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PARAMETRIC VIBRATIONS OF

NONLINEAR-VISCOELASTIC ROD

Abstract

The rod having the thin-walled structural elements is widely used in tech-
niques. There arise difficulties in analysis of these elements allowing for phys-
ical and geometrical nonlinearity and so such problem is solved by the varia-
tioanal method.

In this paper the parametric oscillations of rod allowing for physical and
geometrical nonlinearity in elastic medium is investigated by variational method
and the characteristic curves are constructed.

The rods having the thin-shelled structural elements are widely used in engineer-
ing. There arise difficulties in analysis of these elements allowing for physical and
geometrical non-linearity in medium though thin-shelled constructions are simpler
by their one-dimensional property. In spite of this, for full description of the car-
rying capacity of such constructions reliable strength analysis should be performed.
The medium is modelled by ground and its influence is considered by the Winkler
model.

The solution of such type problems is mathematically difficult, that is extended
with regard for dynamical effects that is necessary in problems of constructions of
buildings and structures, in vibration problems and etc. In this case we use the
variational principle. The application of the variational method is dictated not
only by the convinience of numerical calculation, in this case one can learn non-
contradictary theory of thin-shelled constructions.

Parametric vibrations of linear, inhomogeneous on thickness bar with regard to
physical and geometrical nonlinearity in elastic medium are considered.

The problem is solved by the variational method. Characteristic curves of de-
pendence are constructed.

Let’s consider a nonhomogeneous on thickness linear, rectangular in the plan rod
of thickness 2h, length l in the ground. Let a uniformly distributed load of intensity

p = p0 + p1 sin ω1t,

act on this rod along the upper end wall. Here p0 is the basic load, p1 is the load
change amplitude, ω1 is its frequency. It is obvious that the consideration of such
a load admits to study a more general case of time dependence of pavement load.
Substitute the action of the ground on the rod by the force q0 distributed along the
length of the rod and proportional to the deflection of the bar. It is assumed that
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the lower end-wall of the rod is rigidly fixed:

x = l, W = 0,
∂W

∂x
= 0.

To study parametric vibrations of bar in the ground we shall use the variational
principle.

In conformity to our case we can write the functional in the following form [1]:
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where
1
Ei

=
h∫
−h

zi

E(z)
dz, ρ0 is density, t1 is the beginning of time reference, t2 is the

end of time in the course of which the process is studied, K1(t− τ), K1(t− τ) is the
creeping kernal, uW are the permutation vector components of rod’s points.

Since we shall investigate parametric vibrations, i.e. we’ll consider periodic vi-
brations, then on this basis of the variational principle, we’ll accept

t2 = t1 + T,

where T is the period of parametric vibrations. For simplicity we accept t1 = 0. Pro-
ceeding from the variational principle we should set iitial conditions at the moment
t = t1 and t = t2. In view of periodicity of the desired solution there is no necessity
in this. Note that a periodic solution exists if the creeping kernel is damping. In this
connection periodicity will appear at large values of time. At differentiations with
respect to parameter, it is necessary to understand the parameter characterizing the
loading. In the considered case the loading depends on two parameters P0 and P1.
In general case they are connected with one another. But if there was a problem
by solving of which it was necessary to give only specific values of P0 and P1 then
one could determine their final values one by the another and to take for example
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P0 for a differentiation parameter. For the present problem it will be necessary to
construct dependences in which one of parameters will change. Then calculation is
complicated. In this case, it is appropriate to introduce two differentiation param-
eters. Initially we accept P0 = 0, for differentiation parameter we take P0. The
system of equations, is solved up to specific value of P0. Then we take P1 as a
differentiation operator. The initial conditions in this case have already been solved
at the previous stage. Thereby the problem may be solved in two stages.

In differential (1), Ẇ , Ṁ , Ṅ are the varying quantities. Let’s find its stationary
value. Initially let’s vary it with respect to u̇. With regard to above said u̇ is
excluded from consideration. As a result functional (1) has the form:
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It is obvious that the stationary value of the cited functional (2) as the stationary
value of functional (1) is determined by solving the stated problem. In functional
(2) the number of varying quantities are Ṁ and Ẇ . We find them by using the
Rietz method. Proceeding from the expected behaviour of the rod we take the
approximation for the desired quantities as follows:

W = sin
πx

l
(W0 cos ωt + W1 sin ωt) ,

M = sin
πx

l
(M0 cos ωt + M1 sinωt), (3)

where W is the vibration frequency. In a general case the frequency of stationary
vibrations is the unknown quantity which is to be found from the stationary state
condition of the functional. But at present case we are interested in the beginning
of parametric resonance depending on external parameters.
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Based on the Reitz method we put approximation (3) into the expression of
functional (2) and integrate it with respect to variables x and t. As a result, we get
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Ṁ0×

×
{
−2hp1ΦΦ(2)

1c

8
3

+
3
h2

π2

4
(M0Φ2c − M1Φ2s)

}2

−

− 3
4h4

Ṁ1
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where Ji are some functions from Mi and ρi not affecting on stationary values of the
function J,Φic and Φis are Fourier transform of its cosine and sine from the kernel
Ki(t − τ), respectively.

Thus, finding the stationary value of functional (2) was led to finding the sta-
tionary value of function (2). This value is determined from the following system:

∂J

∂Ẇ0

= 0;
∂J

∂Ẇ1

= 0;
∂J

∂Ṁ5

= 0;
∂J

∂Ṁ8

= 6. (5)

Based on the variational principle for the solution of the obtained system we
take the following initial conditions: in the absence of load there is no stress and
deflection in rods. System (5) is a quasilinear system of differential equations and
calculated numerically.

The results of calculations are in Fig.1
The creeping kernel is accepted in tue form:

K(z, t) =
a

E(z)
e−βt,

where a is a mechanical parameter, β is an index of exponent. In this case Fourier
transform is of the form:

Φ0 = a

∞∫
0

e−βydy =
a

β
;
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Φ0 = a

∞∫
0

e−βy sin ωydy = a
ω

β2 + ω2
;

Φc = a

∞∫
0

e−βy cos ωydy = a
β

β2 + ω2
.

For the convenience of calculations along with reduced above pure parameters
we introduce the following quantities

W0 = C0h; W1 = C1h; ω = ω0β; ρ0 =
ρExh3

ρ2
;

ρi = τ iExh3;
1

Ei = hi+1

1
Ex

1
ei

.

In fig. 1. the dash dot lines shows vibrations in ground. Calculations show that
discount of ground influence leads to the critical load increase.

Fig. 1.

Fig. 1. The dependence of τ1 from ω0 for the following values of parameters

1 : α = −0, 5; β0 = 1; τ0 = 0, 03; ρ2 = 0, 3; 2 : α = 0; k = 2.4 · 104n/m3.
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