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COMPLEXITY AND ENTROPY OF
COUNTABLE AMENABEL GROUPS ACTIONS

Abstract

We consider an ergodic measure-preserving action 7" of a countable amenabel
group G on a standart probability space (X, M, u). To a individual trajectory
{T,x}gcc of some point z € X we put a correspondence a non-negative real
number characterizing a degree (power) of complexity of a behaviour of this
trajectory which is called as a trajectorial complexity of the point and inves-
tigate a connection of this notion with an entropy h(7T') of the action 7' with
related to measure pu. Our goal is to demonstrate what is known for actions
of Z that the trajectorial complexities of u-a.e. points of X coincide with the
entropy of action 7'.

1.Introduction

There are a lot of notions (such as wandering and non-wandering, periodic and
recurrent and etc.) characterizing the variety of the behaviours of the individual
trajectories of the ergodic dynamical systems. And it’s a natural interest to de-
termine a quantity tool dividing the individual trajectories into ”a simple” and ”a
complex” parts related to the behaviours of these trajectories. It’s also obvious that
this notion must have a connection with an entropy which is considered as a measure
of complexity and chaoticness of the dynamical system in whole.

After introducing a notion of complexity of a finite object, due to A.Kolmogo-
rov [1] many authors tried to give the different variants of this quantity characteris-
tics. For instance, V.M.Alekseev introduced a notion of ” quasi-random” dynamical
system [2], T.Kamae gave a definition of determinated trajectory and etc. In the
abovementioned works a simple, determinated character of a behaviour of a trajec-
tory was opposed to a complex, ”quasi-random”.

Mathematically strict definition of this notion called as a trajectorial complexity
for an action of Z basing on the symbolic dynamics ideas from one hand and a
notion of Kolmogorov complexity from other was given in works of A.Levin and
A.ABrudno [3, 4]. In [5] A.A.Brudno thoroughly investigated the connections of
this notion with such notions of ergodic dynamical systems theory as an entropy, a
partition into the ergodic sets and etc.

In [6] A.T.Tagi-zade gave an approach for construction the complexity notion in
case of non-abelian groups actions.

The goal of this work is to lift a part of the results of A.A.Brudno and A.T.Tagi-
zade to the actions of countable amenabel groups on a standart probability space, in
particular to show that for such actions the trajectorial complexities of a.e. points
coincide with the entropy. In our proof we essentially rely on a description of a
geometric structure of amenabel groups known as the Ornstein-Weiss quasi-tiling
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theorem [7]. Another reason why we chosed the countable amenabel groups actions
is the existence of the good analogue of the entropy theory, the Birkhoff mean ergodic
thorem and the Shannon-McMillan theorem of Z actions for them.

In the next section we give the basic notions, denotions and results using in the
work and introduce a trajectorial complexity for a countable amenabel group action.
In section 3 we formulate and prove our main result.

2. Definitions and the used results

We say G is a countable amenabel group if it possesses a left-invariant Folner
sequence of sets f = {F,}, i.e. a sequence of the embeded each other finite sets
{id} € Fy C F» C ... C F,, /' G such that

. |9Fn N Fn|
lim ——————

=1 forall ge G

where |C| is the cardinality of C.
Here and further all definitions and statements depending on the left-invariant
Folner sequences are also true for the right-invariant Folner sequences, i.e. finite sets

{id} € Fy C F» C ... C F,, /' G such that
lim |F ng N F, n|

=1 forall ge G

A finite list of sets Hy C ... C H; C G with id € H; is said to e-quasi-tile a finite
set D C G if there exists ”"centers” C; C G, ¢ =1, ..., k such that
(i) the {H;c: c € C;} are e-disjoint for i =1, ..., k.
(ii) the H;C; are disjoint for i = 1,..., k.
k
(iii) ‘(UlHiCi) N D‘ >(1—-¢)-|D|.
1=
Recall that a couple A, B is called e-disjoint, if there exist Ac A, B C B such
that AN B = 0 and ‘A‘ >(1-¢)- |4, B‘ >(1—-¢)-|B|.

To say that a set H is sufficiently invariant means that for some (unspecified)
d > 0 and finite K C G, H is (K, §)—invariant, i.e.

KK 'HNH| > (1-6)|H]|

To say that a list of sets Hi,...Hy is sufficiently invariant to say that for some
d > 0 and finite set K C G, setting Hy = K, for each j € {1,...,k} the set H; is
(Hj—1,0)-invariant.

The existence of (K, §)—invariant sets for all 6 > 0 and finite sets K is equivalent
to the amenability of the countable group.

We now present the Ornstein-Weiss quasi-tiling theorem [7].

Theorem 1. Given € > 0, there exists | = l(g)such that in any countable
amenabel group G, if Hy,...H; is any sufficiently invariant list of sets, then for any
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D C G that is sufficiently invariant (depending on the choice of Hy,...H;), D can
be quasi-tiled by Hy,...H;.

Throughout the work (X, M, 1) will denote a probability space. By a measurable
action T = {Ty}4cq of G on X we mean a mapping from G x X — X such that

(i) Tynx =Ty(Thx) for all g,h € G,z € X (an action)

(ii) (T,)"'B € M for all B € M (measurability).

A measurable action is measure-preserving if for each g € G T, : X — X is
measure-preserving, i.e. u((Ty) 'B) = u(B) for all B € M.

We say that an action is ergodic if the only sets B € M that satisfy (Tg)*lB =B
have a measure 0 orl.

We now present the mean ergodic theorem for the actions of countable amenabel
groups [8].

Theorem 2. For an ergodic measure-preserving action T = {Ty}geq of count-
able amenabel group G, a real-valued function f € Li(X), a left-invariant Folner

sequence = {F,} and p-a.e. x € X

geF, X
For a measure-preserving action 7' = {T,}4c of countable amenabel group
G, a left-invariant Folner sequence F = {F,} and a finite measurable partition

B ={B;:i€ 1} of X the entropy of action T' we define as

_ def .1
hT) = Sl;ph(T, B) = S;pnhi%o 7 (% T (B)
where gé’nTg_l(ﬁ) = {g&nTg—1Bi(g) # O Bi(g) € B} and H(B) = —iEEI,U(Bi) .
log p(B;).

Note that this limit exists and is independent of the choice of Folner sequence

[8].

For a countable group G let

A={w={wl(g): g € G}:w(g) €I}

be a sequence space equipped with a product topology, where I is a finite alphabet,
o be an action of G on A with the right-shifts

(ogw)p = wpy forall g,h € G

For a finite measurable partition § = {B; : 1 € I} of X we set an one-to-one
transformation g : X — A as

¢g(r) ={w(g) : g € G} such that Tyz € B, for all g € G

and consider the invariant (related to o) closed subset Ag = p3(X) = {w € A :
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ﬂG(Tg)*le(g) # @} of A equipped with o-algebra of the cylindrical sets C(wf) =
g€

{w1 = {wi(g) : g € G} : wi(g9) = w(g) for all g € H}, where wf = {w(g) : g € H} is
a finite word from alphabet I.

It’s known, that a measure defined on the cylinders {C(w) : w € Ag} as
v(C(wf)) = pu( QH(Tg)*le(g)) can be extended to a o-invariant probability mea-
sure 15 in the sgpace Ag.

Now we present the Shannon-McMillan theorem [8].

Theorem 3. For any € > 0 if H C G is sufficiently invariant then among the
sets

{w# 1w € Ag} is a collection T with

- H :

(i) ns( Y C@h)>1-

(i) |T| < 2(h(T5)+e)) | H].

(iii) for any w €T, uﬁ(C(wH)) < 2~ (M(T\B)—e)-|H]

Now we begin to introduce a notion of trajectorial complexity for countable
amenabel groups actions.

Let A be an algorithm defined on some subset of a space of all finite 0 — 1 words
and taking values in the set of all finite words of Ag and [(p) be an amount of signs
in a 0—1 word p. Following the definition of the Kolmogorov asymptotic complexity
[1] we define the complexity K 4(w') of finite word w’ related to algorithm A as

inf{l(p) : A(p) = w7}, if {p: A(p) ="
KA(wH) - { ' o{o(p) Y / if{ither(\i)ise e }

In [1] the existence of such algorithm B called as optimal that for any algorithm
A there exists constant Cap with Kp(w") < K4(w")+ Cap for all wf was proved.
Definition 4. The quantity

def T
K 4(w) = supKf (w) = sup lim
( ) F A( ) F TL~>00|F”|

. KA(WF”)

where sup is taken over all left-invariant Folner sequences F = {Fy,} in the countable
amenabel group G, is called a complexity of sequence w € Ag is related to algorithm
A.

For two optimal algorithsms A and B taking into account the following inequality

1 1
- | K 4 wi™) — Kp(w!)| <
| P ‘ ( ) a( )‘ | P

-max(Cap, Cpa) for all wi™

we get that the complexity of sequence doesn’t depend on a choice of optimal algo-
rithm. So further we will fix one optimal algorithm and the complexity of sequence
w will denote as K (w) (and consequently K/ (w)).

Definition 5. For a finite measurable partition 8 of X the quantity

K(z,T | B) = K(pg(x))

is called a trajectorial complexity of a point x € X is related to 3.
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3. The main result

Here is the goal of our work:

Theorem 6. For an ergodic measure-preserving action T of a countable amenabel
group G on a probability space (X,M,pn), any finite measurable partition
B=A{B;:i €I} of X and p-a.e. points v € X

K(z,T | B) = h(T, B)

To demonstrate Theorem 6 it’s sufficient to get an analogous result on a symbolic
system (Ag, o) with a measure j4, i.e. to prove
Theorem 7. For jg-a.e. sequences w € Ag

Really, having in hands Theorem 7, taking into account the definitions of the
trajectorial complexity and the complexity of sequence and from the known result
about the coincidence of entropies h(T, 3) = h(o) [9] we get Theorem 6.

The proof of Theorem 7. we carry out in two parts. At first we will prove

Lemma 8. For pg-a.e. sequences w € Ag

K(w) < h(o)

Proof. Using Theorem 1 we choose the special left-invariant Folner sequences in
G. Fix a listing of its elements gi, g2,... = G, any € > 0,6, > 0 and let K; = {g;}.
By Theorem 1 for this e there exists a positive integer | = [(g) that a list of suffi-
ciently invariant for (Ky,61) sets H{, ..., H} quasi-tile a finite sufficiently invariant
for (Hll,él) set F1. Now let K9 = F1 U {g2} and 2 = min{dy; F%} Analogously, a
list of sufficiently invariant for (K»,d2) sets H7, ..., H quasi-tile a finite sufficiently
invariant for (H?,d2) set Fy.

With this procedure we construct the left-invariant Folner sequences
F={F.};2, Fm={H})}52, m = 1,...l such that for each fix n the sets H, ..., H],
Ct,...,Cp, F,, satisfy the conditions (4)-(7ii) of the definition of quasi-tiling.

Now we will construct an algorithm A defined on a special subset of all finite
0 — 1 words in the form of p = p;...p;1, when the 0 — 1 words p,,m =1,2,...,1+1
will be specified below, and taking values in the set of finite words {w!™ : w € Ag}.

We fix the listings of elements g7, ...,g‘"(}gn‘ =Cl',m =1,..,1 and an arbitrary
sequence w € Ag.

Let’s denote by A,,, m = 1,...,1 the algorithsms to all finite 0 — 1 words putting
the correspondences accordingly the finite words w'm, i.e. such that A,,(p) = w'm,
m=1,...,1.

The algorithm A we define by the following way:

For fix m € {1, ...,1} we write out the finite word A,,(p), act on it by the right-
shift ogm which the finite word wlm transfers to finite word w®m%". Then once

more write out A,,(p), act on it by ogp, erase the elements hit on the intersection
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with the set on which the previous configuration was defined and unite the obtained
configurations. Analogously act until |C7|-th step. Continuing this algorithm for
HyCm om = 1,...,1. At last we

unite these words (by the condition (7i) of quasi-tiling it can be done) and fill in the

all m, m = 1,...,1 , we have got the finite words w

empty places with arbitrary way.
Let pm, m = 1,...,] be the minimal 0 — 1 words corresponding accordingly to

the finite words wH C

m.m = 1,...,] and ppy1 be a 0 — 1 word corresponding to
a configuration on the empty places. By (i) of quasi-tiling the amount of empty
places doesn’t exceed € - |Fy,| and so to each configuration on the empty places we
can put a correspondence a 0 — 1 word with not more than [log(cardf )ElE ”‘] +1
signs, where [« is an integer part of a.

From this definition of algorithm A we get that for any w € Ag can be found a
0 —1 word p that
Alp) = w™

with
{

Ka(w™) < Zl(pm) + [log(cardI)g"F"q +1

and so

— 1
KM (w) < Kl (w) = lim —— Zl (pm) + € - log(cardl)

It remains to calculate the lengthes of 0 — 1 words p,,, m = 1,....1. At first
for a fixed integer m € {1,...,{}, an element gy € H;, and a sequence w € Ag we
will find the minimal account of information necessary for restoration of finite word

wlmCno, This word we write in the following form:

oHmChgo — L Hhavgo  Hmdep 90

Let M be an account of all possible words of alphabet I with length |H}|.
Number them arbitrarily and let j-th of them meets among wfm®' 9% =1, |C"|
exactly s; time. It’s obvious that

ZS; |Crn] (1)

Denote by p(wm®m9) a natural logarithm of the account of words {wH mCm9o

: w1 € Ag} having the same collection {s; : j = 1,..., M} that and so wfmCm90
From the known example of combinatorics
Hi’ncﬂlgo)

=1In

cnl
p(w o ,

sl -sp!

Let NM (wHm®m90) be a number of wfm©m9 among all such w; Hrn o,



Transactions of NAS of Azerbaijan 181
[Compl. & entr. of count. amen. groups actions]

So a finite word wfm©m90 is restored synonymously by the collection of integers
{|HZ|,|CR| 81, ey S, NM (wHmOm90) ) and analogously

M
Upm) < UIHRD) + LD + Y 1) + (VM (@™ Cno0))
j=1
where in the brackets at right side of inequality we understand 0 — 1 words cor-
responding these integers by the natural way p <— k, I(p) < [logk] + 1 and
1(pm) = K (wTnCmoo).
By this correspondence and the obvious inequality

log N M (wmm90) < p(wHmCmso)
we have

M
lpm) < log(|Hy| - |Cpl) + Z (s5) —i—p(ngngbgO) + const
j=1

and taking into account (1) and H» C" C F, we can write

M
. 1 HTLC'IL
R, loguH%-|c;a|)+zll<sj)+p<w #ORI) 4 const b =0
]:
Using the Stirling formula
n\n
n! = v2mn (—) (1+0(1))

e

we obtain

M
H CT g0 n 54 83
plwmtmd%) < —|Cp |- log
N ke
Let’s denote by
ﬁH” — {C(wH'f?t TwE Aﬁ}

finite measurable partition of Ag into all possible cylindrical sets on the place HJ),.
Since the number of such cylinders is equal to M the elements of this partition we
number in the same order as we did earlier with the configurations of length |H" |:

BH?H = {Bla ) BM}
We take any B; € BHm and consider the shift Ty q, g € C}.. Then
Z XB goq
qeCn,

(where xp is the characteristic function of B) will mean the number of finite words
among wimis90 s =1 ... |C?| which belong to B; or otherwords is equal to s;, i.e.

Z XB goq

gecn,
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Summing up this equality on g9 € H,, we have

|é{1| |H'n : Z ZXB goq

go€H qeCT,

> (1—e¢)-[Hy

By (i) of quasi-tiling there exists the set H7, C H with ‘EI\T_T};
such that the sets {f[ﬁc ic€E C;,Q}are disjoint and so

|éi| = |Hn |Cn Z Z XB; goq

OEHTL qecn

1 1
|Hn||Cn| Z ZXB goq

" ™ goeHR\HE €0
|Hn Cn| 1 o
|H» |- |Cn| |H»Cn | Z XB; (Uh w)+
™\ heHr CR,

|Hl”| . |C}”| ' Z Z X B; goq Z XB; (Uﬁlw) (2)

go€ Hp, \Hy, 9€CT, heHn \Hr Cn

For the left-invariant Folner sequence {H[ C}> | by virtue of Theorem 2 we

have that for pg-a.e. sequences w € Ag

1 -1
o 2 X () = hs (B)

Also using the equivalent equalities

HC?

lim HmCnl =1and lim
n—oo|HE | - [CR| n—00 | |

(because otherwise it contradicts to the arbitrarity and not depending on n of € in

the quasi-tiling theorem) and taking into consideration that the maximal value of
|\ |-(1Ch = 1)

second addendum in (2) is equal to LApeA we have
s ‘
Jim o] = M (B;)
and so
lim 1 _|C"|.§[:Sjlogsj = h(o)
AT WP e Rl Te

Note that here we take into account that { H],C%} 7, is the left-invariant Folner
sequence, 3 = {[lld] ey [zld]} is the generating partition of Az and so h(c) = h(o, 3).
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(Recall that the finite measurable partition 3 is the generating if diamfB™ — 0

n—od
for any Folner sequence {F},}).

Thus we found the estimation of [(p,,)

Wpm) < [Hp| - |Cp] - (h(0) +73) + 70

where 7y,, and 7, converge to zero as n — oo, i.e. the minimal account of information

HC

necessary for restoration of finite word w*m“m9% doesn’t exceed the quantity |H}| -

|C] - (h() +75) + Vo
As
HmC H C™ go

m=0 1w ™
90

then the analogous result is also true for the finite word wHm®m. Really, if we

define an algorithm B by the following way:
1. Write out the finite word wmCm9o
2. Act on it by the shift T4t
then we have

which give us
Hpm) < Upm) < [Hp| - [Cl - (h(0) +70) + 75

Since this equality is true for all m, m = 1,...,] we have at last

Z{IH" Gl - ((9) + ) + Y} + € - log(cardl)

and using (7ii) of quasi-tiling
K" (w) < h(o) + € - log(cardI)

Taking into account the arbitrarity of ¢ and independence of the right-side on F
we have that for pz-a.e. sequences w € Ag

K(w) < h(o)

Our last step is to prove an opposite inequality.
Lemma 9. For pg-a.e. sequences w € Ag

ho) < K(w)

Proof It will be carried out by contrarity method. Suppose that the set
Q ={weAs: K(w) <h(o)} has a positive measure. The set is a measurable and
invariant. Measurability of @) is obvious from the decomposition

Q= U0 n {wEAﬁ:K(an)<(h(a)—llg)-|Fn|}

k=1 N=1n>N
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where {F,}>° | is an arbitrary left-invariant Folner sequence, taking into account
that for fix £ and n the set in brackets is the union of finite number of cylindrical
sets.

Now, we prove the invariantness of (). In reality, we prove the stronger result
that is the complexities of sequences lying on the same trajectory coincide. In other
words, if wy = ogwy for any g € G, then K(wi) = K(wy). For this purpose, we
fix the sequences wi,w2 € Ag, the element g € G satisfying the above corrolation
and the right-invariant Folner sequence F = {F,} °,. We will prove at first the
inequality K(w;) < K(w2). Let A be an optimal algorithm for which there is a 0—1
word p with

A(p) = wpn "o

We define an algorithm A; = A;(p) taking values in the set {wf” twE Ag} by the
following rule:

1. Write out the finite word A(p)

2. Act on it by the shift o,

3. Finally, the algorithm A; erases the elements going out of its value set.

So writing out the finite word A(p), executing consequently the steps 2 and 3,

taking into account wi = ogwe we get A;(p) = wf". Hence we have
F, FoUF, g !
Ka, (w™) < Ka(wy I )

Therefore

T — T — -1
Kf(w1) < K (1) = Tim |Fo| ™ Ky, (@17) < Tim [l Ka(wp™ 20 ) =

-1

_ _ _ _ -1
lim |Fy| ' [FyUFg | |FaUFg | Ka(wy™ ™) = KM (w) < K(wo)

n—oo

where f| = {Fn U an_l} is also the right-invariant Folner sequence by virtue of
definition of f.
In view of arbitrarity of choosing F

K(wl) S K((.UQ)

The opposite inequality is proved analogously. Thus the invariantness of @ is
proved.

By force of measurabiliy and invariantness of () and ergodicity of the measure p
we get 11(Q) = 1. For the following decomposition

_ > def K (P 1
Q_re%Jrkngr’k = LTJLkJ{wEA/g.K(w ) < (h(o) r) | Fn | foralln>k}

exist such R and K that for & > K we have

pg(Qrr) >1—36 (6 >0 is arbitrary)
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Lete < min{%, 1— (5}, the number N = N (¢), the collection ' = {ka we€ Aﬂ}
(k > N (e)) satisfy the Shannon-McMillan theorem. Put

A
Qrx = Qrk NT and QR?k\ = Qra N (A\D)

As Qg‘jk\r C Ag\T" then for all & > max {K; N(e)}

Ag\T

Q") < ua(Ap\D) < e

and
Ag\T
Mﬂ(le:z,k):Mﬁ(QR,k)—Mﬁ( R?k\ )>1—60—e>0 (3)
On the other hand, if w’* € Ql;%?k then

Fy 1

K(W™) < [Fyl - (h(0) = )

hence
card {wF’“ € Ag’“ s Wl e Ql;ik} < 2lFul-(h(o)=7)+1

Moreover, if w!* € Q%’k, then w!™ € T and by force of latter inequality
“ﬂ(Q%k) < olFk|-(Mo)=5)+1 . g=|Fi|-(h(0)—e) _ 9lFil-(e—F)+1

Counsequently,
Jim 1s(Qri) =0
—00

that contradicts (3).

The obtained contradiction completes the lemma 3.4.

Remark 10. The aboveused method gives an opportunity to obtain analogous
results in case of local-compact unimodular amenabel groups actions.
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