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ON EIGENVALUES AND EIGENFUNCTIONS OF

ONE CLASS OF DIRAC OPERATORS WITH

DISCONTINUOUS COEFFICIENTS

Abstract

In the paper we study properties of eigenvalues and eigenfunctions of the
system of Dirac equations with discontinuous coefficients; completeness theorem
and theorem on expansion in eigenfunctions are proved.

Let us consider the system of Dirac equations

By′ + Ω (x) y = λρ (x) y, 0 < x < π. (1)

Here

B =

(
0 1
−1 0

)
, Ω (x) =

(
p (x) q (x)
q (x) −p (x)

)
,

ρ (x) =

{
1, 0 ≤ x ≤ a

α, a < x ≤ π
, y =

(
y1

y2

)
Assume that 0 < α 6= 1, p (x) and q (x) are real-valued functions and p (x) ∈

L2 (0, π); q (x) ∈ L2 (0, π) ; λ is a complex parameter.
Let us join the following boundary conditions to equation (1)

y1 (0) = y1 (π) = 0 (2)

y1 (0) = y2 (π) +Hy1 (π) = 0 (3)

y2 (0)− hy1 (0) = y2 (π) +Hy1 (π) = 0 (4)

In the given paper we study the asymptotic behavior of eigenvalues and eigen-
functions of boundary value problems (1),(2); (1),(3); (1),(4), and also we will prove
the completeness theorem and the theorem on expansion in eigenfunctions.

In case of ρ (x) ≡ 1 solution of similar problems are well known (see, e.g., [1]-[4]).
1. In this point we investigate in details the asymptotics of eigenvalues, eigen-

functions and normalizing numbers of boundary value problem (1)-(2). Denote by
S (x, λ) , C (x, λ) solutions of system of equations (1) satisfying the boundary con-
ditions

S (0, λ) =

(
0
−1

)
, C (0, λ) =

(
1
0

)
.

It is easy to show that eigenvalues of boundary value problems (1), (2); (1), (3)
and (1), (4) are the roots of characteristic functions

∆1 (λ) = S1 (π, λ) , ∆2 (λ) = S2 (π, λ) +HS1 (π, λ)
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∆3 (λ) = C2π, λ− hS2 (π, λ) +H (C1 (π, λ)− hS1 (π, λ)) , (5)

respectively. In case of Ω (x) ≡ 0 characteristic functions of these boundary value
problems will have the form

∆10 (λ) = sinλµ (π) , ∆20 (λ) = − cosλµ (π) +H sinλµ (π)

∆30 (λ) = sinλµ (π)− h cosλµ (π) +H (cosλµ (π) + h sinλµ (π)) (6)

respectively, where µ (π) = απ − αa+ a.
Theorem 1. 1) Boundary value problem (1)-(2) has a countable set of simple

eigenvalues {λn}∞n=−∞, at that

λn=
nπ

απ − αa+ a
+εn, {εn}∈ l2,

2) Eigen vector-functions of problem (1)-(2) can be represented in the form

S (x, λn) =

(
sin nπµ(x)

απ−αa+a

− cos nπµ(x)
απ−αa+a

)
+

(
ξ
(1)
n (x)
ξ
(2)
n (x)

)
,

∞∑
n=−∞

{∣∣∣ξ(1)
n (x)

∣∣∣2 +
∣∣∣ξ(2)

n (x)
∣∣∣2} ≤ C; µ (x) =

{
x, 0 ≤ x ≤ a

αx− αa+ a, a < x ≤ π

3) Normalizing numbers of problem (1)-(2) have the form

αn = απ − αa+ a+ δn, {δn} ∈ l2

Proof. Using integral representation of solution S (x, λ) (see [5])

S (x, λ) =

(
sinλµ (x)
− cosλµ (x)

)
+

µ(x)∫
0

A (x, t)

(
sinλt
− cosλt

)
dt (7)

where A = (Aij)
2
i,j=1 is a quadratic matrix function Aij (x, ·) ∈ L2 (0, π) ; for the

characteristic function ∆1 (λ) we obtain the following representation

∆1 (λ) = ∆10 (λ) +

µ(π)∫
0

A11 (π, t) sinλtdt−
µ(π)∫

0

A12 (π, t) cosλtdt (8)

Denote by Gδ =
{
λ :
∣∣∣λ− nπ

µ(π)

∣∣∣ ≥ δ
}

, where δ is a sufficiently small positive
number. It is easy to show that there exists a positive number Cδ such that

|∆10 (λ)| = |sinλµ (π)| ≥ Cδe
|Jmλ|µ(π), λ ∈ Gδ

On the other hand, applying lemma 1.3.1 from [2] to relation (8), we obtain

∆1 (λ)−∆10 (λ) = 0
(
e|Jmλ|µ(π)

)
, |λ| → ∞
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Therefore on infinitely expanding contours Γn =
{
λ : |λ| = nπ

µ(π) + π
2µ(π)

}
for

sufficiently large n we have

|∆1 (λ)−∆10 (λ)| < |∆10 (λ)|

Then by Rouche theorem number of zeros of function {∆1 (λ)−∆10 (λ)} +
∆10 (λ) = ∆1 (λ) inside the contour Γn coincides with the number of zeros of the
function ∆10 (λ). Function ∆10 (λ) = sinλµ (π) has (2n+ 1) zeros in Γn, therefore
for sufficiently large n the function ∆1 (λ) has the same number of zeros. Denote
them by λ−n, λ−(n−1), ..., λ0, λ1, ..., λn.

Further applying Rouche theorem to the circle γn (δ) =
{
λ :
∣∣∣λ− nπ

µ(π)

∣∣∣ < δ
}

we
conclude that for sufficiently large |n| in γn (δ) lies only one root of the function
∆1 (λ) : λn. By virtue of the arbitrariness of δ > 0 we have

λn =
nπ

µ (π)
+ εn, lim

n→±∞
εn = 0 (9)

Substituting (9) into (8) and taking into account ∆1 (λn) = 0, we have

0 = sin
(

nπ

µ (π)
+ εn

)
µ (π) +

µ(π)∫
0

A11 (π, t) sin
(

nπ

µ (π)
+ εn

)
tdt−

−
µ(π)∫

0

A12 (π, t) cos
(

nπ

µ (π)
+ εn

)
tdt

or

(−1)n sin εnµ (π) +

µ(π)∫
0

A11 (π, t) sin
(

nπ

µ (π)
+ εn

)
tdt−

−
µ(π)∫

0

A12 (π, t) cos
(

nπ

µ (π)
+ εn

)
tdt = 0 (9′)

On the other hand, since A11 (π, ·) ∈ L2 (0, π) , A12 (π, ·) ∈ L2 (0, π), according
to [2, p.67] we have 

µ(π)∫
0

A11 (π, t) sin
(

nπ

µ (π)
+ εn

)
tdt

 ∈ l2,


µ(π)∫

0

A12 (π, t) cos
(

nπ

µ (π)
+ εn

)
tdt

 ∈ l2,

consequently, it follows from (9′) that
∞∑

n=−∞
|εn|2 < +∞, i.e., {εn} ∈ l2.
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Thus assertion 1) of theorem 1 is proved.
2) It is obvious that vector-functions S (x, λn) are eigenfunctions of problem

(1)-(2). Using representation (7) we can write S (x, λn) in the form

S (x, λn) =

(
sin nπµ(x)

µ(π)

− cos nπµ(x)
µ(π)

)
+

(
ξ
(1)
n (x)
ξ
(2)
n (x)

)
,

where

ξ(1)
n (x) = sin

nπµ (x)
µ (π)

[cos εnµ (x)− 1] + cos
nπµ (x)
µ (π)

sin εnµ (x) +

+

x∫
0

A11 (x, t) sin
(

nπ

µ (π)
+ εn

)
tdt−

x∫
0

A12 (x, t) cos
(

nπ

µ (π)
+ εn

)
tdt;

ξ(2)
n (x) = − cos

nπµ (x)
µ (π)

[cos εnµ (x)− 1] + sin
nπµ (x)
µ (π)

sin εnµ (x) +

+

x∫
0

A21 (x, t) sin
(

nπ

µ (π)
+ εn

)
tdt−

x∫
0

A22 (x, t) cos
(

nπ

µ (π)
+ εn

)
tdt.

Hence sup
0≤x≤π

∑{∣∣∣ξ(1)
n (x)

∣∣∣2 +
∣∣ξ2n (x)

∣∣2} < +∞, since {εn} ∈ l2.

3) For normalizing numbers of problem (1)-(2) we have

α(1)
n =

π∫
0

ρ (x)
{
|S1 (x, λn)|2 + |S2 (x, λn)|2

}
dx =

=

π∫
0

ρ (x)
{

sin2 nπµ (x)
µ (π)

+ cos2
nπµ (x)
µ (π)

}
dx+ δn = µ (π) + δn,

where

δn = 2

π∫
0

ρ (x) sin
nπµ (x)
µ (π)

ξ(1)n (x) dx− 2

π∫
0

ρ (x) cos
nπµ (x)
µ (π)

×

×ξ(2)
n (x) dx+

π∫
0

ρ (x)
(
ξ(1)n (x)

)2
dx+

π∫
0

ρ (x)
(
ξ(2)n (x)

)2
dx.

Hence {δn} ∈ l2. Finally note that the simplicity of eigenvalues follows from the
equality

αn = −∆̊1 (λn)S2 (π, λn) .

Theorem 1 is proved.
Denote by L1 and L2 boundary value problems (1), (3) and (1), (4), respectively.

One can analogously prove the following theorem on asymptotics of eigenvalues and
eigenfunctions for the boundary value problem Li, i = 1, 2.
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Theorem 2. 1) Boundary value problems Li have a countable number of simple
eigenvalues {λni}∞n=−∞ which can be represented in the form

λni = λ◦ni + εni, {εni} ∈ l2, i = 1, 2.

where λ◦ni are zeros of functions ∆i+1,0 (λ) .
2) Eigen vector-functions ϕn1 (x) = S (x, λn1) and ϕn2 (x) = C (x, λn2)−hS (x, λn2)

of problems L1 and L2, respectively, have the form

ϕn1 (x) =

(
sinλ◦n1µ (x)
− cosλ◦n1µ (x)

)
+

(
ξ
(1)
n1 (x)
ξ
(2)
n1 (x)

)
,

ϕn2 (x) =

(
cosλ◦n2µ (x)− h sinλ◦n2µ (x)
sinλ◦n2µ (x) + h cosλ◦n2µ (x)

)
+

(
ξ
(1)
n2 (x)
ξ
(2)
n2 (x)

)
,

where sup
0≤x≤π

∑{∣∣∣ξ(1)
ni (x)

∣∣∣2 +
∣∣∣ξ(2)ni (x)

∣∣∣2} < +∞.

3) Normalizing numbers αni =
π∫
0

ρ (x)
{(

ϕ
(1)
ni (x)

)2
+
(
ϕ

(2)
ni (x)

)2
}
dx of the prob-

lem Li can be represented in the form

αni = α◦ni + δni, {δni} ∈ l2,

where α◦n1 = µ (π) = απ − αa+ a, α◦n2 =
(
1 + h2

)
µ (π)

2. In this point we prove the completeness theorem and theorem on expansion
in eigenfunctions. Denote by L2,ρ

(
0, π; C2

)
Hilbert space of measurable complex-

valued vector-functions f (x) =

(
f1 (x)
f2 (x)

)
such that

‖f‖2 =

π∫
0

ρ (x)
{
|f1 (x)|2 + |f2 (x)|2

}
dx < +∞.

Scalar product in this space is defined by the following formula

< f, g >=

π∫
0

ρ (x)
{
f1 (x) g1 (x) + f2 (x) g2 (x)

}
dx

Theorem 3. a) The system of eigen vector-functions {S (x, λn)}+∞
n=−∞ of prob-

lem (1)-(2) is complete in space L2,ρ

(
0, π; C2

)
;

b) Let f (x) be an absolutely continuous vector-function on the segment [0, π]
and f1 (0) = f1 (π) = 0. Then

f (x) =
+∞∑

n=−∞
anS (x, λn) , (10)

an =
1
αn

< f (x) , S (x, λn) >,
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moreover, the series converges uniformly with respect to x ∈ [0, π];
c) For f (x) ∈ L2,ρ

(
0, π; C2

)
series (10) converges in L2,ρ

(
0, π; C2

)
; moreover,

the Parseval equality holds

‖f‖2 =
+∞∑

n=−∞
αn |an|2 .

Proof. Let ψ (x, λ) be a solution of equation (1) under the boundary conditions
ψ1 (π, λ) = 0, ψ2 (π, λ) = −1. Denote

G (x, t, λ) =
1

∆1 (λ)

{
ψ (x, λ) S̃ (t, λ) , x ≥ t,

S (x, λ) ψ̃ (t, λ) , x ≤ t

(ỹ denotes the conjugate of vector y) and consider the function

Y (x, λ) =

π∫
0

G (x, t, λ) f (t) ρ (t) dt, (11)

which gives solution of the boundary value problem

BY ′ + Ω (x)Y = λρ (x)Y + f (x) ρ (x) , Y1 (0, λ) = Y1 (π, λ) = 0 (12)

It is easy to show that

ψ (x, λn) =
∆̊1 (λn)
αn

S (x, λn) ,

therefore

Re s
λ=λn

Y (x, λ) =
1
αn
S (x, λn)

π∫
0

S̃ (t, λn) f (t) ρ (t) dt (13)

Let f (x) ∈ L2,ρ

(
0, π; C2

)
be such that

< f (x) , S (x, λn) >=

π∫
0

S̃ (t, λn) f (t) ρ (t) dt = 0, n = 0,±1,±2, ...

Then subject to (13) we obtain Re s
λ=λn

Y (x, λ) = 0 and consequently for each

fixed x ∈ [0, π] function Y (x, λ) is entire with respect to λ. Now we use estimate
|∆1 (λ)| ≥ Cδe

|Jmλ|µ(π), which is valid in domain Gδ =
{
λ :
∣∣∣λ− nπ

µ(π)

∣∣∣ ≥ δ
}

, where
δ is sufficiently small positive number, and the following lemma whose proof is
analogous to the proof of lemma 1.3.1 [2, p.36].

Lemma. For all vector-functions f (x) ∈ L2,ρ

(
0, π; C2

)
the following equality

is valid

lim
|λ|→∞

max
0≤x≤π

e−|Jmλ|µ(x)

∣∣∣∣∣∣
x∫
0

S̃ (t, λ) f (t) ρ (t) dt

∣∣∣∣∣∣ =
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= lim
|λ|→∞

max
0≤x≤π

e−|Jmλ|(µ(π)−µ(x))

∣∣∣∣∣∣
π∫
x

ψ̃ (t, λ) f (t) ρ (t) dt

∣∣∣∣∣∣ = 0

Applying these facts, from (11) we have

lim
|λ|→∞
λ∈Gδ

max
0≤x≤π

|Y (x, λ)| = 0.

Thus Y (x, λ) ≡ 0. From here and (12) it follows that f (x) = 0 a.e. on (0, π).
Statement a) is proved.

b) Let now f (x) be an arbitrary absolutely continuous vector-function on [0, π]
and f1 (0) = f1 (π) = 0. Since S (x, λ) and ψ (x, λ) are solutions of equation (1),
then vector-function Y (x, λ) can be transformed to the form

Y (x, λ) =
1

λ∆1 (λ)

ψ (x, λ)

x∫
0

1
ρ (t)

(
B̃S′ (t, λ) + Ω̃ (t)S (t, λ)

)
×

× f (t) ρ (t) dt+ S (x, λ)

π∫
x

1
ρ (t)

(
B̃ψ′ (t, λ) + Ω̃ (t)ψ (t, λ)

)
f (t) ρ (t) dt

 =

= − 1
λ∆1 (λ)

ψ (x, λ)

x∫
0

S̃′ (t, λ)Bf (t) dt+ S (x, λ)

π∫
x

ψ̃′ (t, λ)Bf (t) dt

+

+
1

λ∆1 (λ)

ψ (x, λ)

x∫
0

S̃ (t, λ) Ω (t) f (t) dt+ S (x, λ)

π∫
x

ψ̃ (t, λ) Ω (t) f (t) dt


Integration by parts of the terms with the first derivatives gives

Y (x, λ) =
1
λ
f (x) +

1
λ
Z (x, λ) (14)

where

Z (x, λ) =
1

∆1 (λ)

ψ (x, λ)

x∫
0

S̃ (t, λ)Bf ′ (t) dt+ S (x, λ)

π∫
x

ψ̃ (t, λ)×

×Bf ′ (t) dt+ ψ (x, λ)

x∫
0

S̃ (t, λ) Ω (t) f (t) dt+ S (x, λ)

π∫
x

ψ̃ (t, λ) Ω (t) f (t) dt


By means of above mentioned lemma we have

lim
|λ|→∞
λ∈Gδ

max
0≤x≤π

|Z (x, λ)| = 0 (15)
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Let us consider the contour integral

IN (x) =
1

2πi

∮
ΓN

Y (x, λ) dλ,

where ΓN =
{
λ : |λ| = Nπ

µ(π) + π
2µ(π)

}
is a oriented counter-clockwise, N is sufficiently

large natural number. By means of residues theorem we have

IN (x) =
N∑

n=−N

Re s
λ=λn

Y (x, λ) =
N∑

n=−N

anS (x, λn) ,

where

an =
1
αn

π∫
0

S̃ (t, λn) ρ (t) f (t) dt,

On the other hand, taking into account (14) we have

f (x) =
N∑

n=−N

anS (x, λn) + εN (x)

where εN (x) = − 1
2πi

∮
ΓN

1
λZ (x, λ) dλ

Further from (15) it follows that lim
N→∞

max
0≤x≤π

|εN (x)| = 0,consequently, statement

b) of theorem 3 is proved.
c) System {S (x, λn)} is complete and orthogonal in L2,ρ

(
0, π; C2

)
. Therefore it

forms orthogonal basis in L2,ρ

(
0, π; C2

)
, and the Parseval equality holds. Theorem

3 is completely proved. The following theorem can be proved in a similar manner:
Theorem 4. a) System of eigen vector-functions {ϕni (x)} of boundary problem

Li is complete in the space L2,ρ

(
0, π; C2

)
;

b) Let f (x) and g (x) be arbitrary absolutely continuous vector-functions and
f1 (0) = 0. Then

f (x) =
∞∑

n=−∞
an1ϕn1 (x) , g (x)

∞

=
∑

n=−∞
an2ϕn2 (x) ,

ani =
1
αni

< f, ϕni >,

moreover, the series uniformly converge with respect to x ∈ [0, π].
c) For f (x) ∈ L2,ρ

(
0, π; C2

)
and g (x) ∈ L2,ρ

(
0, π; C2

)
series from point b)

converge in L2,ρ

(
0, π; C2

)
, and also the Parseval equality holds

‖f‖2 =
∞∑

n=−∞
|an1|2 αn1, ‖g‖2 =

∞∑
n=−∞

|an2|2 αn2.
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