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ON SPECTRUM OF THREE-DIMENSIONALBIHORMONIC OPERATOR WITH POINTINTERACTIONS
AbstractIn the present paper the spectrum of the operator A = �2 + �1�(x� x(1))++�2�(x�x(2)) in the space L2(R3) is investigated. It is shown that the essentialspectrum and absolutely continuous part of spectrum of the operator A coircide.The transcendental equation is obtained for the determination of negative eigen-values of the operator A.

Consider in the space L2(R3) the operator
A = �2 + �1�(x� x(1)) + �2�(x� x(2)) (1)

with dense domain of determination
D(A) = nu 2W 22 (R3) ����2u+ �1�(x� x(1))u+ �2�(x� x(2))u 2 L2(R3)o : (2)
Here � is a Laplacian three-dimensional operator, W 22 (R3) is a Sobolev space,�(x) is a delta function, �1; �2 2 R and x(1); x(2) 2 R3 are �xed points. Since�1�(x� x(1)) + �2�(x� x(2)) 2W� 32�"2 (R3) (" > 0) then A is a lower semiboundedself-adjoint operator in the space L2(R3) (see for ex.[1]).In the present paper the explicit expression is found for the resolvent of theoperator A. It is shown that the essential spectrum (limiting) and absolutely con-tinuous part of a spectrum of the operator A coincide. The transandental equationis obtained for the determination of negative eigen-values of the operator A. Theanalogous results are obtained in [2] for the operator �2 + ��(x) in L2(R3). Thetwo-dimensional biharmonic operator with � potential is investigated in [3].The following theorem is true.Theorem 1. The resolvent of the operator A is an integral operator in the spaceL2(R3) (Rz(A)f)(x) = Z

R3
G(x; y; z)f(y)dy (f 2 L2(R3)):

The integral kernel G(x; y; z) at z = ��4 (� > 0); z 2 �(A) has the form

G(x; y;��4) = G0 �jx� yj ;��4�� 4p2��d(�)
2X

i;j=1 (1� �ij)�i(�j + 4p2��)�
�G0 ����x� x(i)��� ;��4�G0 ����x(i) � y��� ;��4�+
+�4p2���2 �1�2d(�) G0 ����x(1) � x(2)��� ;��4��
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� 2X

i;j=1 (1� �ij)G0 ����x� x(i)��� ;��4�G0 ����x(j) � y��� ;��4� : (3)
Here �ij is a Kroneker symbol.

G0 �jxj ;��4� = 14��2 jxje� �p2 jxj sin �p2 jxj ;
d(�) = ��1 + 4p2�����2 + 4p2���� 32�2�2�1�2G20 ����x(1) � x(2)��� ;��4� :
Proof. Let's �nd the resolvent of the self-adjoint operator A. We solve theequation Au+ �4u = f (f 2 L2(R3); � > 0) (4)in the space L2(R3).Since �(x� x(k))u = u(x(k))�(x� x(k)); k = 1; 2;then we can write equation (4) in the following form

�2u(x) + 2X
i=1�iu(x(i))�(x� x(i)) + �4u = f: (5)

Applying Fourier transformation F to equation (5) and granting that
F [�2u] = j�j4 F [u]; F [�(x� x(k))] = ei(x(k);�); k = 1; 2;

we obtain
F [u] = 1j�j4 + �4F [f ]�

2X
k=1

�ku(x(k))j�j4 + �4 ei(x(k);�): (6)
Now we apply the inverse Fourier transformation to equation (6) and use theknown formulae

F�1 � 1j�j4 + �4
� = 14��2 jxje� �p2 jxj sin �p2 jxj ;

F�1 " ei(x(k);�)j�j4 + �4
# = 14��2 ��x� x(k)��e� �p2 jx�x(k)j sin �p2

���x� x(k)��� ; (k = 1; 2);
F�1 � 1j�j4 + �4F [f ]

� = F�1 � 1j�j4 + �4
� � f:

Then we obtain
u(x) = G0 �jxj ;��4� � f � 2X

k=1�ku(xk)G0 ����x� x(k)��� ;��4� : (7)
We �nd u(x(1)) and u(x(2)). Write in (7) x = x(1) and x = x(2) consecutively.
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Then using the relations

lim
x!x(k)

G0 ����x� x(k)��� ;��4� = 14p2��; (k = 1; 2);
we obtain the linear system of equations with respect to u(x(1)) and u(x(2))�1 + 14p2��

�u(x(1)) + �2G0 ����x(1) � x(2)��� ;��4�u(x(2)) =
= Z

R3
G0 ����x(1) � y��� ;��4� f(y)dy; (8)

�1G0 ����x(1) � x(2)��� ;��4�u(x(1)) + �1 + 14p2��
�u(x(2)) =

= Z
R3
G0 ����x(2) � y��� ;��4� f(y)dy: (9)

Solving the system of equations (8) and (9) we �nd u(x(1)) and u(x(2)).Further, we put the found expressions u(x(1)) and u(x(2)) in (7). Then aftersimple transformations we obtain
u(x) = Z

R3
G �x; y;��4� f(y)dy;

where G(x; y;��4) has the representation (3). Hence and from (4) it follows thatthe resolvent R��4(A) is an integral operator with the kernel G(x; y;��4). In thegeneral case z 2 �(A) for obtaining the representations of the kernel G(x; y; z) in(3) � should be substituted by 4p�z, moreover a regular branch of the root 4p�z ischosen. It equals to
4p�z = 4pre'��4 i; z = rei'; 0 < ' < 2�:

Theorem 1 is proved.The structure of a spectrum of the operator A is described by the followingtheorem.Theorem 2. The essential spectrum of the operator A coincide with an abso-
lutely continuous part of the spectrum

�ess(A) = �ac(A) = [0;+1): (10)
If �1 > 0; �2 > 0, then the operator A has no eigen-values, if �1�2 < 0 thenA has exactly one negative prime eigen-value ��40 where �0 > 0 is a unique positive

root of the equation�4p2��+ �1��4p2��+ �2�� 2�1�2�2 ��x(1) � x(2)��2 e�
p2�jx(1)�x(2)j�
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� sin2 �p2

���x(1) � x(2)��� = 0: (11)
In the case �1 < 0; �2 < 0 the operator A has exactly two negative prime

eigen-values, ��41 and ��42; where �1 > 0; �2 > 0 are the positive roots of equation
(11).Proof. Let A0 be a minimal operator in the L2(R3) generated by the expression�2u. It is evident that A0 is a self-adjoint non-negative operator and resolventRz(A0) is an integral operator in (z =2 [0;+1)) in L2(R3) with the kernel G0(x; y; z).The relations �(A0) = �ess(A0) = �ac(A0) = [0;+1)
are true.Denote

B = (A+ �40E)�1 � (A0 + �40E)�1; (�0 > 0; ��40 2 �(A) \ �(A0)):
It is obvident that B is an integral operator in L2(R3) with the integral kernelk(x; y) 2 L2(R3 �R3) where

k(x; y) = G(x; y;��40)�G0(jx� yj ;��40):
Therefore B is a Hilbert-Schmidt operator and therefore it is compact. By the weiltheorem ([4], theorem XIII.14) the essential spectrums of the operators A and A0coincide, moreover, �ess(A) = �ess(A0) = [0;+1): (12)

Further from the representation (3) it follows that the di�erence of the resolvents,R��40(A) � R��40(A0) is a �nite dimensional operator. According to the knowntheorem ([5], ch. X, theorem 4.2) the absolutely continuous parts of the spectrumsA and A0 coincide. Hence and from (12) we obtain (10).We �nd the negative eigen-values of the operator A. Let ��4(� > 0) be aneigen-value of the operator A. Then
Au+ �4u = 0:

Assume f = 0 in (7)
u(x) = � 2X

k=1�ku(x(k))G0 ����x� x(k)��� ;��4� : (13)
Further, assuming f = 0 in (8) and (9) we obtain the system of the equations8>><>>:

�1 + �14p2��
�u(x(1)) + �2G0u(x(2)) = 0;

�1G0u(x(1)) + �1 + �24p2��
�u(x(2)) = 0: (14)
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From the representation (13) it follows that for u(x) 6� 0 it is necessary and su�cientthat the system of equations (14) have non-zero solution relative to u(x(1)) andu(x(2)). So, the determinant of system (14) have to be equal to zero, i.e.,�1 + �14p2��

��1 + �24p2��
�� �1�2G20 = 0:

Allowing for the representation for G0 we can write this equation in the form (11).Let's now investigate equation (11). Denote
f(�) = �4p2��+ �1��4p2��+ �2� ;

g(�) = 2�1�2�2 ��x(1) � x(2)��2 e�
p2�jx(1)�x(2)j sin2 �p2

���x(1) � x(2)��� :
The following cases are possible: 1) �1 > 0; �2 > 0; 2) �1�2 < 0; 3) �1 < 0;�2 < 0:Consider the case 1). It is evident that at � > 0 and �1; �2 > 0, the inequality

f(�) > �1�2 (15)
is true.Further, by the inequalities

jsinxj < x; e�x < 1; (x > 0);
we have g(�) < �1�2: (16)From inequalities (15) and (16) it follows that equation (11) has no positivesolutions by �.In cases 2) and 3) it is convenient to determine the amount of the roots ofequation (11) by the graphic method, i.e., as an abscissa of intersection points ofgraphs of the functions f(�) and g(�).Consider the case �1a2 < 0. It is easy to check that the points

�k = p2�k��x(1) � x(2)�� ; k = 1; 2; :::; x(1) 6= x(2);
are the maximum points, and

�0k = p2�k��x(1) � x(2)�� ; k = 1; 2; :::;
where �k > 0 is a solution of the equation tg� = ��+ 1, are minimum points of thefunctions g (�) ; moreover

g(�k) = 0; g(�0k) = �1�2�2k e�2�k sin2 �k; k = 1; 2; :::.
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The other characteristic properties of the function g(�) necessary for the con-struction of a graph of this function are investigated in an ordinary way. Further,the graph of the function f(�) is a parabola and �0 = ��1 + �28p2� is a minimum pointmoreover

f(�0) = �(�2 � �1)24 :
Using these data it is easy to show that the graph of the functions f(�) and g(�)at � > 0 intersect only at one point.Acting similarly we obtain that in the case �1 < 0; �2 < 0, the graphs of thefunctions f(�) and g(�) for � > 0 intersect at two points. Consequently, in this caseequation (11) has two positive roots. Theorem 2 is proved.
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