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MECHANICS

Ismail A. AMIRASLANOV, Nigar I. AMIRASLANOVA

AXIALLYSYMMETRIC PROBLEM ON A

CYLINDRICAL GRYPHON

Abstract

The process of development of axiallysymmetric gryphons, moving along
a casing in rock around a drilling well is considered. The field of a pressure
at the neighbourhood of gryphon and coefficient of intensity of a singularity
of pressure at the front a gryphon, criteria of growth of a gryphon are defined.
The solution of a problem is necessary for the scientifically-grounded estimation
of hazard of gas coning with a high formation pressure behind a casing.

By drilling-out collectors with a high formation pressure of gas a well sometimes
temporarily is conserved to avoid gas blowout. However, often, despite of adopted
precautions, gas breaks near to edge of a casing and washes out rock.

Here, the formed rock caverns are called ”gryphons”. This dangerous phe-
nomenon sometimes precede to disastrous gas blowouts. It, obviously, relates to
the category of hydro-erosive phenomena.

Problem statement. Let the homogeneous porous body take up the exterior
of the cylinder, r > a, where a is radius of the cylinder in a cylindrical co-ordinates
rx (fig.1.a).

At x < 0 surface of the cylinder is impermeable the remaining part of the surface
x > 0 r = a is the boundary of domain of the constant pressure P0 of the cavern or
”gryphons”. At infinity as r → ∞ the pressure is equal to P∞ (P∞ >> Pr).

Such problem statement is obtained as a result of the following assumptions: a)
”gryphon” is axiallysymmetric; b) the length of ”gryphon” along to axis x is greater
in comparison with its width in a radial direction; c) the front of ”gryphon” moves
along the axis with a speed, small in comparison with V ∞, so that we can consider
the process of filtration as a quasistationary in coordinates, moving together with
front x = 0, r = a; d) the inclination of a surface of ”gryphon” to an axis x is small,
and width of a gryphon in a radial direction is small in comparison with radius of the
cylinder, so that boundary conditions from a surface of ”gryphon” may be carried
on a surface of the cylinder; e) the pressure gradient of a concavity of ”gryphon” is
small in comparison with a pressure gradient in a surrounding body; f) the length of
”gryphon” is great in comparison with the radius of the cylinder. In this approach
”gryphon” is represented by a cylindrical semi-infinite slit of zero along r = a, x > 0.

Let’s consider a closed surface
∑

, formed by a sphere
∑

R of a large radius
R >> a by surface of the cylinder

∑
c (r = a) and by surface of a torus

∑
t, formed

by rotation of a circle of small radius rt << a around the axis x at a distance a

from the axis and from an origin of coordinates. The surface
∑

envelopes all porous
body, except for front of ”gryphon” and a point at infinity.
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According to the theory of invariant Γ-integrals [6] the equality holds:

ρ

2ε2

∫
Σ

(vivin1 − 2viniv1) dΣ = 0

(
x1 = x, x2

2 + x2
3 = r2, i = 1, 2, 3

) (1.1)

Here ni is a component of a unit vector of an exterior normal line to a surface
Σ; vi are components of a filtration speed; ε is a porosity, ρ is a density.

According to [2] integral (1.1) by surface Σ is equal to∫
Σt

= 2παΓ (1.2)

Here Γ is a density of configurational force of a filtration stream at the front of
gryphon.

Integral (1.1) by a surface Σc is equal to zero, as on a surface of cylinder n1 = 0
and besides equalities hold at x < 0 r = a vini = 0, at x > 0 r = a v1 = 0 (since
vi˜P, i, and pressure p is constant at x > 0 r = a).

Suppose, that the amount of gas, immersed by ”gryphon” per a time unit, is
finite, and is equal to Q, and speed of a motion of the ”gryphon” is equal to v. In
this case integral (1.1) by closed surface Σr at infinity will be equal to ρvQε−2.

Hence from (1.1) and (1.2), the quantity Γ is equal to

Γ =
ρvQ

2πaε2

This expression can be used for solving the question on development of ”gryphon”

in time if we use the experimental dependence
dl

dt
= f (Γ) for v =

dl

dt
.

It is supposed, that
dv

dt
<<

v

τ
, where τ is the reference time of process.

The pressure in a porous body in the neighbourhood of a head of a gryphon is
defined from the following boundary problem:

∆pγ = 0 γ ≥ 1
(

∆ =
1
r

∂

∂r

(
r

∂

∂r

)
+

∂2

∂x2

)
(1.3)

where constant γ is greater for a unit than the index of the gas polytrope

vr = k
∂p

∂r
, vx = k

∂p

∂x
(1.4)

at r = 1 x > 0 p = ρ0 (1.5)

at r = 1 x < 0
∂ρ

∂r
= 0 (1.6)

at r → ∞ P = P∞ (1.7)

Here as a unit of length the radius of cylinder a is taken.
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Let’s differentiate (1.5) by x and denote u = pγ . For function u (r, x) we’ll obtain
the following linear boundary value problem.

1
r

d

dr

(
r
∂u

∂r

)
+

∂2u

∂x2
= 0 (r ≥ 1) (1.8)

at r = 1 x > 0
∂u

∂x
= 0 (1.9)

at r = 1 x < 0
∂u

∂r
= 0 (1.10)

at r → ∞ u = P γ
∞ (1.11)

at x2 + (r − 1)2 = ε2 → 0 u = P γ
0 + o

(
ε1/2

)
(v ≥ 1) (1.12)

As a result, for a new function

ω (r, x) = u − P γ
∞ = P γ − P γ

∞

We’ll obtain the following homogeneous boundary problem

1
r

∂

∂r

(
r
∂ω

∂r

)
+

∂2ω

∂x2
= 0 (r ≥ 1) (1.13)

at r = 1 x > 0
∂ω

∂x
= 0 (1.14)

at r = 1 x < 0
∂ω

∂r
= 0 (1.15)

at r → ∞ ω = 0 (1.16)

at x2 + (r − 1)2 = ε2 → 0 ω = P γ
0 − P γ

∞ + o
(
ε1/2

)
(1.17)

Let’s take Fourier transformation by x to (1.13), denoting

ω̄ (r, λ) =
1√
2π

+∞∫
−∞

ω (r, x) e−iλxdx (1.18)

(λ is an arbitrary parameter).
We’ll obtain

1
r

d

dr

(
r
dω̄

dr

)
− λ2ω̄ = 0 (r ≥ 1) (1.19)

This is a modified Bessel equation [4]. The solution of this equation, according
to (1.16) tending to zero as r → ∞, has the form [4]

ω̄ (r, λ) = A (λ)K0 (λr)
dω̄

dr
= ω̄′ (r, λ) = λA (λ) K ′

0 (λr) = −A (λ)K1 (λr)
(1.20)

Here K0 (λr) is a modified Hankel function (or McDonald function) of zero or-
der; A (λ) is an arbitrary function; K1 (λr) is a first order McDonald function:
K1 (λ) = −K ′

0 (λ)
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According to boundary condition (1.14) on the base of (1.18) and (1.20) we have

iλω̄ (1, λ) =
1√
2π

0∫
−∞

∂ω̄

∂x

∣∣∣∣
r=1

e−iλxdx = iλA (λ)K0 (λ) = Φ+ (λ) (1.21)

Here Φ+ (λ) is an analytical function of the complex variable λ in a upper half-
plane Imλ > 0 (fig.1b). Formula (1.21) is based on the following transformation

+∞∫
−∞

∂ω̄

∂x
e−iλxdx = ω̄e−iλx

∣∣∣∣
+∞

−∞
+ iλ

+∞∫
−∞

ω̄e−iλxdx (r ≥ 1)

To equate to zero the first addend in the right-hand side of this equation, it is
necessary to consider, that λ = Reλ−io in formula (1.18) and that lim

x→∞
(
ω̄e−iλx

)
= 0

(r = 1). According to boundary condition (1.15) on the base of (1.18) and (1.20) we
have

ω̄′ (1, λ) =
1√
2π

∞∫
0

∂ω̄

∂r

∣∣∣∣
r=1

e−iλxdx = λA (λ) K0 (λ) = Φ− (λ) (1.22)

Here Φ− (λ) is analytical function λ in the lower half-plane Jmλ < 0 (fig.1b).
We’ll exclude from two correlations (1.21) and (1.22) the function A (λ) and we’ll
find

Φ+ (λ) = −iG (λ)Φ− (λ) (1.23)

where
G (λ) = −K0 (λ)

K ′
0 (λ)

=
K0 (λ)
K1 (λ)

.

This is a homogeneous functional Wiener-Hopf equation connecting the limiting
values of the piecewise - analytic function in opposite points of its break line-real
axis Jmλ = 0.

Points x = 0 and λ = ∞ are unique singular points of this equation. Let’s study
them. First of all let’s note the following properties

a) the function K0 (λ) is an even function λ, monotonically decreasing with
growth λ at λ > 0;

b) function K0 (λ) has no zeros
c) at singular points the function K0 (λ) behaves so:
At λ → +0 K0 (λ) = − ln λ

[
1 + 0

(
λ2

)]
At λ → +∞

K0 (λ) =
√

π

2λ
e−λ

[
1 + 0

(
1
λ

)]
(1.24)

On base of (1.23) and (1.24) the function G (λ) on the real axis is a real odd
function λ, which at singular points behaves so (fig.1c):

At
λ → +0 G (λ) = −λ ln λ

[
1 + 0

(
λ2 ln λ

)]
(1.25)
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At λ → +∞ G (λ) = 1 + 0
(

1
λ

)
.

It is visible, that at λ > 0 function G (λ) monotonically increases from zero up
to unity with growth of λ.

The function G (λ) is a value of a main branch of multivalued analytic function
on a complex plane λ with a slit along the ray (0,∞) of a real axis, taken on the
upper coast of a slit and on prolongation of a slit. The indicated analytic function
has the infinite number of zeros and poles, all of them are located on imaginary axis
symmetrically with respect to the origin; zeros and poles alternate.

For definition of asymptotics of function Φ+ (λ) and Φ− (λ) at λ → +0 and
λ → ∞ we use the following Abelian theorem, connecting this asymptotics with
the asymptotics of the corresponding integrand functions at x → ∞ and x → 0
respectively

Let

F+ (λ) =
1√
2π

∞∫
0

f (x) eiλxdx ,

(0 > η > −1, x → +0, x → ∞)

f (x) ≈ Axn (1.26)

Then

F+ (λ) ≈ A√
2π

Γ (η + 1)λ−(η+1) exp
πi (η + 1)

2
(λ → ∞, λ → +0)

Where everywhere we have to take either upper, or lower limit passages, Γ (η) is
gamma function of Euler. Here it is considered, that λ tends both to zero, and to
the infinity, remaining in upper half-plane Jmλ > 0 (A is some constant).

An asymptotics of desired functions at the front of ”gryphon” according to [2]

f (z) = −iK
√

z − l

vx + ivy =
kK

2
√

r0

(
− sin

θ0

2
+ i cos

θ0

2

)
r0 = |z − l|, θ = arg (z − l) , K > 0

will be the following

at r = 1 x → +0
∂ω

∂r
=

1
2
K∗x−1/2 (1.27)

at r = 1 x → −0
∂ω

∂x
= −1

2
K∗ (−x)−1/2 (1.28)

K∗ = γP γ−1
0 K

Let’s transform integral (1.21) to form (1.26) by substitution x1 = −x; use the
Abelian type theorem and formula (1.28) we’ll obtain

at λ → ∞ Φ+ (λ) =
1
4
K∗ (1 + i) λ−1/2, as Γ (1/2) =

√
π (1.29)
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Integral in (1.22) is reduced to the form (1.26) by substitution λ1 = −λ. With
the help of Abelian type theorem and formula (1.27) we’ll obtain at

at x → ∞ Φ− (x) =
1
4
K∗ (1 + i) (−λ)−1/2 (1.30)

The asymptotics of desired functions r2 + x2 → ∞ is required to define in the
process of solution.

We use the following fact: Function πλcthπλ on the real axis can be represented
(factorized) by the following way: [6]

λ cth πλ = K+ (λ)K− (λ)

K+ (λ) =
Γ (1 − iλ)

Γ (1/2 − iλ)
, K− (λ) = K+ (λ) (1.31)

Here K+ (λ) is an analytical and absencing zeros function at Jmλ > −1/2
(respectively, K− (λ) is analytical an has no zeros at Jmλ < 1/2).

On infinity these functions behave so: [6]

at λ → ∞ K+ (λ) = e−
iπ
4

√
λ

[
1 + 0

(
1
λ

)]
(1.32)

at λ → ∞ K− (λ) = −e
iπ
4

√−λ

[
1 + 0

(
1
λ

)]
(the sign minus in the last correlation is taken subject to modification of a slit for
functions

√
λ and

√−λ).
Let’s transform the coefficient G (λ) in functional Wiener-Holf equations by the

following way

G (λ) = G0 (λ)
λcthπλ

λ
(1.33)

where C0 (λ) =
G (λ)
cthπλ

.

Function C0 (λ) on the real axis is a real, non-negative, even function, which is
as λ → −∞ tends to unit, but as λ → 0 behaves itself as a −λ2 ln λ. At λ > 0 this
function monotonically increases from zero up to unit by increasing λ. Index of this
function is equal to zero and it can be factorized by the following way

G0 (λ) =
χ+ (λ)
χ− (λ)

(1.34)

Here χ+ (λ) and χ− (λ) are analytical and not vanishing functions in upper and
lower half-planes, respectively.

Taking the logarithm (1.34) we find

ln χ+ (λ) − ln χ− (λ) = ln G0 (λ) (1.35)

Hence

ln χ+ (λ) =
1

2πi

+∞∫
−∞

ln G0 (λ)
λ0 − λ

dλ0 (1.36)
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Consequently, recalling (1.23) and (1.33) we have

exp

⎧⎨
⎩ 1

2πi

+∞∫
−∞

ln
[

K0 (λ0)
K1 (λ0) cthπλ0

]
dλ0

λ0 − λ
=

{
χ+ (λ) at Jmλ > 0
χ− (λ) at Jmλ < 0

(1.37)

(at λ → ∞ χ± (λ) → 1).
Gathering formulas (1.23), (1.31), (1.33), (1.34) we obtain the Wiener-Holf equa-

tion
λΦ+ (λ)

K+ (λ)χ+ (λ)
= − iΦ− (λ) K− (λ)

χ− (λ)
(Jmλ = 0) (1.38)

The left-hand-side of this equation is a function, analytical in the upper half-
plane Jmλ > 0, but the right hand-side is a function, analytical in the lower half-
plane Jmλ < 0. With the help of formulas (1.29), (1.30), (1.32), (1.37) it is easy to
establish that these functions behave itself at infinity so:

at λ → ∞ Jmλ > 0
λΦ+ (λ)

K− (λ) χ+ (λ)
=

1
2
√

2
K∗i

at λ → ∞ Jmλ < 0
−iΦ− (λ)K− (λ)

χ− (λ)
=

1
2
√

2
K∗i

(1.39)

In the base of continuous continuation of the theory of analytical functions of a
complex variable the left and right hand-sides of equality (1.38) is single analytical
function on all the plane λ, on the base of (1.39) and Liouville theorem it is equal
to the constant iK∗2−3/2.

Hence we obtain
Φ+ (λ) =

K∗i
2
√

2λ
K+ (λ)K− (λ) (1.40)

Φ− (λ) = − K∗
2
√

2λ
χ− (λ)
K− (λ)

(1.41)

With the help of (1.21), (1.40) we find A (λ), then using (1.20) we define ω (r, λ)
and by formula of the inverse Fourier transformation ω (r, x) finally we’ll obtain the
following expression for the desired field of pressure in the porous body:

P γ = P γ
∞ +

K∗
4
√

π

+∞∫
−∞

K+ (λ)χ+ (λ)
λ2K0 (λ)

K0 (λr) eiλxdx (1.42)

Let’s recall that the functions K+ (λ) and χ+ (λ) are defined by expressions
(1.31), (1.37).

For definition of coefficient of intensity K∗ at the front of ”gryphon” we use
condition (1.17) according to which P = P0 at r = 1 x = 0 (pressure in a concavity
of ”gryphon”). Hence with the help of (1.42) we obtain

K∗ = −4
√

π (P γ
∞ − P γ

0 )

⎡
⎣ +∞∫
−∞

λ−2K+ (λ)χ+ (λ) dλ

⎤
⎦
−1

(1.43)
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Let’s study a singular point λ = 0. According to (1.24) we have at real λ

At λ → ±0
K0 (λ)

K1 (λ) cthπλ
= −πλ2 ln |λ| [1 + 0 (λ)] (1.44)

Substituting (1.44) in (1.37) we arrive at the following common question: what
is the behaviour of Cauchy type integral

F1 (z) =
1

2πi

1∫
−1

ln |x|
x − z

dx

F2 (z) =
1

2πi

1∫
−1

ln (− ln |x|)
x − z

dx

(1.45)

at z > 0 in the upper half-plane?
Let’s consider the following auxiliary function

ω (z) = − 1
4πi

ln2 z +
1
2

ln z − 1
4πi

ln2 (−z) +
1
2

ln (−z) (1.46)

Here under the functions ln z and ln (−z) we perceive the unique branches of
the logarithm on a plane z with semi-infinite linear slits along (0,∞) and (−∞, 0) of
a real axis, respectively, at that these branches take real values on the upper coasts of
the corresponding slits. The function ω (z) represents the unique piecewise-analytic
function in a plane z with a cutting line of a real axis: with direct calculations it is
possible to show, that the saltus of this function at passage through a real axis is
equal to

ω+ (x) − ω− (x) = ln |x| (1.47)

According to the Sohotskii formula from (1.45) we have [3]

F+
1 (x) − F−

1 (x) = ln |x| (1.48)

Subtracting from (1.46) the expression we get

[F1 (x) − ω (x)]+ = [F1 (x) − ω (x)]− (1.49)

So, the function F1 (z) − ω (z) by Liouville theorem is unique analytical at the
same neighbourhood of the origin; analogously using inequality |ln |z|| < |z|α

(α < 1) , we can show, that |F1 − ω| < 0 (|z|α), i.e. poles of function F1 (z)−ω (z)
at the point z = 0 are excluded.

Hence, it implies

F1 (z) = ω (z) + 0 (1) at z → 0 (1.50)

The behaviour of integral F2 (z) at z → 0 is more difficult, however for our
purposes it is enough the following estimation

F2 (z) = 0 (ω (z)) at z → 0 (1.51)
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Here 0 (ω (z))− is a quantity, infinitesmall with respect to ω (z) at small z.
Really, this estimation is on the base of the fact, that ln (− ln |x|) << − ln x at

x → 0.
On the base of (1.46), (1.49), (1.51) by formula (1.37) we find

z → 0+
χ (λ) = λ2 ln (λ) [1 + 0 (λ)] (1.52)

Calculation on a computer of integral (1.43) has given the following result

η =

⎡
⎣ +∞∫
−∞

λ−2K+ (λ) χ+ (λ) dλ

⎤
⎦
−1

= 2, 3604

The resultant expression for the coefficient K according to (1.28) and (1.43)
takes the following simple form (in dimensional variables).

K = η4
√

π
P0

π
√

a

[(
P∞
P0

)γ

− 1
]

(1.53)

On the base of the reasons explained in [2], ”gryphon” doesn’t develop, if the
inequality

P0

γ
√

a

[(
P∞
P0

)γ

− 1
]

<
Kc

4η
√

π
(1.54)

is fulfilled.
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Gryphon, developing along a casing of a drill site well.
At

P0

γ
√

a

[(
P∞
P0

)γ

− 1
]

>
Kc

4η
√

π
(1.54)

”Gryphon” non-stop develops, reducing finally to gas blowout.
(Kc is some constant system ”rock-gas”, defined in independent experiment).
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