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Tamilla Yu. ZEYNALOVA

BENDING OF RECTANGLE ANISOTROPIC PLATE

WITH LOCAL CURVED STRUCTURES

Abstract

The bending of linear anisotropic plate made of laminary composite ma-
terials with local curved materials under normal load is studied in frames of
continual theory. To solve the problem a small parameter method is used. Zero
approximation is the solution of the problem for homogeneous limear orthotropic
plate. Recurrent equations was obtained for corresponding approximation. The
methods for finding the quantities of each approximation in an analytic form
are stated.

It follows from the observation of the cut of different laminary composite mate-
rials that bending in the structure may be periodic and local [3].

In the papers [4.5] following the continual theory [1], a concrete problem was
considered for the case when the bendings in the structure of laminary composites
are periodic.

In the given paper, in the frames of continual theory [1] the bending of a rectangle
anisotropic plate made of laminary composite materials with local curvatures in the
structure under the action of normal load (whose y opposite sides are supported,
and the order two sides are arbitrary fixed) is investigated.

We take the mean surface equation of the chosen curved layer in the following
form [1]:

F (x1, x2) = εf(x1, x2) (1)

ε is a dimensionless small parameter 0 < ε < 1, whose sense is determined for each
concrete given function of the curvature form [2].

Let’s assume that in the general case the plate is not orthotropic, but at each
point it has a plane of elastic symmetry parallel to the mean surface [6].

Adopt the mean surface of undeformed plate for the plane x1, x2 arranging the
origin in the middle of the supported side, and direct the axis x1 along the supported
side, but the axis x2 perpendicular to it. Direct the axis x3 to the side of unloaded
external surface. By the made assumptions with respect to elastic properties the
equations for a generalized Hook law with the cited elasticity modules in the form
[1]

σ11 = A11ε11 + A12ε22 + A16ε12,

σ22 = A12ε11 + A22ε22 + A26ε12, (2)

σ12 = A16ε11 + A26ε22 + A66ε12,

we’ll assume valid.
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Here

Asp(x1x2) =

⎧⎪⎪⎨
⎪⎪⎩

Asp0 +
∞∑

k=1

ε2kAspk
for sp = 11, 12, 22, 66

∞∑
k=1

ε2k−1Aspk
for sp = 16, 26

, (3)

where Asp0 is an elasticity modules of homogeneous linear anisotropic body, Aspk
is

determined also by Asp0 and the parameters of the layer curvature [1], ε is a small
parameter. Denote by h the thickness of the plate, by u1, u2 the permutations of
any points in the direction of axis u1 and u2, and by w(x1, x2) deflection of mean
surface, by the form of the function w define the form of curved mean surface [7].
It follows from the conjecture of linear normals that

u1 = −x3
∂w

∂x1
, u2 = −x3

∂w

∂x2
, (4)

ε11 = −x3
∂2w

∂x2
1

; ε = −x3
∂2w

∂x2
2

; ε12 = −− 2x3
∂2w

∂x1∂x2
. (5)

Represent the equilibrium equation in the form [8]:

∂2M11

∂x2
1

+
∂2M22

∂x2
2

− 2
∂2M12

∂x1∂x2
= −q, (6)

q is a load distributed on the external surface per unit area. M11; M22 is a bending
moment, M12 is a torque:

M11 =

h
2∫

−h
2

σ11x3dx3; M22 =

h
2∫

−h
2

σ22x3dx3; M12 =

h
2∫

−h
2

σ12x3dx3. (7)

It is assumed that the following conditions are fulfilled on the edges of the plate

w = 0;
∂2w

∂x2
2

= 0 for x2 = 0; b,

w = 0;
∂2w

∂x2
1

= 0 for x1 = ±a

2
. (8)

The problem on the elastic equilibrium of the plate bended by any forces is
reduced to the definit.ion of the function w(x1, x2) in the domain occupied by the
plate.

This function satisfies the fourth order differential equation with variable coeffi-
cients. Therefore a small parameter method is used for solving the problem.

Represent all the quantities in the form of series by parameter ε:

Mij =
∞∑

k=0

εkM
(k)
ij ; σij =

∞∑
k=0

εkσ
(k)
ij ; .εij =

∞∑
k=0

εkε
(k)
ij ; w ==

∞∑
k=0

εkw(k). (9)
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Allowing for (2), (3), (9) in (6) and performing grouping by the same powers of
ε, for each approximation, we get:

I. Zero approximation.
a) Equilibrium equation

∂2M
(0)
11

∂x2
1

+
∂2M

(0)
22

∂x2
2

− 2
∂2M

(0)
12

∂x1∂x2
= −q. (10)

b) Hook’s law
σ

(0)
11 = A110ε

(0)
11 + A120ε

(0)
22 ,

σ
(0)
22 = A120ε

(0)
11 + A220ε

(0)
22 , (10∗)

σ
(0)
12 = 2A660ε

(0)
12 .

c) Boundary conditions

w(0) = 0;
∂2w(0)

∂x2
2

= 0 for x2 = 0; b,

w(0) = 0;
∂2w(0)

∂x2
1

= 0 for x1 = ±a

2
. (10∗∗)

II. The first approximation.
a) Equilibrium equation

∂2M
(1)
11

∂x2
1

+
∂2M

(1)
22

∂x2
2

− 2
∂2M

(1)
12

∂x1∂x2
= −q. (11)

b) Hook’s law
σ

(1)
11 = A110ε

(1)
11 + A120ε

(1)
22 + 2A161ε

(0)
12 ,

σ
(1)
22 = A120ε

(1)
11 + A220ε

(1)
22 + 2A161ε

(0)
12 , (11∗)

σ
(1)
12 = 2A660ε

(1)
12 + A161ε

(0)
22 + A261ε

(0)
11 .

c) Boundary conditions

w(1) = 0;
∂2w(1)

∂x2
2

= 0 for x2 = 0; b,

w(1) = 0;
∂2w(1)

∂x2
1

= 0 for x1 = ±a

2
. (11∗∗)

III. The second approximation
a) Equilibrium equation

∂2M
(2)
11

∂x2
1

+
∂2M

(2)
22

∂x2
2

− 2
∂2M

(2)
12

∂x1∂x2
= 0. (12)
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b) Hook’s law

σ
(2)
11 = A110ε

(2)
11 + A120ε

(2)
22 + 2A161ε

(1)
12 + A112ε

(0)
11 + A122ε

(0)
22 ,

σ
(2)
22 = A120ε

(2)
11 + A220ε

(2)
22 + 2A261ε

(1)
12 + A212ε

(0)
11 + A22ε

(0)
22 , (12∗)

σ
(2)
12 = 2A660ε

(2)
12 + A161ε

(1)
22 + A261ε

(1)
22 + A662ε

(0)
12 .

c) Boundary conditions

w(2) = 0;
∂2w(2)

∂x2
2

= 0 for x2 = 0; b,

w(2) = 0;
∂2w(2)

∂x2
1

= 0 for x1 = ±a

2
. (12∗∗)

Now, using Cauchy relation and Hook’s law we get corresponding equation for
w in the form:

B110
∂4w(k)

∂x4
1

+ (2B120 + 4B660)
∂4w(k)

∂x2
1∂x2

2

+ B220
∂4w(k)

∂x4
2

= D(k)(x1x2), (13)

where
Dk(x1x2).

I. Zero approximation. For k = 0, D0 = q.

II. The first approximation. For k = 1,

D(1) = −2

[
∂2

∂x2
1

(
B161

∂2w(0)

∂x1∂x2

)
+

∂2

∂x2
2

(
B261

∂2w(0)

∂x1∂x2

)
+

+
∂2

∂x1∂x2

(
B161

∂2w(0)

∂x2
1

+ B261
∂2w(0)

∂x2
2

)]
. (13∗)

III. The second approximation. For k = 2.

D(2) = −
{

∂2

∂x2
1

[
2B161

∂2w(1)

∂x1∂x2
+ B112

∂2w(0)

∂x2
1

+ B122
∂2w(0)

∂x2
2

]
+

+
∂2

∂x2
2

[
2B261

∂2w(1)

∂x1∂x2
+ B212

∂2w(0)

∂x2
1

+ B220
∂2w(0)

∂x2
2

]
+

+2
∂2

∂x1∂x2

[
B161

∂2w(1)

∂x2
1

+ B261
∂2w(1)

∂x2
2

+ 2B662
∂2w(0)

∂x1∂x2

]
, (13∗∗)

where Bspk are connected with Aspk; Bspk(x1x) = Aspk(x1, x2)
h3

12
.
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It should be noted that the zero approximation is the solution of the problem for
a homogeneous linear orthotropic plate. Therefore, the influence of the curvature
on the bending in the structure of the plate will be characterized by the quantities
of the first, second and subsequent approximations.

Now state the methods for finding quantities of each approximation.
I.Zero approximation. Deflection equations will be of the form

B110
∂4w(0)

∂x4
1

+ (2B120 + 4B660)
∂4w(0)

∂x2
1∂x2

2

+ B220
∂4w0

∂x4
2

= q, (14)

where q(x2) is a given function. Here we’ll consider the case when the load doesn’t
change along the supported sides. For the indicated plate we can get the solution
in the form of prime series which is the generalization of the known Morris Levy
solution for an orthotropic plate case [7].

We’ll search solution (14) in the form of the sum

w(0) = w0(x2) + w
(0)
1 (x1x2). (15)

w0(x2) is a partial solution (14) and it is of the form:

w0 =
b

B220π4

∞∑
n=1

an

n4
sin

nπx2

b
, (16)

where

an =
2
b

b∫
0

q sin
nπx2

b
dx2 (17)

are the coefficients of the expansion in Fourier series of the functions q(x2) repre-
senting the load distribution law.

w
(0)
1 solution of homogenous equation (14) we search in the form:

w
(0)
1 =

∞∑
n=1

X(0)
n (x1) sin

nπx2

b
. (18)

Then, for the function Xn(x1) we get the equation

B110X
(0)IV

n (x1) − 2 (B120 + 2B660)
(nπ

b

)2
X(0)

II

n (x1) + B220

(nπ

b

)4
X(0)

n (x1) = 0.

(19)
We look for the solution of homogenous equation in the form:

X(0)
n (x1) = exp(λnβx1); λn =

nπ

b
.

Then, for determination of the quantity β we have the characteristic equation

B110β
4 − 2 (B120 + 2B660) β2 + B220 = 0. (20)
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Hence

β1,...,4 = ±
√[

(B120 + 2B660) ±
√

(B120 + 2B660)2 − 4B110B220

]
/B110.

Thus, we get the following expression for total deflection

w(0) =
∞∑

n=1

(
anb4

B220πn4
+ C

(0)
1n e

nπ
b

β
(0)
1 x1 + C

(0)
2n e

nπ
b

β
(0)
1 x1+

+C
(0)
3n e

nπ
b

β
(0)
2 x1 + C4ne−

nπ
b

β
(0)
2 x1

)
sin

nπx2

b
. (21)

Substituting (21) into (10**) we get a system of in homogenous linear algebraic
equations with respect to the constants C

(0)
1n ...C

(0)
4n . Having defined the unknown

constants we find the quantity of the deflection in zero approximation. In sequel
with regard to zero approximation quantity we define the quantities of subsequent
approximations.

The first approximation.
Consider the case when the curvature in the structure of the considered plate is

only in the plane x2 © x3. Accept the functions characterizing the curvature form
in the plate structure in the following form [2]:

F (x2) = Le
−
(

2x2−b
2l2

)2

. (22)

Here L is a maximal value of the rise, l2 is the introduced geometric which is
shown in figure. Assume that L < L2, as a small parameter ε we take L/l2 i.e.
ε = L/l2, then we have from (1) and (22):

f(x2) = l2e
−
(

2x2−b
2l0

)2

. (23)

Now, taking into account that B161 = A(x2)B′
161, B261 = A(x2)B′

261 (1) and
(13*) in (13), for the deflection we obtain the following inhomogenous differential
equation

B110
∂4w(1)

∂x4
1

+ 2 (B120 + 2B660)
∂4w(1)

∂x2
1∂x2

2

+ B220
∂4w(1)

∂x4
2

=

= −2

[
B′

261

∂2w(0)

∂x1∂x2

∂2A

∂x2
2

+

(
B′

161

∂3w(0)

∂x3
1

+ 3B′
261

∂3w(1)

∂x1∂x2
2

)
∂A

∂x2
+

+2

(
B′

161

∂4w(0)

∂x3
1∂x2

+ B′
261

∂4w(0)

∂x1∂x3
2

)
A

]
. (24)

Here B′
161; B′

261 are the unknown constants [1]:

A(x2) =
∂f

∂x2
from (23) we have:

A(x2) = −2
(

2x2 − b

2l2

)
e
−
(

2x2−b
2l0

)2

. (25)
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Putting (21), (25) into (24) we get the following inhomogenous differential equa-
tion for determining w(1) (x1; x2).

B110
∂4w(1)

∂x4
1

+ 2 (B120 + 2B660)
∂4w(1)

∂x2
1∂x2

2

+ B220
∂4w(1)

∂x2
2

=

=
∞∑

n=1

e
−
(

2x2−b
2l0

)2 {[
Yn0(x1) + Yn1(x1)

(
2x2 − b

2l2

)]
sin

nπx2

b
+
[
Yn2(x1)

(
2x2 − b

2l2

)
+

+Yn3(x1)
(

2x2 − b

2l2

)3
]

cos
nπx2

b

}
. (26)

Here

Yn0(x1) = −12
l2

(nπ

b

)2
B′

261X
(0)′
n (x1); Yn1(x1) = −2Yn0(x1),

Yn2(x1) = 8
(nπ

b

)
B161X

(0)′′′
n (x1) − 8

[
3
l22

nπ

b
+
(nπ

b

)3
]

B′
261X

(0)′
n (x1),

Yn3(x1) = 16
1
l22

nπ

b
B′

261X
(0)′
n (x1).

We choose the solution of equation (2) as:

w(1)(x1x2) =
∞∑

n=1

X(1)
n (x1)e

−
(

2x2−b
2l2

)2

sin
nπx2

b
. (27)

Allowing for (27) in (26) and partitioning each side to exp

[
−
(

2x2 − b

2l2

)2
]

we

get:

B0n(x2)X(1)IV

n (x1) + B1n(x2)X
(1)′′
n (x1) + B2n(x2)X(1)

n (x1) = Y (1)
n (x1x2), (28)

where
B0n(x2) = B110 sin

nπx2

b
,

B1n(x2) =

= 2 (B120 + 2B660)

{[
kon + k1n

(
2x2 − b

2l2

)2
]

sin
nπx2

b
+ k2n

2x2 − b

2l2
cos

nπx2

b

}
,

B2n(x2) = B220

{[
k3n + k4n

(
2x2 − b

2l2

)2

+ k5

(
2x2 − b

2l2

)4
]

sin
nπx2

b
+

+

[
k6n

2x2 − b

2l2
+ k7n

(
2x2 − b

2l2

)3
]

cos
nπx2

b

}
,

Y (1)
n (x1x2) =

[
Yn0(x1) + Yn1(x1)

2x2 − b

2l2

]
sin

nπx2

b
+



222
[T.Yu.Zeynalova]

Transactions of NAS of Azerbaijan

+

[
Yn2(x1)

2x2 − b

2l2
+ Yn3(x1)

(
2x2 − b

2l2

)3
]

cos
nπx2

b
,

kon = −
(

nπ

b
+

2
l22

)
: k1n = 4/l22, k2n = −4

(nπ

b

) 1
l2

,

k3n =
(nπ

b

)4 − 12
1
l22

(nπ

b

)2
+ 12/l42; k4n = −24

1
l22

[(nπ

b

)2 − 1
l22

]
,

k5n = 16/l42; k6n = 8
1
l2

[(nπ

b

)3 − 1
l22

]
; k7n = 32/l32.

In sequel, applying the Bubnov-Galerkin method having excluding the variable
x2, with respect to the variable x1 we get the following ordinary differential equation:

D11X
(1)IV

n (x1) + D12X
(1)′′
n (x1) + D13X

(1)
n (x1) = Y (1)

n (x1). (29)

Here

D11 =

b∫
0

B0n(x2) sin
nπx2

b
dx2; D12 =

b∫
0

B1n(x2) sin
nπx2

b
dx2,

D13 =

b∫
0

B2n(x2) sin
nπx2

b
dx2; Y (1)

n (x1)

b∫
0

Ynn(x1x2) sin
nπx2

b
dx2 =

= b1ne
nπ
b

β
(0)
1 x1 + b2ne−

nπ
b

β
(0)
1 x1 + b3ne

nπ
b

β
(0)
2 x1 + b4ne−

nπ
b

β
(0)
2 x1 ,

where b1n; b2n; b3n; b4n are the known constants.
The homogeneous part of equation (24) is solved as equation (19). Assuming

X(1)
n (x1) = exp

(
β

(1)
i x1

)

for determining the quantity β(1) we have the characteristic equation

D11β
(1)4 + D12β

(1)2 + D13 = 0. (30)

Then, fundamental solution of homogeneous equation will be

X(1)
ngen

(x1) = C
(1)
1n eβ

(1)
1 x1 + C

(1)
2n e−β

(1)
1 x1 + C3neβ

(1)
2 x1 + C4ne−β

(1)
2 x1 . (31)

Particular solution (29) is determined by simple algebraic methods, since the
right hand side has a special form [9].

Using the operator writing

P4(D)X(1)
n (x1) = Y (1)

n (x1) or

(
D11D

4 + D12D
2 + D13

)
X(1)

n (x1) = Y (1)(x1).
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D is a differentiation operator.

DX(1)
n =

dX
(1)
n (x1)
dx1

and knowing that

P4

(nπ

b
β

(0)
1

)
; P4

(
−nπ

b
β

(0)
1

)
; P4

(nπ

b
β

(0)
2

)
; P4

(
−nπ

b
β

(0)
2

)
�= 0.

Since
nπ

b
β

(0)
1,2 �= β

(1)
1,2 i.e.

nπ

b
β

(0)
1,2 is not a root of characteristic equation (30).

Moreover, particular solution (29) is

X(1)
npriv

(x1) =
b1ne

nπ
b

β
(0)
1 x1

P4(λβ
(0)
1 )

+
b2ne−

nπ
b

β
(0)
1 x1

P4(−λβ
(0)
1 )

+
b3ne

nπ
b

β
(0)
2 x1

P4(λβ
(0)
1 )

+
b4ne−

nπ
b

β
(0)
2 x1

P4(−λβ
(0)
2 )

. (32)

Then, a general solution of in homogeneous equation (26) will be

w(1)(x1, x2) =
∞∑

n=1

(
X(1)

ng
(x1) + X(1)

np
(x1)

)
e
−
(

2x2−b
2l0

)
sin

nπx2

b
. (33)

Satisfying the boundary conditions (11**) with regard to (33) we get a system
of four inhomogeneous linear algebraic equations for determining the unknown con-
stants C

(1)
1n ...C

(1)
4n contained in the expression w(1)(x1x2). So, we completely define

the quantity of the first approximation. Continuing the stated procedure with re-
gard to (12*) in (12) we can define the quantities of the second approximation and
etc.

Thus, in the frames of continual theory the methods for studying the bending of
inhomogeneous anisotropic plate with local curved layers are developed.

The methods for finding the quantities of each approximation are stated in an
analytical form.

Fig.1.
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