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MIXED PROBLEM FOR BOUSSINESQ EQUATION

IN THE BOUNDED DOMAIN AND BEHAVIOUR

OF ITS SOLUTION AS t → +∞
Abstract

In the paper solvability of a mixed problem for Boussinesq linear equation
in bounded domain of multidimensional space and behaviour of its solution as
t→ +∞ were studied.

Introduction. One of the main questions of the theory of nonstationary differ-
ential equations is studying the behaviour of solutions of mixed problems for large
values of time. In [1] Muckenhoupt proved the almost periodicity of solution of a
mixed problem on the segment for the wave equation. Later Bochner S. and Neu-
mann J.V. proved almost periodicity of solution of a mixed problem for the general
form of hyperbolic equation. In set of papers [4] S.L.Sobolev established almost pe-
riodicity of solutions of mixed boundary value problem for the wave equation with
constant and variable coefficients in bounded domain with the Dirichlet or Neumann
boundary condition. Asymptotic almost periodicity of solution of a mixed problem
for the wave equation with the coefficients depending on spatial and time coordi-
nates and with the Dirichlet boundary condition was established in the paper [5].
In the paper [6] Gabov S.A. and Orazov B.B. obtained the expansion for solution
of the mixed problems for Boussinesq equation in the one-dimensional case. In the
paper [7] solvability of mixed problem for the Boussinesq linear equation in infinite
multi-dimensional cylindrical domain and asymptotics of its solution for large values
of time were studied.

1. Definitions, notation, and uniqueness theorem for a mixed problem.
Let Rn be n-dimensional Euclidean space with elements x = (x1, x2, ..., xn) ;

Ω ⊂ Rn be a bounded domain with sufficiently smooth boundary ∂Ω. Denote
Q = Ω × [0,∞) and denote by C(0,0) (Ω) a space of functions which are defined in
Q and continuous with respect to x, t.

Definition 1. We denote by B(2,2) (Q) a space of functions defined in Q such
that Dβ

t D
|α|
x u (x, t) ∈ C(0,0) (Ω) and for large t, they satisfy the estimate∥∥∥Dβ

t D
|α|
x u (x, t)

∥∥∥
C(Ω̄)

≤ Ctβ , 0 ≤ |α|, β ≤ 2 . (∗)

Consider in Q the following mixed problem(
σ2∆n − 1

) ∂2

∂t2
u (x, t) + γ2∆nu (x, t) = f (x, t) (1.1)

with initial conditions

u (x, 0) = ψ0 (x) ,
∂

∂t
u (x, 0) = ψ1 (x) , (1.2)
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and with boundary condition

u (x, 0)|∂Ω×(0,∞) = 0, (1.3)

where ψ0 (x) , ψ1 (x) ∈ H2([n
2 ]+2) (Ω) , f (x, t) ∈ H2([n

2 ]+1) (Ω) and∥∥∥Dβ
t f (x, t)

∥∥∥
H2([n

2 ]+1)(Ω)
≤ C,

β = 0, 1 for t > 0, σ, γ are real number, Hv (Ω) is Sobolev space.
Definition 2. We call function u (x, t) ∈ B(2,2) (Q) a classical solution of

problem (1.1)-(1.3) if it satisfies the equation, the initial conditions and the boundary
condition in the ordinary sense.

Denote by Hv
D (Ω) (v ≥ 1) , Hv

N (Ω) (v ≥ 2), [8] (p.252) subspaces of Sobolev
space Hv (Ω) for whose elements the conditions

F (x)|∂Ω = 0, ..., ∆[ v−1
2 ]F (x)

∣∣∣
∂Ω

= 0,

and
∂F (x)
∂µ

∣∣∣∣
∂Ω

= 0, ...,
∂

∂µ
∆[ v

2 ]−1F (x)
∣∣∣
∂Ω

= 0,

are satisfied respectively, where µ is a normal to ∂Ω.
Everywhere below the sign ˜on the function denotes the Laplace transformation

of this function with respect to t.
The following theorem is valid.
Theorem 1. Classical solution of problem (1.1)-(1.3) is unique if it exists.
Proof. Let us show that solution of the homogeneous problem corresponding to

problem (1.1)-(1.3) is only trivial one. If we multiply equation (1.1) by ut (x, t) and
integrate on Qt = Ω× [0, t) (t ≤ T ), we obtain

ε (t) ≡
t∫
0

∫
Ω

[(
σ2∆n − 1

) ∂2

∂t2
u (x, t) + γ2∆nu (x, t)

]
∂

∂t
u (x, t) dxdt = 0 . (1.4)

By Green’s first formula

ε (t) ≡
∫
Ω

[
∆n

∂2

∂t2
u (x, t)

] ∂

∂t
u (x, t) dx =

= −
∫
Ω

n∑
j=1

∂

∂xj

(
∂2

∂t2
u (x, t)

)
∂

∂xj

(
∂u (x, t)
∂t

)
sΩdt+

+
∫
Ω

∂

∂n

(
∂2

∂t2
u (x, t)

)
∂

∂t
u (x, t) dΩ . (1.5)

By virtue of boundary condition (1.3) the integral on ∂Ω in (1.5) equals zero.
Then from (1.5) we have

ε1 (t) = −1
2

t∫
0

∫
Ω

n∑
j=1

∂

∂t

(
∂2

∂t∂xj
u (x, t)

)2

dΩdt . (1.6)
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Changing the order of integration in (1.6) and taking into account that for the
homogeneous problem, initial functions are equal to zero, from (1.6) we obtain

ε1 (t) = −1
2

∫
Ω

n∑
j=1

(
∂2u (x, t)
∂t∂xj

)2

dΩ . (1.7)

Now let us consider the second term in (1.4)

ε2 (t) =

t∫
0

∫
Ω

[
∂2

∂t2
u (x, t)

]
∂u (x, t)
∂t

dΩdt =
1
2

t∫
0

∫
Ω

∂

∂t

(
∂u (x, t)
∂t

)2

dΩdt .

Taking into account that initial functions are equal to zero, we have

ε2 (t) =
1
2

∫
Ω

(
∂u (x, t)
∂t

)2

dΩ . (1.8)

Proceeding in the same way as when we derived the equality in (1.5) we obtain

ε3 (t) =

t∫
0

∫
Ω

[∆nu (x, t)]
∂u (x, t)
∂t

dxdt = −1
2

∫
Ω

n∑
j=1

(
∂u (x, t)
∂xj

)2

dΩ . (1.9)

From (1.4), (1.7), (1.8), (1.9) we obtain

ε (t) = −σ2

2

∫
Ω

n∑
j=1

(
∂2u (x, t)
∂t∂xj

)2

dΩ−

−1
2

∫
Ω

(
∂u (x, t)
∂t

)2

dΩ− γ2

2
∫
Ω

n∑
j=1

(
∂u (x, t)
∂xj

)2

dΩ ≡ 0 .

(1.10)

ε (t) is called the energy integral of the homogeneous mixed problem. If we introduce
the notation∫

Ω

n∑
j=1

(
∂2u (x, t)
∂t∂xj

)2

dΩ = ‖∇xut‖2L2(Ω) ,

∫
Ω

n∑
j=1

(
∂u (x, t)
∂xj

)2

dΩ = ‖∇xu‖2L2(Ω) ,

then for the energy integral we obtain

ε (t) = −σ
2

2
‖∇xut‖2L2(Ω) −

1
2
‖ut‖2L2(Ω) −

γ2

2
‖∇xu‖2L2(Ω) = 0 .

From here and equality to zero of the initial conditions it follows that

u (x, t) ≡ 0 .

The theorem is proved.
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2. Existence of solution of mixed problem (1.1)-(1.3) and its estimate.
We represent solution of (1.1)-(1.3) u (x, t) in the form

u (x, t) = u0 (x, t) + uf (x, t) , (∗∗)

where u0 (x, t) is a solution of problem (1.1)0, (1.2) , (1.3) and uf (x, t) is a solution
of problem (1.1), (1.2)0, (1.3); zero at the number of data denotes that they are
equal to zero.

Taking into account estimate (*) for u0 (x, t) in Q̄ we make the Laplace trans-
formation with respect to t in problem (1.1) 0, (1.2), (1.3). Then we obtain the
following boundary value problem(

σ2k2 + γ2
)
∆nũ0 (x, k)− k2ũ0 (x, k) = Φ (x, k) , (2.1)

ũ0 (x, k)|∂Ω = 0 , (2.2)

where

Φ (x, k) =
(
σ2∆n − 1

)
ψ1 (x) + k

(
σ2∆n − 1

)
ψ0 (x) = f1 (x) + kf0 (x) .

Let us consider the differential expression Ã = ∆n with the domain of definition

D(Ã) =
{
W (x) : W (x) ∈ C2 (Ω) ∩ C

(
Ω̄

)
,

∆nW (x) ∈ L2 (Ω) ,W (x) |∂Ω = 0} . (2.3)

The differential expression Ã with the domain of definition D
(
Ã

)
generates a

negative-defined self-adjoint operator A in space L2 (Ω). It is known ([9], p.117-178)
that the spectrum of this operator is discrete and for its eigenvalues λl the following
inequality holds

0 > λ1 ≥ λ2 ≥ ...λl ≥ ..., limλl = −∞

Eigen functions ϕl (y) of the operator A corresponding to the eigenvalues λl form
the basis in space L2 (Ω). Using the above said, we prove the following theorem.

Theorem 2. Let ∂Ω ∈ C2([n
2 ]+2), ψ0 (x) , ψ1 (x) ∈ H

2([n
2 ]+2)

D (Ω) , f (x, t) ∈

∈ H2([n
2 ]+1)

D (Ω) be continuously differentiable with respect to t and∥∥∥Dβ
t f (x, t)

∥∥∥
H2([n

2 ]+1)(Ω)
≤ C,

for t > 0 β = 0, 1. Then solution of mixed problem (1.1)-(1.3) exists and for it,
representation (2.16) and estimate (2.26) are valid.

Proof. Using theorem 3.6 from ([9], p.177) for the solution of problem (2.1),
(2.2), we obtain

ũ0 (x, k) =
∞∑
l=1

cl (k)ϕl (x)
(σ2k2 + γ2)λl − k2

, (2.4)
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where
cl (k) =

∫
Ω

Φ (x, k)ϕl (x) dx .

Solution of problem (1.1) 0, (1.2), (1.3) is defined as inverse Laplace transforma-
tion from ũ0 (x, k)

u0 (x, t) =
1

2πi

∞∑
l=1

ϕl (x)

ε+i∞∫
ε−i∞

cl (k) ektdk

(σ2k2 + γ2)λl − k2
(2.5)

here the termwise integration is valid by virtue of uniform convergence of series (2.4)
and uniform convergence of series (2.5) ([8], p.231). If we put the value of cl (k) into
(2.5), we obtain

cl (k) =
∫
Ω

f1 (y)ϕl (y) dy + k

∫
Ω

f2 (y)ϕl (y) dy ≡ c
(1)
l + kc

(0)
l .

Putting the value of cl (k) into (2.5), we have

u0 (x, t) = 1
2πi

{
∞∑
l=1

c
(1)
l

ε+i∞∫
ε−i∞

ektdk
k2(σ2λl−1)+γ2λl

ϕl (x) +

+
∞∑
l=1

c
(0)
l

ε+i∞∫
ε−i∞

kektdk
k2(σ2λl−1)+γ2λl

ϕl (x)

}
.

(2.6)

The integrands in (2.6) have poles at the points

k±l = ±iγ
(

|λl|
1 + σ2|λl|

)1/2

.

Since the integrand in the first integral of (2.6) decreases as k →∞, 0 ≤ Re k ≤ ε

as k−2 but at the left half-space exponentially decreases, then applying the Cauchy
theorem going out to the left half-space, we obtain

J1l (t) ≡
1

2πi

ε+i∞∫
ε−i∞

ektdk

k2 (σ2λl − 1) + γ2λl
=

1
2πi (σ2λl − 1)

ε+i∞∫
ε−i∞

ektdk

k2 + γ2λl

σ2λl−1

=

= − 1
(σ2|λl|+ 1)


e
itγ

0
@ |λl|
|λl|+ 1

1
A

1/2

2iγ
(

|λl|
σ2|λl|+ 1

)1/2
− e

−itγ

0
@ |λl|
σ2|λl|+ 1

1
A

1/2

2iγ
(

|λl|
σ2|λl|+ 1

)1/2

 =

= − 1

γ (|λl| (σ2|λl|+ 1))1/2
sin tγ

(
|λl|

σ2|λl|+ 1

)1/2

.

(2.7)
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Reasoning as above, we have

J2l (t) ≡
1

2πi

ε+i∞∫
ε−i∞

kektdk

k2 (σ2λl − 1) + γ2λl
= − 1

(σ2|λl|+ 1)
cos tγ

(
|λl|

σ2|λl|+ 1

)1/2

.

Putting expression for J1l (t) and J2l (t) into (2.6) for solution of problem (1.1)-
(1.3) we obtain

u0 (x, t) =

= −
∞∑
l=1


c
(1)
l sin tγ

(
|λl|

σ2|λl|+ 1

)
γ (|λl| (σ2|λl|+ 1))1/2

+ c
(0)
l

cos tγ
(

|λl|
σ2|λl|+ 1

)1/2

σ2|λl|+ 1

ϕl (x) . (2.8)

Now we transform the expressions for the coefficients c(1)l and c(0)l

c
(1)
l =

∫
Ω

ϕl (x)
(
σ2∆− 1

)
ψ1 (x) dx.

Since ψ1 (x) , ϕl (x) are equal to zero on ∂Ω, then by Green’s second formula we
obtain

c
(1)
l =

∫
Ω

ψ1 (x)
(
σ2∆− 1

)
ϕl (x) dx = −

(
σ2|λl|+ 1

) ∫
Ω

ψ1 (x)ϕl (x) dx ≡

≡ −
(
σ2|λl|+ 1

)
c̃
(1)
l .

(2.9)

ψ0 (x) also equals zero on ∂Ω, therefore we have

c
(0)
l =

∫
Ω

ϕl (x)
(
σ2∆− 1

)
ψ0 (x) dx = −

(
σ2|λl|+ 1

) ∫
Ω

ψ0 (x)ϕl (x) dx ≡

≡ −
(
σ2|λl|+ 1

)
c̃
(0)
l .

(2.10)

If we put the expressions for c(1)
l and c

(0)
l from (2.9), (2.10) into (2.8) then for

solution of mixed problem (1.1)0, (1.2), (1.3) we obtain

u0 (x, t) =
∞∑
l=1

[
c̃
(1)
l

γ

(
σ2|λl|+ 1
|λl|

)1/2

sin γt
(

|λl|
σ2|λl|+ 1

)1/2

+

+c̃(0)
l cos γt

(
|λl|

σ2|λl|+ 1

)1/2
]
ϕl (x) .

(2.11)

Let us consider now problem (1.1), (1.2)0, (1.3). For solution uf (x, t) of this
problem as above, we have

ũf (x, t) =
∞∑
l=1

cl (k)ϕl (x)
(k2σ2 + γ2)λl − k2

,
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where
cl (k) =

∫
Ω

f̃ (x, k)ϕl (x) dx . (2.12)

If we make the Laplace transformation of (2.12), we obtain

uf (x, t) =
1

2πi

ε+i∞∫
ε−i∞

{
∞∑
l=1

ϕl (x)
∫
Ω

f̃ (y, k)ϕl (y)
(k2σ2 + γ2)λl − k2

dy

}
ektdk =

=
1

2πi

∞∑
l=1

ϕl (x)
∫
Ω

ϕl (y)
ε+i∞∫
ε−i∞

f̃ (y, k) ektdk

(k2σ2 + γ2)λl − k2
dy ,

(2.13)

here the termwise integration is valid by virtue of uniform convergence of series in
(2.13) which will be shown later. According to the Borel theorem ([10], p.475) from
(2.13) we obtain

uf (x, t) =
∞∑
l=1

ϕl (x)
∫
Ω

ϕl (y)

 t∫
0

f (y, τ)
1

2πi

ε+i∞∫
ε−i∞

e(t−τ)kdk

k2 (σ2λl − 1) + γ2λl

 dy . (2.14)

Taking into account the value of integral (2.7) in (2.14) we obtain

uj (x, t) = −1
γ

∞∑
l=1

ϕl (x)

[|λl| (σ2|λl|+ 1)]1/2
×

×
t∫
0

fl (τ) sin γ (t− τ)
(

|λl|
σ2|λl|+ 1

)1/2

dτ ,

(2.15)

where
fl (τ) =

∫
Ω

f (y, τ)ϕl (x) dτ .

Taking into consideration (2.11) and (2.15), from (**) we obtain

u (x, t) =
∞∑
l=1

{
c̃
(1)
l
γ

(
σ2|λl|+1
|λl|

)1/2
sin γt

(
|λl|

σ2|λl|+ 1

)1/2

+

+c̃(0)
l cos γt

(
|λl|

σ2|λl|+ 1

)1/2

− 1

γ [|λl| (σ2|λl|+ 1)]1/2
×

×
t∫
0

fl (τ) sin γ (t− τ)
(

|λl|
σ2|λl|+ 1

)1/2

dτ

}
ϕl (x) .

(2.16)

Let us prove now the uniform convergence of series in (2.16) and its derivatives
if the data of the problem satisfy the conditions of theorem 2

|u (x, t)|C(Ω̄) ≤ C (γ, σ)×

×
{∞∑

l=1

(∣∣∣c̃(1)
l

∣∣∣ +
∣∣∣c̃(0)

l

∣∣∣ + 1
|λl|

t∫
0

|fl (τ)| dτ
)
‖ϕl (x)‖C(Ω̄)

}
.

(2.17)
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In [11] it was shown that

‖ϕl (x)‖H[n
2 ]+1(Ω)

≤ C|λl|
1
2([n

2 ]+1), (2.18)

where C is a constant independent of l. Hence by means of Sobolev imbedding
theorem we obtain

‖ϕl (y)‖C(Ω̄) ≤ C ‖ϕl (y)‖H[n
2 ]+1(Ω)

. (2.19)

It is known that [9] (p.200)

c0l
2
n ≤ |λl| ≤ c1l

2
n (2.20)

c0, c1 are constants independent of l. (2.18)-(2.19) imply that

‖ϕl (y)‖C(Ω̄) ≤ C|λl|
1
2([n

2 ]+1). (2.21)

Since of ∆vϕl (y) (v ≥ 1) is also an eigenfunction of the operator A with the
eigenvalue λv

l , then as above on can show that

‖ϕl (y)‖Cv(Ω̄) ≤ C|λl|
1
2([n

2 ]+v+1). (2.22)

(2.19)-(2.21) implies that

‖ϕl (y)‖Cv(Ω̄) ≤ C|l|
1
n([n

2 ]+v+1), v = 0, 1, 2, ... (2.23)

From (2.16) by virtue of estimate (2.22) we have

‖u (x, t)‖C(Ω̄) ≤ C (γ, σ)
∞∑
l=1

{
|λl|([

n
2 ]+1)+

+|λl|2([
n
2 ]+1)

(
|c̃(1)

l |+ |c̃(0)l |2
)

+ t
t∫
0

|λl|2[
n
2 ] |fl (τ)|2 dτ

}
,

(2.24)

From (2.24) by virtue of theorem 8 from [8] (p.253) we obtain

‖u (x, t)‖C(Ω̄) ≤ C (γ, σ)
[
J0 + ‖ψl (x)‖

2

H
2([n

2 ]+1)(Ω)
+

+ ‖ψ0 (x)‖2
H

2([n
2 ]+1)(Ω)

+ t
t∫
0

‖f (x, τ)‖2
H

2([n
2 ]+1)(Ω)

dt

]
,

(2.25)

where J0 =
∞∑
l=1

|λl|−n. This series converges because for any natural n,

2
n

([n
2

]
+ 1

)
≥ 1 +

1
n

and by virtue of estimate (2.20)

∞∑
l=1

|λl|−([n
2 ]+1) ≤ c1

∞∑
l=1

l−(1+ 1
n) .
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Let us now estimate the derivatives of u (x, t) contained in the equation. Cal-
culating derivatives of u (x, t) from (2.16) and estimating them like in (2.25), we
obtain ∥∥∥Dβ

t D
|α|
x u (x, t)

∥∥∥
C(Ω̄)

≤

≤ C (γ, σ)
[
J0 + ‖ψ1 (x)‖2

H
2([n

2 ]+1)+|α|(Ω)
+ ‖ψ0 (x)‖2

H
2([n

2 ]+1)+|α|(Ω)
+

∥∥∥Dβ−1
t f (x, t)

∥∥∥2

H
2[n

2 ]+|α|(Ω)
+ t

t∫
0

‖f (x, τ)‖2
H

2[n
2 ]+|α|(Ω)

dt

]
,

(2.26)

where 0 ≤ β, |α| ≤ 2. For β = 0, 1 the fourth term in the right-hand side of (2.26)
is absent.

The theorem is proved.

3. The mixed problem in bounded domain for the Boussinesq equation
with time derivative in the boundary condition.

Now let us consider problem (1.1), (1.2) with boundary condition

Dµ

[
D2

t + E
]
u (x, t) |∂Ω×(0,∞) = 0 , (3.1)

where µ is a normal to the boundary ∂Ω. Here we will investigate a classical solution
of problem (1.1), (1.2), (3.1), whose definition is given similar to the above mentioned
one. If we apply Lapalce transformation to this problem, we obtain the following
boundary value problem(

σ2k2 + γ
)
∆nũ (x, k)− k2ũ (x, k) = Φ (x, k) (3.2)(

k2 + 1
)
Dµũ (x, k) |∂Ω = 0 , (3.3)

where Re k > 0. If we cancel out 1 + k2 in the boundary condition, we obtain the
Neumann boundary condition

Dµũ (x, k) |∂Ω = 0 . (3.4)

Problem (3.2), (3.4) is solved in the same way as problem (2.1), (2.2) only with
the distinction that in formula (2.4) ϕl (x) and λl will be eigenfunctions and eigen-
values, respectively, of the Neumann problem for the Laplace operator

∆ϕl (x) = λlϕl (x) ,

∂ϕi (x)
∂µ

∣∣∣∣
∂Ω

= 0 .
(3.5)

At boundary condition (3.1) to transform the expressions c(0)l , c
(1)
l we take into

account that normal derivatives of fucntions ψ0 (x) , ψl (x) and ψl (x) equal zero on
∂Ω.
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Since λ1 = 0 is the eigenvalue corresponding to eigenfunction ϕ1 ≡ 1, then in
(2.16) for the first term we obtain

lim
λ1→0

(
σ2|λ1|+ 1
|λ1|

)1/2

sin γt
(

|λ1|
σ2|λ1|+ 1

)1/2

= γt ,

lim
λ1→0

1

γ [|λ1| (σ2 |λ1|+ 1)]1/2

t∫
0

f1 (τ) sin γ (t− τ)
(

|λ1|
σ2|λ1|+ 1

)1/2

dτ =

=
t∫
0

(t− τ) f1 (τ) dτ =
t∫
0

τ∫
0

f1 (ξ) dξdτ .

Then

u (x, t) = c̃
(1)
1 t+ c̃

(0)
1 −

t∫
0

τ∫
0

f1 (ξ) dξdτ +

+
∞∑
l=2

{
c̃
(1)
l
γ

(
σ2|λl|+1
|λl|

)1/2
sin γt

(
|λl|

σ2|λl|+ 1

)1/2

+

+c̃(0)
l cos γt

(
|λl|

σ2|λl|+ 1

)1/2

− 1

γ [|λl| (σ2 |λl|+ 1)]1/2
×

×
t∫
0

fl (τ) sin γ (t− τ)
(

|λl|
σ2|λl|+ 1

)1/2

dτ

}
ϕl (x) ,

(3.6)

where

c̃
(1)
1 =

∫
Ω

ψ1 (x) dx , c̃
(0)
1 =

∫
Ω

ψ0 (x) dx , f1 (ξ) =
∫
Ω

f (x, ξ) dx .

Thus, the solution of problem (1.1), (1.2), (3.1) is constructed.

4. On almost periodicity of solution of mixed problem (1.1)-(1.3) as
t→ +∞.

Theorem 3. Let the conditions of theorem 2 be fulfilled and

∞∫
0

(1 + τ)2 ‖f (x, τ)‖2
H2[n

2 ](Ω)
dτ < +∞ .

Then for solution of problem (1.1)-(1.3) the following representation holds

u (x, t) = W1 (x, t) +W2 (x, t) ,

where W1 (x, t) is a uniform almost periodic function with respect to t, and

lim
t→∞

W2 (x, t) = 0
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uniformly with respect to x ∈ Ω.
Proof. We represent solution u (x, t) of problem (1.1)-(1.3) from (2.16) in the

following form

u (x, t) =
∞∑
l=1

{
c̃
(1)
l
γ

(
σ2|λl|+1
|λl|

)1/2
sin γt

(
|λl|

σ2|λl|+ 1

)1/2

+

+c̃(0)
l cos γt

(
|λl|

σ2|λl|+ 1

)1/2

− 1

γ [|λl| (σ2 |λl|+ 1)]1/2
×

×

[
sin γt

(
|λl|

σ2|λl|+ 1

)1/2∞∫
0

fl (τ) cos γτ
(

|λl|
σ2|λl|+ 1

)1/2

dτ−

− cos γt
(

|λl|
σ2|λl|+ 1

)1/2∞∫
0

fl (τ) sin γτ
(

|λl|
σ2|λl|+ 1

)1/2

dτ−

− sin γt
(

|λl|
σ2|λl|+ 1

)1/2∞∫
t

fl (τ) cos γτ
(

|λl|
σ2|λl|+ 1

)1/2

dτ+

+cos γt
(

|λl|
σ2|λl|+ 1

)1/2∞∫
t

fl (τ) sin γτ
(

|λl|
σ2|λl|+ 1

)1/2

dτ

]}
ϕl (x) ≡

≡W1 (x, t) +W2 (x, t) ≡W
(1)
1 (x, t) +W

(2)
1 (x, t) +

+W (3)
1 (x, t) +W

(4)
1 (x, t) +W

(1)
2 (x, t) +W

(2)
2 (x, t) , (4.1)

where we denote by W1 (x, t) the sum of the first four series in (4.1) which are
denoted by W j

1 (x, t) respectively (j = 1, 2, 3, 4) and we denote by W2 (x, t) the sum
of the last two series in (4.1) which are denoted by W (v)

2 (x, t) , v = 1, 2. Let

W
(1)
1 (x, t) =

1
γ

∞∑
l=1

c̃
(1)
l

(
σ2|λl|+ 1
|λl|

)1/2

sin γt
(

|λl|
σ2|λl|+ 1

)1/2

ϕl (x) .

Then ∥∥∥W (1)
1 (x, t)

∥∥∥
C(Ω̄)

≤ C (σ, γ)
∞∑
l=1

∣∣∣c̃(1)
l

∣∣∣ ‖ϕl (x)‖C(Ω̄) . (4.2)

From estimate (2.21) we obtain∥∥∥W (1)
1 (x, t)

∥∥∥
C(Ω̄)

≤ C (σ, γ)
∞∑
l=1

∣∣∣c̃(1)l

∣∣∣ |λl|
1
2([n

2 ]+1) ≤

≤ C (σ, γ)
[∞∑

l=1

∣∣∣c̃(1)l

∣∣∣2 |λl|2([
n
2 ]+1) +

∞∑
l=1

|λl|−([n
2 ]+1)

]
,

(4.3)
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here and later on C (σ, γ) is a constant depending on parameters σ, γ. By virtue of
theorem 8 from [8] (p.253) we have

∞∑
l=1

∣∣∣c̃(1)
l

∣∣∣2 |λl|2([
n
2 ]+1) ≤ ‖ψ1 (x)‖

H
2([n

2 ]+1)(Ω)
. (4.4)

Reasoning as in the previous theorem and using estimate (2.20), for eigenvalues
we obtain

∞∑
l=1

|λl|−([n
2 ]+1) ≤ C

∞∑
l=1

l−(1+ 1
n) , (4.5)

the last series converges. It follows from (4.2)-(4.5) that the series in expression
W

(1)
1 (x, t) uniformly converges with respect to x, t. One can analogously prove the

uniform convergence of series

W
(2)
1 (x, t) =

∞∑
l=1

c̃
(0)
l cos γt

(
|λl|

σ2|λl|+ 1

)1/2

ϕl (x)

with respect to x, t.
Now consider

W
(3)
1 (x, t) = − 1

γ

∞∑
l=1

ϕl (x)

[|λl| (σ2 |λl|+ 1)]1/2
sin γt

(
|λl|

σ2|λl|+1

)1/2
×

×
∞∫
0

fl (τ) cos γτ
(

|λl|
σ2|λl|+1

)1/2
dτ .

Estimating the norm and using estimate (2.21) we obtain

∥∥∥W (3)
1 (x, t)

∥∥∥
C(Ω̄)

≤ C (σ, γ)
∞∑
l=1

|λl|−1 ‖ϕl (x)‖C(Ω̄)
∞∫
0

|fl (τ)| dτ ≤

≤ C (σ, γ)
∞∑
l=1

|λl|
1
2([n

2
−1])

∞∫
0

|fl (τ)| dτ ≤

≤ C (σ, γ)

{
∞∑
l=1

|λl|2[
n
2 ]

[∞∫
0

|fl (τ)| dτ
]2

+
∞∑
l=1

|λl|−([n
2 ]+1)

}
.

By virtue of Cauchy-Bunyakovskii inequality we have∥∥∥W (3)
1 (x, t)

∥∥∥
C(Ω̄)

≤

≤ C (σ, γ)
{∞∑

l=1

|λl|2[
n
2 ]
∞∫
0

(1 + τ)−2 dτ
∞∫
0

(1 + τ)−2 |fl (τ)|2 dτ +
∞∑
l=1

|λl|−([n
2 ]+1)

}
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further, by virtue of estimate (2.19) and theorem 8 from [8] (p.253) we obtain

∥∥∥W (3)
1 (x, t)

∥∥∥
C(Ω̄)

≤

≤ C (σ, γ)
{∞∫

0

(1 + τ)2
[∞∑

l=1

|λl|2[
n
2 ] |fl (τ)|2

]
dτ +

∞∑
l=1

|λl|−([n
2 ]+1)

}
≤

≤ C (σ, γ)
{∞∫

0

(1 + τ)2 ‖f (x, τ)‖2
H2[n

2 ](Ω)
dτ +

∞∑
l=1

l−(1+ 1
n)

}
.

(4.6)

because in the space L2 (0,∞) we can change the order of integration and summa-
tion.

Similarly we estimate

W
(4)
1 (x, t) = −1

γ

∞∑
l=1

ϕl (x)

[|λl| (σ2 |λl|+ 1)]1/2
cos γt

(
|λl|

σ2|λl|+1

)1/2
×

×
∞∫
0

fl (τ) sin γτ
(

|λl|
σ2|λl|+1

)1/2
dτ .

Proceeding in the same way as for estimation of W (3)
1 (x, t) we obtain

∥∥∥W (4)
1 (x, t)

∥∥∥
C(Ω̄)

≤ C (σ, γ)×

×
{∞∫

0

(1 + τ)2 ‖f (x, τ)‖2
H2[n

2 ](Ω)
dτ +

∞∑
l=1

l−(1+ 1
n)

}
.

(4.7)

Let us estimate now W
(1)
2 (x, t) and W (2)

2 (x, t).

Since

W
(1)
2 (x, t) = −1

γ

∞∑
l=1

ϕl (y)

[|λl| (σ2 |λl|+ 1)]1/2
sin γt

(
|λl|

σ2|λl|+ 1

)1/2

×

×
∞∫
0

fl (τ) cos γτ
(

|λl|
σ2|λl|+ 1

)1/2

dτ

then we have

∥∥∥W (1)
2 (x, t)

∥∥∥
C(Ω̄)

≤ C (σ, γ)
∞∑
l=1

|λl|−1

∞∫
t

|fl (τ)| dτ .
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By virtue of Cauchy-Bunyakovskii inequality we have

∥∥∥W (1)
2 (x, t)

∥∥∥
C(Ω̄)

≤ C (σ, γ)
∞∑
l=1

|λl|−1

(∞∫
t

(1 + τ)−2 dτ

)1/2

×

×
(∞∫

t

(1 + τ)2 |fl (τ)|2 dτ
)1/2

≤ C (σ, γ)×

×
{∞∫

t

(1 + τ)−2 dτ
∞∑
l=1

|λl|−([n
2 ]+1) +

∞∑
l=1

|λl|[
n
2 ]
∞∫
t

(1 + τ)2 |fl (τ)|2 dτ
}
.

Reasoning as above, we obtain∥∥∥W (1)
2 (x, t)

∥∥∥
C(Ω̄)

≤ C (σ, γ)×

×
{∞∫

t

(1 + τ)−2 dτ
∞∑
l=1

l−(1+ 1
n) +

∞∫
t

(1 + τ)2 ‖f (x, τ)‖2
H[n

2 ](Ω)
dτ

}
.

This estimate implies that ∥∥∥W (1)
2 (x, t)

∥∥∥
C(Ω̄)

→ 0 (4.8)

as t→ +∞.
In the same way we prove that∥∥∥W (2)

2 (x, t)
∥∥∥

C(Ω̄)
→ 0 (4.9)

as t→ +∞.
By virtue of theorem 1.1.5 from the paper [11] (p.26) the uniform convergence

of series in W (j)
1 (x, t) j = 1, 2, 3, 4 implies that their sum

4∑
j=1

W
(j)
1 (x, t) is a uniform

almost periodic function with respect to t. The proof of theorem 3 follows from
(4.8), (4.9).

The following theorem follows from formula (3.6) which represents solution of
mixed problem (1.1), (1.2), (3.1).

Theorem 4. Let the conditions of theorem 3 be fulfilled and, moreover,∫
Ω

ψ1 (x) dx = 0 ,
∫
Ω

f (x, t) dx = 0 . (4.10)

Then for solution of mixed problem (1.1), (1.2), (3.1) the assertion of theorem 3
is also valid.

Under the mentioned conditions (4.10) theorem 4 is proved in the same way as
theorem 3. If conditions (4.10) are not satisfied, then from formula (3.6) it follows,
that solution of mixed problem (1.1), (1.2), (3.1) as t → +∞ at the conditions
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of theorem 3 will be the sum of linear and uniform almost-periodic function with
respect to t function.

Estimate of derivatives of solution of mixed problem (1.1), (1.2), (3.1) is realized
in the same way as for solution of problem (1.1), (1.2), (1.3).
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