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Niyazi A. ILYASOV

TO THE M.RIESZ THEOREM ON ABSOLUTE
CONVERGENCE OF THE TRIGONOMETRIC
FOURIER SERIES (THE SECOND REPORT)

Abstract

This paper is a continuation of the author’s investigations in the same name
paper on the extension of the known M.Riesz criterion for absolute convergence
of trigonometric Fourier series of continuous functions for values p # 2. The
case of functions f € L,(T), g € Ly(T) generating the convolution h = fxg
are considered, where 1 < p,q < 2. The exact upper estimate of " norm of se-
quence of Fourier coefficients of the convolution by product of norms || f||,-[lgll,,
where ' = pq/ (2pg — p — q) € [1,00), as well as the upper estimate of residual
series generating above mentioned " norm by product of the best (in metrics
L,(T) and Ly(T), respectively) approzimations E,_1(f), - En_1(9)g, n € N, of
these functions are obtained, and its exactness in the sence of the order in the

scale of power majorants was proved.

Let Ly(T), 1 < p < oo, be the space of all measurable 27-periodic func-
tions f : B — C with the finite norm | f[|, = ((1/2m)7 Y [ ]f ()P d:z:)l/p < 00,
C(T) = Lx(T) be the space of all continuous 27 periodic functions,
| flloe = max{|f(z)|; = € T}, where T = [—nm,w|. For a function f € L(T)

with the Fourier-Lebesque series

fl@)~)  enlf)e™, zeT, (1)

put o(F) = (Siicalen(N) 7 7 € 0.00), m € 2.

It is obvious that if ,087) (f) < oo then p((ﬂ) (f) 4 0(n 1 o0); besides, it is clear
that the condition pél) (f) < oo provides absolute and uniform convergence of series
(1) everywhere on T', moreover || f(-) — Sn(f; )|, < p%l)(f;ac), where Sy, (f;z) are
partial sums of series (1) of order n € Z, : S,(f;z) = ZTIL/\:O co(f)e®. Tt is
also obvious that the absolute convergence of series (1) everywhere on T implies

s (f) < oo.

The convolution h = f*g of the functions f € L1(T') and g € L1(T) is defined by
the formula h(z) = (f*g) (z) = (1/27) [ f(z—y)g(y)dy. Tt is known (see f.e. [1], v.1,
T

§ 2.1, pp. 64-65, [2], v.1, § 3.1, pp. 65-66) that the function h is determined almost
everywhere, 2m periodic, measurable and ||h||; < || f]|; - llgll;, hence, in particular, it
follows that h = f x g € L1(T). The last statement is a special case of the following

result known under the name of W.Young inequality (see f.e. [1], v.1, theorem (1.15),
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pp.67-68; [2], v.2, theorem 13.6.1, pp.176-177; [2], v.1, theorem 3.1.4, p.70, theorem
3.1.6, p.72):

Theorem A. Let 1 <p, ¢ < oo, 1/r=1/p+1/q—1>0,f € L,(T), g € Ly(T),
h = fxg; then h € Ly(T) and ||h||, < ||fll,-lgll,- When 1/p+1/q=1, i.e. g=p"is
an exponent conjugate to p (p' =1 for p=o0 and p' = 0o for p=1), the function

h is determined everywhere, continuous and ||h||,, < [|fll, - [lgll,-

We also note that the Fourier coefficients ¢, (h) of the convolution h = f * g of
two functions f € Li(T) and g € Li(T') are calculated by the formula (see [1], v.1,
theorem (1.5), p. 64; [2], v.1, p.66, formula (3.1.5))

cn(h):Cn(f*g):cn(f)'cn(g)vneza (2)

such that

h(z) ~ > cn(f) - enlg)e™®, z € T. (3)

Denote by AO)(T) the class of all functions f € L;(T) for which p((ﬂ)(f) <
00 (A(l)(T) = A(T)). By virtue of M.Riesz criterion on absolute convergence of
trigonometric Fourier series of continuous functions (see [4], §9.7, pp. 634-635; [1],
v.1, ch.6, theorem 6 on p. 399; [5], §2.2, p.17; [2], v.1, §10.6.2, remark (4) on p.208)
the convolution h = f * g of any two functions f € Lo(T) and g € Lo(T') belongs the
class A(T). In the case 1 < p < 2 the correspondity statement does not hold, more
exactly, for any p € [1,2) there exist functions fo(-;p), go(-;p) € Lp(T), such that
their convolution hg = fo % go ¢ A(T') (see for example, [5], Example 1 (case p = 1)
and Example 2 (case 1 < p < 2)).

In the paper [6] (theorem 4 A on p. 53) the following was proved.

Theorem B. If functions f € Ly(T), g € Ly(T) for some p € (1,2], then their
convolution h = fxg e AP/ (T), where p' =p/ (p—1).

In this paper [6] (p.53, theorem 5) it was proved that the statement of Theorem
B is exact, namely, for each p € (1,2] there exist the functions fo(-;p) € Ly(T),
go(+;p) € Ly(T), such that their convolution hg = fo * go ¢ A (T) for any number
v < p'/2, i.e. we cannot decrease the exponent p'/2 > 1 in the statement of Theorem
B (see f.e. Example 3 in [5]). Consequently, since p'/2 > 1 at 1 < p < 2 then a
fortiory ho = fo * go ¢ A(T) in the case p € (1,2) (see Example 2 in [5]).

Theorem 1. Let 1 <p <2, 1<q<2,fe€L,T), g€ LyT), h=7Ffxg,
r=pq/(p+qa—pq), v = pq/ (2pq—p—q) = p'q/ (' +4q), where r € (1,00],
r+1/r=1/p+1/p' =1/q+1/q = 1; then

1) h € Ly(T) in the case r < 0o (ie. if 1 <p<2, 1<qg<2o0rl<p<2
1<q<2), and A, < 71, - gl

h € C(T) in the case r = 0o (i.e., if p=q=2), and ||k <|fll5-l9ll2;

(r") (r") S P\
2) he AT) and () = (S0 lae®)" < 11, - ol
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(r") o0 7\ T
9) o0 = (S leo”) " < ME)M(@) - Baa(£)y - Bar(g)ge m € N,

where M(p) is the constant in the known M.Riesz inequality (see f.e. [4], § 8.20,
p.594; [2], v.2, § 12.10, p.120; [7], § 5.11, p.339)

() = Sulp; ), < M(p) - En(@)p, 7 € Zy, (4)

1 <p<oo, p€Ly(T), En(p)y is the best approzimation of the function ¢ in L,(T)
metric by trigonometric polynomials of order < n.

Proof. 1) The statement h € L,(T') in the case r < oo and h € C(T) in the
case r = oo is the obvious consequence of Theorem A: Al < |f[, llgll,, 1/r =
1p+1/g—1>0and Al < 1l - lgllys 1/r =0 (=7 =00 = p= g = 2);

2) By virtue of equality 1/r' = 2 — (1/p+1/q) = (1—-1/p) +(1—-1/q) =
=1/p'+1/¢ = +¢) /¢, we obtain v’ =p'q’/ (p + ¢') , whence

Yool =3 el el = 300 leaDI T fenlg) 7T

and applying the Holder inequality with the exponents s = p//r' = 1+p'/q' > 1 and
s=q¢/r"=1+¢/p>1(1/s+1/s" =1), we obtain

S el < (X, Icn(f)lp’>r,/pl (Zr. |cn<g)|q’)r,/q’ -

Hence, by virtue of the first part of Hausdorff - Young theorem (see f.e. [1], v.2,
§12.2, theorem (2.3) on p.153; [2], v.2, §13.5, theorem 13.5.1 on p. 172; [4], § 2.4,
p-211) we have (1 < p, ¢ < 2)

, 0o , 1/7
K00 = (7 Jemr’) <
oo / l/p’ o0 ’ l/q,
< (0wl ) (el ) <181,

3) Fix arbitrary n € N and denote (z € T')
o¢]
fo—1(z) = f(z) = Sn-1 (f; %) Z| £er,
gn—1(2) = 9(z) — Sp-1(g; @ Z‘ e

then, by virtue of (2) and (3), we have
hn—1(2) = fo-1(z) * gn—1(x) ~ ZT:‘:” cv(f) - cu(g)e™™ = h(z) — Sp_i1(h; 2),

and consequently, by virtue of estimate in 2) of the present theorem and M.Riesz

inequality (4), we obtain

) , oo ,1/7"
() = p0 () = (Z o) - cuw) <M na Ol - lgn (), =

lv|=n
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= 1F() = Sna(f5 )l - 9 () = Sn—rlg; )y < M(p)En1(f)p - M(q) En-1(9)q =

= M(p) - M(q) - En-1(f)p - Bn-1(9)q-

Theorem 1 is proved.

Remark 1. Theorem 1 in the case of 1 < p = ¢ < 2 (= r' =p'/2) is proved
by the author in [5] (Theorem 1).

Remark 2. In the proof of point 3) of Theorem 1, the equality h(z)—S,_1(h;x) =
= [f(z) = Sp—1(f;z)] * [g(z) — Sp—1(g; z)] was established. Using the obvious iden-
tity

f(x) * Sp_1(g;z) = g(x) * Sp_1(f52) = Sp1(f;2) * Su1(g;2) = Su—1 (f * g5 2) ,

we can be convinced the validity of this equality:
[f(z) = Sn-1(f;2)] % [g(2) — Sn-1(g;2)] =

= f(2) xg(x) = Sn1(f;2) * g(2) — f(2) * Sn1(9; %) + Sn1(f;2) * Sn1(g;2) =
= f(2) xg(z) = Sn1 (f * g;3) = h(z) — Sn1(h; 7).

From this equality, by virtue of Theorem A (r > 1 at p > 1, ¢ > 1) and M.Riesz

inequality (4), we have
Ena(h)r < |0 () = Sna (b)), = [If *9() = Sna (f x g50)ll, =

= [ILF() = Sn1 (f5)] *[9() = Sn-1(g: Il <
SNFE) = Sna (5l - Nlg() = Sn-r(g; )y < M(p)En—1(f)p - M(q)En-1(9)q;

whence the estimate E,_i(h), < M(p)- M(q) - En—1(f)p - En-1(g)q, n € N, follows.

The estimates in 1) and 2) of Theorem 1 are exact in the following sense: without
loss of statement of the theorem in the point 1) we cannot increase the exponent
r € (1,00] in the case of r < oo, and substitute by no other one in the case of
r = oo; we cannot decrease the exponent r’ € [1,00) (r' =1 for p = ¢ = 2) in 2),
namely the following is valid.

Theorem 2. For any p, q € (1,2] there exist functions foy(;p) € Ly(T) and
90(-;q) € Ly(T) such that

1) ho = foxgo & Lg(T) for every 6 > r in the case of r < oo and

[holloe = Il follz - lgolly in the case of r = oo;

2) ho = fo* go ¢ AV(T) for every v < 1.

Proof. Put (1 <p, ¢<oo, p'=p/(p—1), ¢ =q/(¢—1))

1

fo(z;p) = ZZOZQ (nl/p, lnn> ! emm, go(z;q) = ZZO:Q (nl/Q' In n)_ eimr;
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since
ealfo) = ("7 n) " L0 1 00). e (g0) = (n"7 lnn) " LO(n 1 o0)

and

° p=2.p -\ o p—2,-p/p -» N\ -1 —p
anzn cb (fg)—znzzn n (Inn) —Z n - (Inn)? < oo,

n=2

ZZOZ? nq_%% (90) = ZZO:2 nq_2n_q/q,(1nn)_q - ZZ; n_l(ln n)~? < oo,
then by virtue of Hardy and Littlewood theorem (see f.e. [4], §10.3, pp.657-658,
(1], v.2, §12.6, lemma (6.6) on p.193; [2], v.1, § 7.3.5, pp.148-149) fo (-;p) € L,(T),
90(-;q) € Ly(T), moreover

00 / 0 /
||f0||p = (an? n ! (lnn)*p>1 P, ||90||q = (an? nfl(lnn)7q>1 ‘1.

1) For convolution hg = fy*gg of these functions (see above (2) and (3); ¢, (ho) |
0(n 1 00))
/ / -1 .
ho (z3p,q) = fo(z;p) * go(z;q) = Zooﬂ (nl/p /4 1y n) e (5)
in the case of r < oo for every 6 > r we have (1/r' =1/p' +1/¢ =1—-1/r)

0

Z;O:Q n? 2 (ho) = Z:;g n’? (nl/plﬂ/q, Iu* n) =
— 20072 n972n7(171/r)9(1n”)720 =
_Z 2 —(2-0/r) (lnn)_QGZOO, since 9/7">1:2_9/T<1’

hence by virtue of above mentioned Hardy and Littlewood theorem (in the part-
necessity) it follows that hg ¢ Lg(T). In the case of r = oo (i.e. for p = q = 2),
putting fo = go, by virtue of Parseval equality, we obtain (see formula (5))

00 /2 / %o 1/2
[ folly - lgolly = (Z ”1(1nn)2> (Z nl(lnn)2> =

n=2 n=2

o0

Z H(Inn)™? = ho(0;2.2) < [lhollo < Il folly llgolly

whence. [[holl.c = llfoll - lgolly, where ho = fo * go
2) For every v < r (= v/r' =~ (1/p' +1/¢') < 1) we have (see above formula

(5))
1
ot (ho) = (S22 lew(ho) )17 = (EZ‘;Q =T (lnn)72v> .
’ 1/2
(ZZO:Q n=/"(In n)—2> / = o0, whence it follows that ho = fo*go ¢ A (T).

I
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Theorem 2 is proved.

Remark 3. The statement of point 2) of Theorem 2 in the case of 1 <p=g¢ <
2 (= r' =p'/2), was proved in [6] (theorem 5 on p. 53).

Remark 4. Since ' > 1 for r < oo, i.e. inthe case of 1 <p <2, 1 <g<2or
1 <p<2,1<q<2, then the convolution hy = fo* go of functions fo(-;p) € Ly(T)
and go(;q) € Ly(T') taken in proof of Theorem 2 in the considered case does not
belong to the class A(T'). We also note that fo(-;p) € A(T), go(-;q) ¢ A(T).

Remark 5. Statement 1) of Theorem 2 in the case of r = co may be generalized
by the following way. For every function f € Ly (T') with the real Fourier coefficients
{en(f)} C R, n € Z, by virtue of Theorem A, the convolution h = f x f € C(T)
and ||l = IIf * flleo < Il 111l = If]I3. On the other hand, taking into account

equality (2), we have

o0

1hlloe = [If * flloo = max {|(f * f) (z)|; = €T} > |(f*f)( Z = 1I£1I5-

Thus, by virtue of written out estimates, ||f * f|| . = I1£1l5-

In the following theorem it is shown that estimate 3) of Theorem 1 is exact in the
sense of order in scale of power majorants of sequences of the best approximations
of the functions f € L,(T) and g € Ly(T'), where 1 <p, ¢ < 2.

Theorem 3. Let 1 < p, q <2, a, f € (0,00), " = pg/ 2pg—p—q) =
=p'q'/ (p' +q') > 1; there ewist functions fo (:;a;p) € Lp(T), go(:;6;q) € Ly (T)
such that

1) En 1(fo) =n™% En 1(90)q <n"? neN;
1/7

2) pii) (fox g0) = (ZM” lew (fo* 90)|T’> =n~+) n e N.
Proof. Put (1 <p, ¢<oo, p =p/(p—1), ¢ =q/(g—1))

Jfo (‘T; a;p) = Zoo_l n—(a-l—l/p’)eimc’ 90 (:E; 0; q) = Zoo_l n—(ﬁ-l-l/q,)einm;

since ¢, (fo) = n~ TPV L0 (n 1 00), eulgo) =n PH/T) L0(n 1 o0) and
Z:;l n? 2 (fo) = Z:;l nP—2qPlatl/p) — ZZO:1 n—(Potl) o o0,
Z:; e (90) = Zzozl O Z:il n~ (@) < oo,

then, by virtue of Hardy-Littlewood theorem, we have fo(;a;p) € Ly(T),

oo _ o l/p 0o _ 1/(]

90(5; 3;9) € Lo(T) and || fo|,, < (Zn:1” (p +1))  lgoll, = (Zn:1” (qﬁ+1)> _

Further, by virtue of the obvious inequality En,l(gp)p < le(-) = Sn_1(e; ')Hp and
M.Riesz inequality (4), we obtain

B (ol = o) = Suct Ui My = (207 v 2ef(0)) " =
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_ (Z‘X’ ,,—(pa+1)>1/1” e N
v=n

00 l/q
Bne1(90)q = lgo() = Su-1(g0i ), = (32 w7 2cllg0)) " =

= (ZOO V_(qﬂ“'l))l/q =n? neN.
rv=n

Besides, it is easy to note that fo (-;;p) € A(T), go(-;8;q9) € A(T) for 1/p <
a < oo, 1/ < f <ooand fo(5a;p) ¢ A(T), go(+;8;q) ¢ A(T) for 0 < o < 1/p,
0 < B8 < 1/q. Finally, by virtue of equality (2) we have (1/p' +1/¢' =1/r)

’ [e's) n /7
o ora) = (7 Jeulfo) e an)]”) " =

= (ZOO_ y—(at1/p)r" y_(/@+1/q’)r’>1/7"’ _

- (ZOO, y-(atfr -y*(l/p’ﬂ/q')rf)l/r’ _

> y—(a+ﬁ)r’—1)1/rl

Theorem 3 is proved.

=n-@F) neN.

Remark 6. Theorem 3 in the case of 1 < p=¢q <2 (= r' =p'/2) was proved
by the author in [5] (theorem 2).
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