0,0u = f, (t, x) ∈ R2

+ (1)

u (0, x) = 0, (2)

where relative to the operators A,A1,0, A0,1A1,1, A0,0 the fulfilment of the following

conditions is assumed:

1) A is a normal invertible operator, whose spectrum is contained in the angular

domain Sε {λ : |arg λ| ≤ ε} , 0 ≤ ε < π
2 ;

2) The operators A1,0A
−1, A0,1A

−1, A1,1, A0,0A
−2 are bounded in H.

We assume, that f (t, x) ∈ L2

(
R2

+;H
)

where L2

(
R2

+;H
)

is Hilbert space of

vector-functions defined on R2
+ with the value from H measurable with the finite

norm

‖f‖L2(R2
+;H) =

∞∫
0

+∞∫
−∞

‖f (t, x)‖2 dtdx

1/2

<∞,

and u (t, x) ∈W 2
2

(
R2

+;H
)
, where W 2

2

(
R2

+;H
)

is a Hilbert space of vector-functions

obtained by the completion of infinitely differentiable vector-functions with the value

from H2 having compact supports in R2
+ with the norm

‖u‖W 2
2 (R2

+;H) =

(∥∥∥∥∂2u

∂t2

∥∥∥∥2

L2(R2
+;H)

+
∥∥∥∥∂2u

∂x2

∥∥∥∥2

L2(R2
+;H)

+
∥∥A2u

∥∥2

L2(R2
+;H)

)1/2

.
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Denote by

W̊ 2
2

(
R2

+;H
)

=
{
u
∣∣u ∈W 2

2

(
R2

+;H
)
, u (0, x) = 0

}
.

Besides this we have to consider the space L2

(
R1

+;H
)

(see [1]) and

W 2
2

(
R1

+;H
)

=
{
ϑ

∣∣∣∣d2ϑ

dt2
∈ L2

(
R1

+;H
)
, A2ϑ ∈ L2

(
R1

+;H
)}

and

W̊ 2
2

(
R1

+;H
)

=
{
ϑ
∣∣ϑ (t) ∈W 2

2

(
R1

+;H
)
, ϑ (0) = 0

}
with the norm

‖ϑ‖W 2
2 (R1

+;H) =

(∥∥∥∥d2ϑ

dt2

∥∥∥∥2

L2(R1
+;H)

+
∥∥A2ϑ

∥∥2

L2(R1
+;H)

)1/2

.

The spaces W 2
2

(
R2;H

)
and W 2

2

(
R1;H

)
are determined analogously.

Definition 1. If at any f (t, x) ∈ L2

(
R2

+;H
)
, there exists the vector-function

u (t, x) ∈ W 2
2

(
R2

+;H
)

which satisfies equation (1) almost everywhere in R2
+, the

boundary condition (2) in the sense

lim
t→+0

‖u (t, x)‖3/2 = 0,

and the inequality

‖u‖W 2
2 (R2

+;H) ≤ const ‖f‖L2(R2
+;H) ,

then the problem (1), (2) we’ll call regularly solvable.

In the present paper we’ll find the sufficient conditions which provide regularly

the solvability of the problem (1), (2). Note, that when A is a self-adjoint operator

this problem is considered in [2], equation (1) is considered in [3, 4], and problem

(1), (2) when the norm of disturbed part is sufficiently small in finite domain in [5].

In one-dimensional case the similar problems are thoroughly studied for example in

[6, 7].

Denote by

P0u = −∂
2u

∂t2
− ∂2u

∂x2
+A2u, u ∈ W̊ 2

2

(
R2

+;H
)
,

P1u = A1,0
∂u

∂t
+A0,1

∂u

∂x
+A1,1

∂2u

∂t∂x
+A0,0u, u ∈ W̊ 2

2

(
R2

+;H
)

and at any ξ ∈ R1

L0 (ξ)ϑ = −∂
2ϑ

dt2
+
(
ξ2E +A2

)
ϑ, ϑ ∈ W̊ 2

2

(
R1

+;H
)
.
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It holds the following lemma.

Lemma 1. Let the condition 1) be fulfilled. Then the operator L0 (ξ) at any

ξ ∈ R1 maps the space W̊ 2
2

(
R1

+;H
)

on L2

(
R1

+;H
)

isomorphically.

Proof. It is evident, that at any ξ ∈ R1 the operator
(
ξ2E +A2

)1/2 is normal

and its spectrum is contained in the angular sector Sε = {λ : |arg λ| ≤ ε} , 0 ≤ ε < π
2 .

It is easy to see, that the equation L0 (ξ)ϑ = 0 has the general solution from

W 2
2

(
R1

+ : H
)

in the form ϑ0 (t) = e−(ξ2E+A2)1/2
tϕ, where ϕ ∈ H3/2. From the

condition ϑ (0) = 0 it follows, that ϑ0 (t) = 0. Show, that at any g (t) ∈ L2

(
R1

+;H
)

the equation L0 (ξ)ϑ = g has the solution from the space W̊ 2
2

(
R1

+;H
)
.

Really,

ϑ1 (t, ξ) =
1
2π

+∞∫
−∞

(
η2E + ξ2E +A2

)−1

+∞∫
−∞

g (s) eiη(t−s)dsdη

satisfies the equation L0 (ξ)ϑ = g. From the Plansharel theorem it follows, that

ϑ1 (t, ξ) ∈W 2
2

(
R1;H

)
.

Really, it is easy to see, that∥∥∥∥d2ϑ

dt2

∥∥∥∥2

L2(R1;H)

+
∥∥A2ϑ

∥∥2

L2(R1;H)
=
∥∥∥η2

(
η2E + ξ2E +A2

)−1
ĝ (η)

∥∥∥2

L2(R1;H)
+

+
∥∥∥A2

(
η2E + ξ2E +A2

)−1
ĝ (η)

∥∥∥2

L2(R1;H)
≤

≤ sup
η∈R1

∥∥∥η2
(
η2E + ξ2E +A2

)−1
∥∥∥2
· ‖ĝ‖2

L2
+

+ sup
η∈R1

∥∥∥η2
(
η2E + ξ2E +A2

)−1
∥∥∥2
‖ĝ‖2

L2
,

where ĝ (η)− is Fourier transformation of the vector-function g (t). From the spec-

tral expansion of the operator A it follows, that

sup
η∈R1

∥∥∥η2
(
η2E + ξ2E +A2

)−1
∥∥∥ 6 c0 (ε) ,

sup
η∈R1

∥∥∥A2
(
η2E + ξ2E +A2

)−1
∥∥∥ 6 c0 (ε) ,

where c0 (ε) = 1, at 0 6 ε 6 π
4 , c0 (ε) = (2 cos ε)−1, at π

4 6 ε < π
2 (see the proof

of inequality (1.2)). Then using Plansharel’s theorem we obtain, that ϑ1 (t, ξ) ∈
W 2

2

(
R1;H

)
. Further, denote by ϑ2 (t, ξ) the contraction of the vector-function
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ϑ1 (t, ξ) on R1
+ = [0,∞). Then ϑ2 (t, ξ) ∈ W 2

2

(
R1

+;H
)
, and ϑ2 (0, ξ) ∈ H3/2. Then

the general solution of the equation L0 (ξ)ϑ = g has the form

ϑ (t, ξ) = ϑ2 (t, ξ) + e−(ξ2E+A2)1/2

tϕ,

where ϕ ∈ H3/2. From the condition ϑ (0, ξ) = 0, it follows, that ϕ = −ϑ2 (0, ξ).

Thus, the domain of the values of operator L0 (ξ) coincides with the space L2

(
R1

+;H
)
.

Then, the assertion of the lemma follows from the Banach theorem on the inverse

operator. The lemma is proved.

Lemma 2. At any ξ ∈ R1 and ϑ ∈ W̊ 2
2

(
R1

+;H
)

it holds the inequality

‖L0 (ξ)ϑ‖2
L2(R1

+;H) >
∥∥(ξ2E +A2

)
ϑ
∥∥2

L2(R1
+;H) +

∥∥∥∥d2ϑ

dt2

∥∥∥∥2

L2(R1
+;H)

+

+2 cos 2ε
∥∥∥∥(ξ2E +A2

)1/2 dϑ

dt

∥∥∥∥2

L2(R1
+;H)

(3)

Proof. It is evident, that at any ϑ ∈ W̊ 2
2

(
R1

+;H
)

it holds the equality

‖L0 (ξ)ϑ‖2
L2(R1

+;H) =
∥∥(ξ2E +A2

)
ϑ
∥∥2

L2(R1
+;H) +

∥∥∥∥d2ϑ

dt2

∥∥∥∥2

L2(R1
+;H)

−

−2 Re
((
ξ2E +A2

)
ϑ,
d2ϑ

dt2

)
L2(R1

+;H)
. (4)

Since at any ξ ∈ R1 and ϑ ∈ W̊ 2
2

(
R1

+;H
)
, then after integrating by parts we

have

−2 Re
((
ξ2E +A2

)
ϑ,
d2ϑ

dt2

)
L2(R1

+;H)
=

= 2Re
((
ξ2E +A2

)1/2 dϑ

dt
,
(
ξ2E +A∗2

)1/2 dϑ

dt

)
L2(R1

+;H)
>

> 2 cos 2ε
∥∥∥∥(ξ2E +A2

)1/2 dϑ

dt

∥∥∥∥2

L2(R1
+;H)

Allowing for this inequality in (4) we obtain the assertion of the lemma.

Lemma 3. At any ξ ∈ R1 and ϑ ∈ W̊ 2
2

(
R1

+;H
)

it hold the following estimations∥∥A2ϑ
∥∥

L2(R1
+;H) 6 c20 (ε) ‖L0 (ξ)ϑ‖L2(R1

+;H) , (5)∥∥∥∥Adϑdt
∥∥∥∥

L2(R1
+;H)

6 c
1/4
0 (ε) c1 (ε) ‖L0 (ξ)ϑ‖L2(R1

+;H) , (6)

‖iξAϑ‖L2(R1
+;H) 6 c0 (ε) c1 (ε) ‖L0 (ξ)ϑ‖L2(R1

+;H) , (7)
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∥∥∥∥

L2(R1
+;H)

6 c0 (ε) c1 (ε) ‖L0 (ξ)ϑ‖L2(R1
+;H) , (8)

where

c0 (ε) =

 1, 0 ≤ ε ≤ π
4

1√
2 cos ε

, π/4 ≤ ε < π
2 ,

(9)

c1 (ε) =
1

2 cos ε
, 0 ≤ ε <

π

2
. (10)

Proof. Since the normal operator
(
ξ2E +A2

)1/2 has polar expansion

U (ξ)
∣∣∣(ξ2E +A2

)1/2
∣∣∣, where U (ξ) is unitary at any ξ ∈ R1 and

∣∣∣(ξ2E +A2
)1/2

∣∣∣ is

a positive part of the operator
(
ξ2E +A2

)1/2. It is evident, that at any ξ ∈ R1 and

W̊ 2
2

(
R1

+;H
)

∥∥∥∥∣∣∣(ξ2E +A2
)1/2

∣∣∣ dϑ
dt

∥∥∥∥2

L2

=

∞∫
0

(∣∣ξ2E +A2
∣∣1/2 dϑ

dt
,
∣∣ξ2E +A2

∣∣1/2 dϑ

dt

)
dt =

−
∞∫
0

(∣∣ξ2E +A2
∣∣ϑ, d2ϑ

dt2

)
dt ≤

∥∥∣∣ξ2E +A2
∣∣ϑ∥∥

L2(R1
+;H) ·

∥∥∥∥d2ϑ

dt2

∥∥∥∥
L2(R1

+;H)
≤ .

≤ 1
2

(∥∥(ξ2E +A2
)
ϑ
∥∥2

L2
+
∥∥∥∥d2ϑ

dt2

∥∥∥∥2

L2

)
.

Allowing for inequality (3) in the last inequality we obtain∥∥∥∥(ξ2E +A2
)1/2 dϑ

dt

∥∥∥∥2

L2(R1
+;H)

≤

≤ 1
2

(
‖L0 (ξ)ϑ‖2

L2(R1
+;H) − 2 cos 2ε

∥∥∥∥(ξ2E +A2
)1/2 dϑ

dt

∥∥∥∥2

L2(R1
+;H)

)
.

Hence we obtain that

(1 + cos 2ε)
∥∥∥∥(ξ2E +A2

)1/2 dϑ

dt

∥∥∥∥2

L2(R1
+;H)

≤ 1
2
‖L0 (ξ)ϑ‖2

L2(R1
+;H)

or ∥∥∥∥(ξ2E +A2
)1/2 dϑ

dt

∥∥∥∥2

L2(R1
+;H)

≤ 1
4 cos2 ε

‖L0 (ξ)ϑ‖2
L2(R1

+;H) . (11)

It is evident, that∥∥∥∥Adϑdt
∥∥∥∥2

L2(R1
+;H)

≤ sup
ξ∈R1

∥∥∥A (ξ2E +A2
)−1/2

∥∥∥ · ∥∥∥∥(ξ2E +A2
)1/2 dϑ

dt

∥∥∥∥2

L2(R1
+;H)

.
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Using spectral expansion of the operator A we obtain that at any ξ ∈ R1∥∥∥A (ξ2E +A2
)−1/2

∥∥∥ = sup
µ>0

∣∣∣µ2
(
µ2 + ξ2

)−1/2
∣∣∣ ≤

≤ sup
µ>0

∣∣∣µ (µ4 + ξ4 + 2ξ2µ2 cos 2ε
)−1/4

∣∣∣ .
Since at 0 ≤ ε ≤ π

4 ,
∣∣∣µ (µ4 + ξ4 + 2ξ2µ2 cos 2ε

)−1/4
∣∣∣ ≤ 1 and at π

4 ≤ ε <

π
2 (cos 2ε ≤ 0) it holds the inequality∣∣∣µ (µ4 + ξ4 + 2ξ2µ2 cos 2ε

)−1/4
∣∣∣ ≤ ∣∣∣µ (ξ4 + µ4

)−1/4 (1 + cos 2ε)−1/4
∣∣∣ ≤

≤
(
2 cos2 ε

)−1/4 = 2−1/4 cos−1/2 ε,

then using inequality (11) we obtain∥∥∥∥Adϑdt
∥∥∥∥2

L2

≤ c
1/2
0 (ε)

∥∥∥∥(ξ2E +A2
)1/2 dϑ

dt

∥∥∥∥2

L2(R1
+;H)

≤

≤ c
1/2
0 (ε) c21 (ε) ‖L0 (ξ)ϑ‖2

L2(R1
+;H)

or ∥∥∥∥Adϑdt
∥∥∥∥

L2(R1
+;H)

≤ c
1/4
0 (ε) c1 (ε) ‖L0 (ξ)ϑ‖2

L2(R1
+;H) . (12)

Thus, inequality (6) is proved.

From inequality (3) it follows that at 0 ≤ ε ≤ π
4 it holds the inequality∥∥(A2 + ξ2E

)
ϑ
∥∥

L2(R1
+;H) ≤ ‖L0 (ξ)ϑ‖2

L2(R1
+;H) . (13)

And at π/4 ≤ ε < π/2 from inequality (3) subject to inequality (12) it follows

that ∥∥(A2 + ξ2E
)
ϑ
∥∥

L2(R1
+;H) ≤ ‖L0 (ξ)ϑ‖2

L2(R1
+;H)−

−2 cos 2ε
∥∥∥∥(ξ2E +A2

)1/2 dϑ

dt

∥∥∥∥2

L2(R1
+;H)

≤ ‖L0 (ξ)ϑ‖2
L2(R1

+;H)−

−2 cos 2ε · 1
4 cos2 ε

‖L0 (ξ)ϑ‖2
L2(R1

+;H) ≤
1

2 cos2 ε
‖L0 (ξ)ϑ‖2

L2(R1
+;H) .

Thus ∥∥(A2 + ξ2E
)
ϑ
∥∥

L2(R1
+;H) ≤ c0 (ε) ‖L0 (ξ)ϑ‖L2(R1

+;H) . (14)

Hence we have∥∥A2ϑ
∥∥

L2
≤ sup

ξ∈R1

∥∥∥A2
(
A2 + ξ2

)−1
∥∥∥ · ∥∥(A2 + ξ2E

)
ϑ
∥∥

L2
≤
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≤ sup
ξ∈R1

sup
µ≥0

∣∣∣µ2
(
µ2 + ξ2

)−1
∣∣∣ c0 (ε) ‖L0 (ξ)ϑ‖L2(R1

+;H) ≤

≤ c20 (ε) ‖L0 (ξ)ϑ‖L2(R1
+;H) .

Inequality (5) is proved.

It is evident, that

‖iξAϑ‖2
L2(R1

+;H) ≤
∥∥∥iξA (ξ2E +A2

)−1 (
ξ2E +A2

)
ϑ
∥∥∥2

L2(R1
+;H)

≤

≤ sup
ξ∈R1

∥∥∥ξA (ξ2E +A2
)−1
∥∥∥2 ∥∥ξ2E +A2ϑ

∥∥2

L2(R1
+;H) . (15)

Using the spectral expansion of the operator A we obtain that∥∥∥ξA (ξ2E +A2
)−1
∥∥∥ ≤ sup

µ>0

∣∣∣ξµ (ξ2 + µ2
)−1
∣∣∣ =

= sup
µ>0

∣∣∣ξµ (ξ4 + µ4 + 2ξ2µ2 cos 2ε
)−1/2

∣∣∣ ≤
≤ sup

µ>0

∣∣∣ξµ (2ξ2µ2 (1 + cos 2ε)
)−1/2

∣∣∣ ≤ (2 cos 2ε)−1 .

Allowing for this inequality and inequality (14) in inequality (15) we have

‖iξAϑ‖L2(R1
+;H) ≤ c1 (ε) c0 (ε) ‖L0 (ξ)ϑ‖L2

.

Inequality (7) is also proved.

Let’s prove inequality (8). Using inequality (11) we obtain∥∥∥∥iξ dϑdt
∥∥∥∥2

L2(R1
+;H)

≤ sup
ξ∈R1

∥∥∥ξ (ξ2 +A2
)−1/2

∥∥∥∥∥∥∥(ξ2 +A2
)1/2 dϑ

dt

∥∥∥∥
L2(R1

+;H)
≤

≤ sup
ξ∈R1

sup
µ>0

∣∣∣ξ (ξ2 + µ2
)−1
∣∣∣ c1 (ε) ‖L0 (ξ)ϑ‖L2(R1

+;H) =

= c0 (ε) c1 (ε) ‖L0 (ξ)ϑ‖L2(R1
+;H) .

The lemma is proved.

Theorem 1. The operator P0 : W̊ 2
2

(
R2

+;H
)
→ L2

(
R2

+;H
)

is an isomorphism.

Proof. After the Fourier transformation by the variable x the equation P0u =

0 has the form L0 (ξ) û (t, ξ) = 0 . By lemma 1 û (t, ξ) = 0, i.e., u (t, x) = 0. Thus

KerP0 = {0}. Show that the domain of value P0 coincides with the L2

(
R2

+;H
)
.

Consider the equation P0u = f, u ∈ W̊ 2
2

(
R2

+;H
)
, f ∈ L2

(
R2

+;H
)
. After the

Fourier transformation by the variable x we obtain the equation L0 (ξ) û (t, ξ) =

f̂ (t, ξ). By lemma 1 û (t, ξ) at every ξ ∈ R1 belongs to the space W̊ 2
2

(
R1

+;H
)
. From
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the form û (t, ξ) it is easily obtained that ξ2û (t, ξ) , A2û (t, ξ) belongs to the space

L2

(
R1

+;H
)
. Hence, it follows that u (t, x) ∈ W̊ 2

2

(
R2

+;H
)
. The theorem is proved.

Theorem 2. Let conditions 1), 2) be fulfilled and it holds the inequality

α (ε) = c
1/4
0 (ε) c1 (ε)

∥∥A1,0A
−1
∥∥+

+c0 (ε) c1 (ε)
(∥∥A0,1A

−1
∥∥+ ‖A1,1‖

)
+ c20 (ε)

∥∥A0,0A
−2
∥∥ < 1,

where c0 (ε) , c1 (ε) are determined from equality (9) and (10) respectively. Then

problem (1), (2) is regularly solvable.

Proof. Write problem (1), (2) in the form:

P0u+ P1u = f, u ∈ W̊ 2
2

(
R2

+;H
)
, f ∈ L2

(
R2

+;H
)
.

After the substitution P0u = 0 we obtain the equation
(
E + P1P

−1
0

)
ω = f in

the space L2

(
R2

+;H
) (
ω, f ∈ L2

(
R2

+;H
))

.

Since ∥∥P1P
−1
0 ω

∥∥
L2(R2

+;H) = ‖P1u‖L2(R2
+;H) =

=
∥∥∥∥A1,0

∂u

∂t
+A0,1

∂u

∂x
+A1,1

∂2u

∂t∂x
+A0,0u

∥∥∥∥
L2(R2

+;H)
≤

≤
∥∥A1,0A

−1
∥∥∥∥∥∥A∂u∂t

∥∥∥∥
L2(R2

+;H)
+
∥∥A0,1A

−1
∥∥∥∥∥∥A∂u∂x

∥∥∥∥
L2(R2

+;H)
+

+ ‖A1,1‖
∥∥∥∥ ∂2u

∂t∂x

∥∥∥∥
L2(R2

+;H)
+
∥∥A0,0A

−2
∥∥∥∥A2u

∥∥
L2(R2

+;H) . (16)

From inequality (6), applying the Plansharel theorem we obtain∥∥∥∥A∂u∂t
∥∥∥∥

L2(R2
+;H)

=
∥∥∥∥A∂û (t, ξ)

∂t

∥∥∥∥
L2(R2

+;H)
≤

≤ c
1/4
0 (ε) c1 (ε) ‖L0 (ξ) û (t, ξ)‖L2(R2

+;H) =

= c
1/4
0 (ε) c1 (ε) ‖P0u‖L2(R2

+;H) = c
1/4
0 (ε) c1 (ε) ‖ω‖L2(R2

+;H) . (17)

Analogously, we obtain∥∥∥∥A∂u∂x
∥∥∥∥

L2(R2
+;H)

= ‖iξAû (t, ξ)‖L2(R2
+;H) ≤ c0 (ε) c1 (ε) ‖ω‖L2(R2

+;H) ,

∥∥∥∥ ∂2u

∂x∂t

∥∥∥∥
L2(R2

+;H)
=
∥∥∥∥iξ ∂û (t, ξ)

∂t

∥∥∥∥
L2(R2

+;H)
≤ c0 (ε) c1 (ε) ‖ω‖L2(R2

+;H) ,∥∥A2u
∥∥

L2(R2
+;H) =

∥∥A2û (t, ξ)
∥∥

L2(R2
+;H) ≤ c20 (ε) ‖ω‖L2(R2

+;H) .
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Allowing for all these inequalities in inequality (16) we obtain∥∥P1P
−1
0 ω

∥∥
L2(R2

+;H) ≤ α (ε) ‖ω‖L2(R2
+;H) .

Since by the condition of the theorem α (ε) < 1, the operator E + P1P
−1
0 is

invertible and

u = P−1
0

(
E + P1P

−1
0

)−1
f.

It is evident that

‖u‖W 2
2 (R2

+;H) ≤ const ‖f‖L2(R2
+;H) .

The theorem is proved.
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