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COMPLEXITY AND ENTROPY OFCOUNTABLE AMENABEL GROUPS ACTIONS
AbstractWe consider an ergodic measure-preserving action T of a countable amenabelgroup G on a standart probability space (X;M;�). To a individual trajectoryfTgxgg2G of some point x 2 X we put a correspondence a non-negative realnumber characterizing a degree (power) of complexity of a behaviour of thistrajectory which is called as a trajectorial complexity of the point and inves-tigate a connection of this notion with an entropy h(T ) of the action T withrelated to measure �. Our goal is to demonstrate what is known for actionsof Z that the trajectorial complexities of �-a.e. points of X coincide with theentropy of action T .

1.Introduction
There are a lot of notions (such as wandering and non-wandering, periodic andrecurrent and etc.) characterizing the variety of the behaviours of the individualtrajectories of the ergodic dynamical systems. And it's a natural interest to de-termine a quantity tool dividing the individual trajectories into "a simple" and "acomplex" parts related to the behaviours of these trajectories. It's also obvious thatthis notion must have a connection with an entropy which is considered as a measureof complexity and chaoticness of the dynamical system in whole.After introducing a notion of complexity of a �nite object, due to A.Kolmogo-rov [1] many authors tried to give the di�erent variants of this quantity characteris-tics. For instance, V.M.Alekseev introduced a notion of "quasi-random" dynamicalsystem [2], T.Kamae gave a de�nition of determinated trajectory and etc. In theabovementioned works a simple, determinated character of a behaviour of a trajec-tory was opposed to a complex, "quasi-random".Mathematically strict de�nition of this notion called as a trajectorial complexityfor an action of Z basing on the symbolic dynamics ideas from one hand and anotion of Kolmogorov complexity from other was given in works of A.Levin andA.A.Brudno [3, 4]. In [5] A.A.Brudno thoroughly investigated the connections ofthis notion with such notions of ergodic dynamical systems theory as an entropy, apartition into the ergodic sets and etc.In [6] A.T.Tagi-zade gave an approach for construction the complexity notion incase of non-abelian groups actions.The goal of this work is to lift a part of the results of A.A.Brudno and A.T.Tagi-zade to the actions of countable amenabel groups on a standart probability space, inparticular to show that for such actions the trajectorial complexities of a.e. pointscoincide with the entropy. In our proof we essentially rely on a description of ageometric structure of amenabel groups known as the Ornstein-Weiss quasi-tiling
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theorem [7]. Another reason why we chosed the countable amenabel groups actionsis the existence of the good analogue of the entropy theory, the Birkho� mean ergodicthorem and the Shannon-McMillan theorem of Z actions for them.In the next section we give the basic notions, denotions and results using in thework and introduce a trajectorial complexity for a countable amenabel group action.In section 3 we formulate and prove our main result.

2. De�nitions and the used results
We say G is a countable amenabel group if it possesses a left-invariant Folnersequence of sets z = fFng, i.e. a sequence of the embeded each other �nite setsfidg 2 F1 � F2 � ::: � Fn % G such that

limn!1 jgFn \ FnjjFnj = 1 for all g 2 G
where jCj is the cardinality of C.Here and further all de�nitions and statements depending on the left-invariantFolner sequences are also true for the right-invariant Folner sequences, i.e. �nite setsfidg 2 F1 � F2 � ::: � Fn % G such that

limn!1 jFng \ FnjjFnj = 1 for all g 2 G
A �nite list of sets H1 � ::: � Hk � G with id 2 H1 is said to "-quasi-tile a �niteset D � G if there exists "centers" Ci � G; i = 1; :::; k such that(i) the fHic : c 2 Cig are "-disjoint for i = 1; :::; k:(ii) the HiCi are disjoint for i = 1; :::; k:(iii) ����( k[i=1HiCi) \D���� > (1� ") � jDj :
Recall that a couple A;B is called "-disjoint, if there exist eA � A; eB � B suchthat eA \ eB = ; and ��� eA��� > (1� ") � jAj ; ��� eB��� > (1� ") � jBj :To say that a set H is su�ciently invariant means that for some (unspeci�ed)� > 0 and �nite K � G, H is (K; �)�invariant, i.e.��KK�1H \H�� > (1� �) � jHj
To say that a list of sets H1; :::Hk is su�ciently invariant to say that for some� > 0 and �nite set K � G, setting H0 = K, for each j 2 f1; :::; kg the set Hj is(Hj�1; �)-invariant.The existence of (K; �)�invariant sets for all � > 0 and �nite sets K is equivalentto the amenability of the countable group.We now present the Ornstein-Weiss quasi-tiling theorem [7].Theorem 1. Given " > 0; there exists l = l(")such that in any countableamenabel group G, if H1; :::Hl is any su�ciently invariant list of sets, then for any
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D � G that is su�ciently invariant (depending on the choice of H1; :::Hl), D canbe quasi-tiled by H1; :::Hl:Throughout the work (X;M;�) will denote a probability space. By a measurableaction T = fTggg2G of G on X we mean a mapping from G�X ! X such that(i) Tghx = Tg(Thx) for all g; h 2 G; x 2 X (an action)(ii) (Tg)�1B 2M for all B 2M (measurability).A measurable action is measure-preserving if for each g 2 G Tg : X ! X ismeasure-preserving, i.e. �((Tg)�1B) = �(B) for all B 2M .We say that an action is ergodic if the only sets B 2M that satisfy (Tg)�1B = Bhave a measure 0 or1.We now present the mean ergodic theorem for the actions of countable amenabelgroups [8].Theorem 2. For an ergodic measure-preserving action T = fTggg2G of count-able amenabel group G, a real-valued function f 2 L1(X), a left-invariant Folnersequence z = fFng and �-a.e. x 2 X

limn!1 1jFnjXg2Fnf(Tgx) =
Z
X f(x)d�

For a measure-preserving action T = fTggg2G of countable amenabel groupG, a left-invariant Folner sequence z = fFng and a �nite measurable partition� = fBi : i 2 Ig of X the entropy of action T we de�ne as
h(T ) = sup� h(T; �) def= sup� limn!1 1FnH( _g2FnTg�1(�))

where _g2FnTg�1(�) = f \g2FnTg�1Bi(g) 6= � : Bi(g) 2 �g and H(�) = �Pi2I�(Bi) �log�(Bi).Note that this limit exists and is independent of the choice of Folner sequence[8]. For a countable group G let
� = f! = f!(g) : g 2 Gg : !(g) 2 Ig

be a sequence space equipped with a product topology, where I is a �nite alphabet,� be an action of G on � with the right-shifts
(�g!)h = !hg for all g; h 2 G

For a �nite measurable partition � = fBi : i 2 Ig of X we set an one-to-onetransformation '� : X ! � as
'�(x) = f!(g) : g 2 Gg such that Tgx 2 B!(g) for all g 2 G

and consider the invariant (related to �) closed subset �� = '�(X) = f! 2 � :
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\g2G(Tg)�1B!(g) 6= �g of � equipped with �-algebra of the cylindrical sets C(!H) =
f!1 = f!1(g) : g 2 Gg : !1(g) = !(g) for all g 2 Hg, where !H = f!(g) : g 2 Hg isa �nite word from alphabet I.It's known, that a measure de�ned on the cylinders fC(!H) : ! 2 ��g as�(C(!H)) = �( \g2H(Tg)�1B!(g)) can be extended to a �-invariant probability mea-sure �� in the space ��.Now we present the Shannon-McMillan theorem [8].Theorem 3. For any " > 0 if H � G is su�ciently invariant then among thesetsf!H : ! 2 ��g is a collection � with(i) ��( [!H2�C(!H)) > 1� ";

(ii) j�j < 2(h(T;�)+"))�jHj;(iii) for any !H 2 �, ��(C(!H)) < 2�(h(T;�)�")�jHj.Now we begin to introduce a notion of trajectorial complexity for countableamenabel groups actions.Let A be an algorithm de�ned on some subset of a space of all �nite 0� 1 wordsand taking values in the set of all �nite words of �� and l(p) be an amount of signsin a 0�1 word p. Following the de�nition of the Kolmogorov asymptotic complexity[1] we de�ne the complexity KA(!H) of �nite word !H related to algorithm A as
KA(!H) = ( infp fl(p) : A(p) = !Hg, if fp : A(p) = !Hg 6= �1 , if otherwise

)
In [1] the existence of such algorithm B called as optimal that for any algorithmA there exists constant CAB with KB(!H) � KA(!H)+CAB for all !H was proved.De�nition 4. The quantity

KA(!) = sup
z

KzA (!) def= sup
z

limn!1 1jFnj �KA(!Fn)
where sup is taken over all left-invariant Folner sequences z = fFng in the countableamenabel group G, is called a complexity of sequence ! 2 �� is related to algorithmA. For two optimal algorithsms A and B taking into account the following inequality1jFnj � ��KA(!Fn)�KB(!Fn)�� � 1jFnj �max(CAB; CBA) for all !Fn
we get that the complexity of sequence doesn't depend on a choice of optimal algo-rithm. So further we will �x one optimal algorithm and the complexity of sequence! will denote as K(!) (and consequently Kz(!)).De�nition 5. For a �nite measurable partition � of X the quantity

K(x; T j �) = K('�(x))is called a trajectorial complexity of a point x 2 X is related to �.
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3. The main result

Here is the goal of our work:Theorem 6. For an ergodic measure-preserving action T of a countable amenabelgroup G on a probability space (X;M;�), any �nite measurable partition� = fBi : i 2 Ig of X and �-a.e. points x 2 X
K(x; T j �) = h(T; �)

To demonstrate Theorem 6 it's su�cient to get an analogous result on a symbolicsystem (��; �) with a measure ��, i.e. to proveTheorem 7. For ��-a.e. sequences ! 2 ��
K(!) = h(�)

Really, having in hands Theorem 7, taking into account the de�nitions of thetrajectorial complexity and the complexity of sequence and from the known resultabout the coincidence of entropies h(T; �) = h(�) [9] we get Theorem 6.The proof of Theorem 7. we carry out in two parts. At �rst we will proveLemma 8. For ��-a.e. sequences ! 2 ��
K(!) � h(�)

Proof. Using Theorem 1 we choose the special left-invariant Folner sequences inG. Fix a listing of its elements g1; g2; ::: = G, any " > 0; �1 > 0 and let K1 = fg1g.By Theorem 1 for this " there exists a positive integer l = l(") that a list of su�-ciently invariant for (K1; �1) sets H11 ; :::; H1l quasi-tile a �nite su�ciently invariantfor (H1l ; �1) set F1. Now let K2 = F1 [ fg2g and �2 = minf�1; 1F1 g. Analogously, alist of su�ciently invariant for (K2; �2) sets H21 ; :::; H2l quasi-tile a �nite su�cientlyinvariant for (H2l ; �2) set F2.With this procedure we construct the left-invariant Folner sequencesz = fFng1n=1;zm = fHnm)g1n=1;m = 1; :::l such that for each �x n the setsHn1 ; :::;Hnl ;Cn1 ; :::; Cnl ; Fn satisfy the conditions (i)-(iii) of the de�nition of quasi-tiling.Now we will construct an algorithm A de�ned on a special subset of all �nite0� 1 words in the form of p = p1:::pl+1, when the 0� 1 words pm;m = 1; 2; :::; l+ 1will be speci�ed below, and taking values in the set of �nite words f!Fn : ! 2 ��g.We �x the listings of elements gm1 ; :::; gmjCnmj = Cnm; m = 1; :::; l and an arbitrarysequence ! 2 ��.Let's denote by Am; m = 1; :::; l the algorithsms to all �nite 0� 1 words puttingthe correspondences accordingly the �nite words !Hn
m , i.e. such that Am(p) = !Hn

m ;m = 1; :::; l.The algorithm A we de�ne by the following way:For �x m 2 f1; :::; lg we write out the �nite word Am(p), act on it by the right-shift �qm1 which the �nite word !Hn
m transfers to �nite word !Hn

mqm1 . Then oncemore write out Am(p), act on it by �qm2 , erase the elements hit on the intersection
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with the set on which the previous con�guration was de�ned and unite the obtainedcon�gurations. Analogously act until jCnmj-th step. Continuing this algorithm forall m; m = 1; :::; l , we have got the �nite words !Hn

mCnm ;m = 1; :::; l. At last weunite these words (by the condition (ii) of quasi-tiling it can be done) and �ll in theempty places with arbitrary way.Let pm; m = 1; :::; l be the minimal 0 � 1 words corresponding accordingly tothe �nite words !Hn
mCnm ;m = 1; :::; l and pm+1 be a 0 � 1 word corresponding toa con�guration on the empty places. By (iii) of quasi-tiling the amount of emptyplaces doesn't exceed " � jFnj and so to each con�guration on the empty places wecan put a correspondence a 0 � 1 word with not more than �log(cardI)"�jFnj� + 1signs, where [�] is an integer part of �.From this de�nition of algorithm A we get that for any ! 2 �� can be found a0� 1 word p that A(p) = !Fn

with
KA(!Fn) � lX

m=1l(pm) +
hlog(cardI)"�jFnji+ 1

and so
Kz(!) � KzA (!) = limn!1 1jFnj �

lX
m=1l(pm) + " � log(cardI)

It remains to calculate the lengthes of 0 � 1 words pm; m = 1; :::; l. At �rstfor a �xed integer m 2 f1; :::; lg, an element g0 2 Hnm and a sequence ! 2 �� wewill �nd the minimal account of information necessary for restoration of �nite word!Hn
mCnmg0 . This word we write in the following form:

!Hn
mCnmg0 = !Hn

mqn1 g0 :::!Hn
mqnjCnmjg0

Let M be an account of all possible words of alphabet I with length jHnmj.Number them arbitrarily and let j-th of them meets among !Hn
mqni g0 ; i = 1; ::; jCnmjexactly sj time. It's obvious that

MX
j=1sj = jCnmj (1)

Denote by p(!Hn
mCnmg0) a natural logarithm of the account of words f!Hn

mCnmg01: !1 2 ��g having the same collection fsj : j = 1; :::;Mg that and so !Hn
mCnmg0 .From the known example of combinatorics

p(!Hn
mCnmg0) = ln jCnmj!s1! � ::: � sM !

Let NM(!Hn
mCnmg0) be a number of !Hn

mCnmg0 among all such !Hn
mCnmg01 .
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So a �nite word !Hn

mCnmg0 is restored synonymously by the collection of integersfjHnmj ; jCnmj ; s1; :::; sM ; NM(!Hn
mCnmg0)g and analogously

l(fpm) � l(jHnmj) + l(jCnmj) + MX
j=1l(sj) + l(NM(!Hn

mCnmg0))
where in the brackets at right side of inequality we understand 0 � 1 words cor-responding these integers by the natural way p  ! k; l(p) � [log k] + 1 andl(fpm) = K(!Hn

mCnmg0):By this correspondence and the obvious inequality
logNM(!Hn

mCnmg0) � p(!Hn
mCnmg0)

we have
l(fpm) � log(jHnmj � jCnmj) + MX

j=1l(sj) + p(!Hn
mCnmg0) + const

and taking into account (1) and HnmCnm � Fn we can write
limn!1 1Fn �

8<:log(jHnmj � jCnmj) + MX
j=1l(sj) + p(!Hn

mCnmg0) + const
9=; = 0

Using the Stirling formula
n! = p2�n�ne�n (1 + o(1))

we obtain
p(!Hn

mCnmg0) � � jCnmj � MXj=1
sjjCnmj log sjjCnmjLet's denote by �Hn

m = �C(!Hn
m : ! 2 ��	�nite measurable partition of �� into all possible cylindrical sets on the place Hnm.Since the number of such cylinders is equal to M the elements of this partition wenumber in the same order as we did earlier with the con�gurations of length jHnmj:

�Hn
m = fB1; :::; BMg

We take any Bj 2 �Hn
m and consider the shift ��1g0q; q 2 Cnm. ThenX

q2Cnm�Bj (��1g0q!)(where �B is the characteristic function of B) will mean the number of �nite wordsamong !Hn
mqSg0 ; s = 1; :::; jCnmj which belong to Bj or otherwords is equal to sj , i.e.

sj = X
q2Cnm�Bj (��1g0q!)
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Summing up this equality on g0 2 Hnm we have

sjjCnmj = 1jHnmj � 1jCnmj �
X

g02Hn
m

X
q2Cnm�Bj (��1g0q!)

By (i) of quasi-tiling there exists the set gHnm � Hnm with ���gHnm��� > (1 � ") � jHnmjsuch that the sets ngHnmc : c 2 Cnmoare disjoint and so
sjjCnmj = 1jHnmj � 1jCnmj �

X
g02gHn

m

X
q2Cnm�Bj (��1g0q!)+1jHnmj � 1jCnmj �

X
g02Hn

mngHn
m

X
q2Cnm�Bj (��1g0q!) =

jHnmCnmjjHnmj � jCnmj � 1jHnmCnmj
X

h2Hn
mCnm�Bj (��1h !)+

1jHnmj � 1jCnmj �
8<: X
g02Hn

mngHn
m

X
q2Cnm�Bj (��1g0q!)�

X
h2Hn

mngHn
mCnm

9=;�Bj (��1h !) (2)
For the left-invariant Folner sequence fHnmCnmg1n=1 by virtue of Theorem 2 wehave that for ��-a.e. sequences ! 2 ��

limn!1 1jHnmCnmj �
X

h2Hn
mCnm�Bj (��1h !) = �� (Bj)

Also using the equivalent equalities
limn!1 jHnmCnmjjHnmj � jCnmj = 1 and limn!1

���HnmngHnm���jHnmj = 0
(because otherwise it contradicts to the arbitrarity and not depending on n of " inthe quasi-tiling theorem) and taking into consideration that the maximal value ofsecond addendum in (2) is equal to jHn

mngHn
mj�(jCnmj�1)jHn
mj�jCnmj we have

limn!1 sjjCnmj = �� (Bj)
and so

limn!1 1jHnmj �
8<:� jCnmj � MXj=1

sjjCnmj log sjjCnmj
9=; = h(�)

Note that here we take into account that fHnmCnmg1n=1 is the left-invariant Folnersequence, � = n� 1id�; :::; � Iid�o is the generating partition of �� and so h(�) = h(�; �):
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(Recall that the �nite measurable partition � is the generating if diam�Fn !n!1 0for any Folner sequence fFng).Thus we found the estimation of l(fpm)

l(fpm) � jHnmj � jCnmj � (h(�) + n) +fn
where n and fn converge to zero as n!1, i.e. the minimal account of informationnecessary for restoration of �nite word !Hn

mCnmg0 doesn't exceed the quantity jHnmj �jCnmj � (h(�) + n) +fn.As !Hn
mCnm = �g�10 !Hn

mCnmg0
then the analogous result is also true for the �nite word !Hn

mCnm . Really, if wede�ne an algorithm B by the following way:1. Write out the �nite word !Hn
mCnmg02. Act on it by the shift �g�10then we have KB(!Hn

mCnm) � l(fpm)which give us l(pm) � l(fpm) � jHnmj � jCnmj � (h(�) + n) +fnSince this equality is true for all m; m = 1; :::; l we have at last
Kz(!) � limn!1 1jFnj �

lX
m=1 fjHnmj � jCnmj � (h(�) + n) +fng+ " � log(cardI)

and using (iii) of quasi-tiling
Kz(!) � h(�) + " � log(cardI)

Taking into account the arbitrarity of " and independence of the right-side on zwe have that for ��-a.e. sequences ! 2 ��
K(!) � h(�)

Our last step is to prove an opposite inequality.Lemma 9. For ��-a.e. sequences ! 2 ��
h(�) � K(!)

Proof It will be carried out by contrarity method. Suppose that the setQ = f! 2 �� : K(!) < h(�)g has a positive measure. The set is a measurable andinvariant. Measurability of Q is obvious from the decomposition
Q = 1[k=1 1[N=1 \n>N

�! 2 �� : K(!Fn) < (h(�)� 1k ) � jFnj
�



184 [A.T.Tagi-zade, A.S.Fayziev] Transactions of NAS of Azerbaijan
where fFng1n=1 is an arbitrary left-invariant Folner sequence, taking into accountthat for �x k and n the set in brackets is the union of �nite number of cylindricalsets.Now, we prove the invariantness of Q. In reality, we prove the stronger resultthat is the complexities of sequences lying on the same trajectory coincide. In otherwords, if !1 = �g!2 for any g 2 G, then K(!1) = K(!2). For this purpose, we�x the sequences !1; !2 2 ��, the element g 2 G satisfying the above corrolationand the right-invariant Folner sequence z = fFng1n=1. We will prove at �rst theinequality K(!1) � K(!2): Let A be an optimal algorithm for which there is a 0�1word p with A(p) = !Fn[Fng�12We de�ne an algorithm A1 = A1(p) taking values in the set n!Fn1 : ! 2 ��o by thefollowing rule:1. Write out the �nite word A(p)2. Act on it by the shift �g3. Finally, the algorithm A1 erases the elements going out of its value set.So writing out the �nite word A(p), executing consequently the steps 2 and 3,taking into account !1 = �g!2 we get A1(p) = !Fn1 . Hence we have

KA1(!Fn1 ) � KA(!Fn[Fng�12 )
Therefore
Kz(!1) � KzA1(!1) = limn!1 jFnj�1 �KA1(!Fn1 ) � limn!1 jFnj�1 �KA(!Fn[Fng�12 ) =
limn!1 jFnj�1 � ��Fn [ Fng�1�� � ��Fn [ Fng�1���1 �KA(!Fn[Fng�12 ) = Kz1(!2) � K(!2)

where z1 = �Fn [ Fng�1	 is also the right-invariant Folner sequence by virtue ofde�nition of z.In view of arbitrarity of choosing z
K(!1) � K(!2)

The opposite inequality is proved analogously. Thus the invariantness of Q isproved.By force of measurabiliy and invariantness of Q and ergodicity of the measure �we get �(Q) = 1. For the following decomposition
Q = [r2Z+ 1[k=1Qr;k def= [r [k

�! 2 �� : K(!Fn) < (h(�)� 1r ) � jFnj for all n > k�
exist such R and K that for k > K we have

��(QR;k) > 1� � (� > 0 is arbitrary)
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Let " < min� 1R ; 1� �	, the numberN = N("), the collection � = �!Fk : ! 2 ��	(k > N(")) satisfy the Shannon-McMillan theorem. Put

Q�R;k = QR;k \ � and Q��n�R;k = QR;k \ (��n�)
As Q��n�R;k � ��n� then for all k > max fK;N(")g

��(Q��n�R;k ) � ��(��n�) < "
and ��(Q�R;k) = ��(QR;k)� ��(Q��n�R;k ) > 1� � � " > 0 (3)On the other hand, if !Fk 2 Q�R;k then

K(!Fk) � jFkj � (h(�)� 1R )
hence cardn!Fk 2 �Fk� : !Fk 2 Q�R;ko � 2jFkj�(h(�)� 1

R )+1
Moreover, if !Fk 2 Q�R;k, then !Fk 2 � and by force of latter inequality

��(Q�R;k) � 2jFkj�(h(�)� 1
R )+1 � 2�jFkj�(h(�)�") = 2jFkj�("� 1

R )+1
Consequently, limk!1��(Q�R;k) = 0

that contradicts (3).The obtained contradiction completes the lemma 3.4.Remark 10. The aboveused method gives an opportunity to obtain analogousresults in case of local-compact unimodular amenabel groups actions.
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