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ON SPECTRUM OF THREE-DIMENSIONAL
BIHORMONIC OPERATOR WITH POINT
INTERACTIONS

Abstract

In the present paper the spectrum of the operator A = A 4+ a10(x — D)+
+and(x—22)) in the space Lo(R?) is investigated. It is shown that the essential
spectrum and absolutely continuous part of spectrum of the operator A coircide.
The transcendental equation is obtained for the determination of negative eigen-
values of the operator A.

Consider in the space Lo(R?) the operator
A=A+ a18(z — 2V) + azd(z — 2?)) (1)
with dense domain of determination

D(4) = {u € W3(RY) |A%u+ ard(z — 2V)u + axd(z — @ u € Lo(B) }. (2)

Here A is a Laplacian three-dimensional operator, WZ(R3) is a Sobolev space,
6(z) is a delta function, oy, as € R and (1), z(2) € R? are fixed points. Since

a18(z —zM) + ad(z — 2?) € W;%%(R‘g’) (e > 0) then A is a lower semibounded
self-adjoint operator in the space Lao(R3) (see for ex.[1]).

In the present paper the explicit expression is found for the resolvent of the
operator A. It is shown that the essential spectrum (limiting) and absolutely con-
tinuous part of a spectrum of the operator A coincide. The transandental equation
is obtained for the determination of negative eigen-values of the operator A. The
analogous results are obtained in [2] for the operator A? + ad(z) in Lo(R3). The
two-dimensional biharmonic operator with § potential is investigated in [3].

The following theorem is true.

Theorem 1. The resolvent of the operator A is an integral operator in the space
Lo(R?)

(R.(4))(z) = / Gle,y:2)f(w)dy (f € La(B?)).
R3

The integral kernel G(z,y;z) at z = —X* (A > 0),z € p(A) has the form

2
G(z,y; =) = Go (|lz — yl; —A?) — 4;/(5/\7? > (1= di) iy + 4v2m ) x
ij=1
x G (‘m —z® ;—)\4> Gy (‘x(i) -y ;—)\4) +
(4v2r2)" a0 W) _ @],
a0 Go (‘x - ,—)\)x
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Here §;; 1s a Kroneker symbol.
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A = (o1 +4v2m2) (a2 +4V2mA) = 3272220100 G (‘x(l) e
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Proof. Let’s find the resolvent of the self-adjoint operator A. We solve the
equation

Au+Nu=f (f € Lay(R?), X >0) (4)

in the space Lo(R3).
Since

§(z — 2y = u(z®)(z — ™), k=1,2,

then we can write equation (4) in the following form
2 . .
A%u(z) + Zaiu(x(”)ﬂx — 2Dy 4+ Xy = §, (5)
i=1

Applying Fourier transformation F' to equation (5) and granting that
FlA%] = |¢]* Flul, Fli(z —2®)] = M0 k= 1,2,

we obtain

Flu] = ;F[f] _ io‘k“(w(k))ei(fc(’“),&) (6)
€1" + At = et '

Now we apply the inverse Fourier transformation to equation (6) and use the
known formulae

1 1 _ A
F—l — ﬁ‘:ﬂ A :
[|£|4+A4] e
Z(I(k)ag) 1 A
€ —*.|m—a:(k)| LA ‘ (k)
= v =z —2®|, (k=1,2),
A e[z — sin 75 e =2, )
1 1
e R
MF+%[] €|t + A1
Then we obtain
2
u(z) = Go (|£E| ; —>\4) x f — Zaku(a:k)Go (‘x — 7 ;—)\4> ) (7)
k=1

We find u(z() and u(z®). Write in (7) z = 2V and z = 2(?) consecutively.
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Then using the relations

1
;_>\4 = 3 k= 172 3
) 427\ ( )

we obtain the linear system of equations with respect to u(z(")) and u(z®)

lim Gg (‘a; — 2

z—x k)

> u(zM) + ayGo <‘x(1) — 2 ;—)\4) u(z®) =

_ /GO (|~
R3

a1 Go (‘l,(l) —_ 2@

1
14+ ——
( 42\

(=X Fly)dy, (8)

=) u(a) + <1 + 4\[;7”\) u(z®) =

_ /Go (‘w@) .y
-

Solving the system of equations (8) and (9) we find u(z(!)) and u(z®?).
Further, we put the found expressions u(z(") and u(z®) in (7). Then after
simple transformations we obtain

=X Fy)dy. (9)

u(z) = / G (0,5~ XY f(y)dy,
R3

where G(z,y; —\?) has the representation (3). Hence and from (4) it follows that
the resolvent R_,4(A) is an integral operator with the kernel G(z,y; —\%). In the
general case z € p(A) for obtaining the representations of the kernel G(z,y;z) in
(3) X should be substituted by /—z, moreover a regular branch of the root /—z is
chosen. It equals to

V=2 = re Tl z=re®, 0< p < 2.

Theorem 1 is proved.

The structure of a spectrum of the operator A is described by the following
theorem.

Theorem 2. The essential spectrum of the operator A coincide with an abso-
lutely continuous part of the spectrum

Oess(A) = 04e(A) = [0, +00). (10)

If 01 >0, as > 0, then the operator A has no eigen-values, if ajas < 0 then
A has exactly one negative prime eigen-value —)\é where Ao > 0 45 a unique positive
root of the equation

(4\/§7r)\ + a1> (4\/570\ + a2) _ v ‘ ?f)haz (2)‘26\/§A|z(1)$(2)| »
T — T
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5

2 ALy (2)‘ _

X sin T T = 0. 11
2 (1)

In the case ap < 0, as < 0 the operator A has ezactly two negative prime
eigen-values, _)\411 and —le, where A1 > 0, Ay > 0 are the positive roots of equation
(11).

Proof. Let Ag be a minimal operator in the Lo(R?) generated by the expression
A%y. Tt is evident that Ag is a self-adjoint non-negative operator and resolvent
R,(Ap) is an integral operator in (z ¢ [0, +00)) in Ly (R?) with the kernel Gy (=, y; 2).
The relations

U(AO) = Uess(AO) = Uac(AO) = [07 +OO)

are true.
Denote

B=(A+XE)™ = (Ao + ME)™Y (Ao >0, =Xt € p(A) N p(Ag)).

It is obvident that B is an integral operator in Lo(R?) with the integral kernel
k(z,y) € L2(R? x R?) where

k(z,y) = G(z,y; —A5) — Gol|z — y|; — X))

Therefore B is a Hilbert-Schmidt operator and therefore it is compact. By the weil
theorem ([4], theorem XIII.14) the essential spectrums of the operators A and Ay
coincide, moreover,

Oess(A) = 0ess(Ap) = [0, +00). (12)

Further from the representation (3) it follows that the difference of the resolvents,
R_Ag(A) - R_Ag(Ao) is a finite dimensional operator. According to the known
theorem ([5], ch. X, theorem 4.2) the absolutely continuous parts of the spectrums
A and Ay coincide. Hence and from (12) we obtain (10).

We find the negative eigen-values of the operator A. Let —A*(A > 0) be an
eigen-value of the operator A. Then

Au+ Mu = 0.

Assume f =0 in (7)

u(z) = —iaku(x(k))(}o (‘w — z® ;—)\4) . (13)
k=1

Further, assuming f =0 in (8) and (9) we obtain the system of the equations

<1 - 4;;70\) w(zM) + ayGou(a?) = 0,
o Gou(z) + (1 + ;‘;ﬂ) w(z?) = 0.

(14)
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From the representation (13) it follows that for u(z) # 0 it is necessary and sufficient
that the system of equations (14) have non-zero solution relative to u(z(!)) and
u(2?). So, the determinant of system (14) have to be equal to zero, i.e.,

aq (0%)] 2
1+ 1+ —aioaG: = 0.
< 4ﬁm>< 4ﬁm> 1o

Allowing for the representation for Gy we can write this equation in the form (11).
Let’s now investigate equation (11). Denote

FO) = (4f2m + al) (4\/§m + a2) ,

g(A) = 20102 gefﬂMm(l)’m@” sin? 2 ‘m(l) — I(z)‘ .
)\2 ‘;p(l) — $(2)‘

The following cases are possible: 1) a; > 0, as > 0; 2) ajaz < 0; 3) a1 < 0,
ag < 0.
Consider the case 1). It is evident that at A > 0 and ay, as > 0, the inequality

f(A) > a1 (15)

is true.
Further, by the inequalities

Isinz| <z, e *<1, (z>0),

we have
g(\) < ajas. (16)

From inequalities (15) and (16) it follows that equation (11) has no positive
solutions by A.

In cases 2) and 3) it is convenient to determine the amount of the roots of
equation (11) by the graphic method, i.e., as an abscissa of intersection points of
graphs of the functions f(\) and g()).

Consider the case ajay < 0. It is easy to check that the points

V2ork

VAR ) 2)
‘x(l)—x@)"k 1,2, ..,2\ # 2\,

Ag =

are the maximum points, and

where p;, > 0 is a solution of the equation tgu = %, are minimum points of the
W
functions ¢ (\) , moreover
a1a2

g(>‘/€) = 07 g()‘;c) = /JQ 672;% Sin2 K k= 1,2,
k
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The other characteristic properties of the function g(\) necessary for the con-

struction of a graph of this function are investigated in an ordinary way. Further,
a1+ a9

821

the graph of the function f()) is a parabola and \g = —

is a minimum point

moreover

2
Fho) = _«"2?“1)
Using these data it is easy to show that the graph of the functions f(X) and g(X)
at A > 0 intersect only at one point.
Acting similarly we obtain that in the case a; < 0, as < 0, the graphs of the
functions f(A) and g(\) for A > 0 intersect at two points. Consequently, in this case
equation (11) has two positive roots. Theorem 2 is proved.
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