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TO THE M.RIESZ THEOREM ON ABSOLUTE
CONVERGENCE OF THE TRIGONOMETRIC
FOURIER SERIES (THE SECOND REPORT)

AbstractThis paper is a continuation of the author's investigations in the same namepaper on the extension of the known M.Riesz criterion for absolute convergenceof trigonometric Fourier series of continuous functions for values p 6= 2. Thecase of functions f 2 Lp(T ); g 2 Lq(T ) generating the convolution h = f � gare considered, where 1 < p; q � 2. The exact upper estimate of lr0 norm of se-quence of Fourier coe�cients of the convolution by product of norms kfkp �kgkq,where r0 = pq= (2pq � p� q) 2 [1;1), as well as the upper estimate of residualseries generating above mentioned lr0 norm by product of the best (in metricsLp(T ) and Lq(T ), respectively) approximations En�1(f)� �En�1(g)q; n 2 N; ofthese functions are obtained, and its exactness in the sence of the order in thescale of power majorants was proved.
Let Lp(T ); 1 � p < 1; be the space of all measurable 2�-periodic func-tions f : R ! C with the �nite norm kfkp = �(1=2�)�1 RT jf(x)jp dx�1=p < 1;C(T ) � L1(T ) be the space of all continuous 2� periodic functions,kfk1 = maxfjf(x)j ; x 2 Tg; where T = [��; �]. For a function f 2 L1(T )with the Fourier-Lebesque series

f(x) �X n2Z cn (f) einx; x 2 T; (1)
put �(
)n (f) = �P1

j�j=n jc�(f)j
�1=
 ; 
 2 (0;1) ; n 2 Z+.It is obvious that if �(
)0 (f) < 1 then �(
)0 (f) # 0 (n " 1); besides, it is clearthat the condition �(1)0 (f) <1 provides absolute and uniform convergence of series(1) everywhere on T , moreover kf(�)� Sn(f ; �)k1 � �(1)n (f ;x); where Sn(f ;x) arepartial sums of series (1) of order n 2 Z+ : Sn(f ;x) = Pn
j�j=0 c�(f)ei�x. It isalso obvious that the absolute convergence of series (1) everywhere on T implies�(1)0 (f) <1.The convolution h = f �g of the functions f 2 L1(T ) and g 2 L1(T ) is de�ned bythe formula h(x) = (f �g) (x) = (1=2�)RT f(x�y)g(y)dy. It is known (see f.e. [1], v.1,x 2.1, pp. 64-65, [2], v.1, x 3.1, pp. 65-66) that the function h is determined almosteverywhere, 2� periodic, measurable and khk1 � kfk1 � kgk1, hence, in particular, itfollows that h = f � g 2 L1(T ). The last statement is a special case of the followingresult known under the name of W.Young inequality (see f.e. [1], v.1, theorem (1.15),
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pp.67-68; [2], v.2, theorem 13.6.1, pp.176-177; [2], v.1, theorem 3.1.4, p.70, theorem3.1.6, p.72):Theorem A. Let 1 � p; q � 1; 1=r = 1=p+1=q�1 � 0; f 2 Lp(T ); g 2 Lq(T );h = f �g; then h 2 Lr(T ) and khkr � kfkp �kgkq. When 1=p+1=q = 1, i.e. q = p0 is
an exponent conjugate to p ( p0 = 1 for p =1 and p0 =1 for p = 1), the functionh is determined everywhere, continuous and khk1 � kfkp � kgkp0.We also note that the Fourier coe�cients cn(h) of the convolution h = f � g oftwo functions f 2 L1(T ) and g 2 L1(T ) are calculated by the formula (see [1], v.1,theorem (1.5), p. 64; [2], v.1, p.66, formula (3.1.5))

cn(h) = cn(f � g) = cn(f) � cn(g); n 2 Z; (2)
such that h(x) �X n2Z cn(f) � cn(g)einx; x 2 T: (3)

Denote by A(
)(T ) the class of all functions f 2 L1(T ) for which �(
)0 (f) <1 �A(1)(T ) � A(T )�. By virtue of M.Riesz criterion on absolute convergence oftrigonometric Fourier series of continuous functions (see [4], x9.7, pp. 634-635; [1],v.1, ch.6, theorem 6 on p. 399; [5], x2.2, p.17; [2], v.1, x10.6.2, remark (4) on p.208)the convolution h = f �g of any two functions f 2 L2(T ) and g 2 L2(T ) belongs theclass A(T ). In the case 1 � p < 2 the correspondity statement does not hold, moreexactly, for any p 2 [1; 2) there exist functions f0(�; p); g0(�; p) 2 Lp(T ); such thattheir convolution h0 = f0 � g0 =2 A(T ) (see for example, [5], Example 1 (case p = 1)and Example 2 (case 1 < p < 2)).In the paper [6] (theorem 4 A on p. 53) the following was proved.Theorem B. If functions f 2 Lp(T ); g 2 Lp(T ) for some p 2 (1; 2], then their

convolution h = f � g 2 A(p0=2)(T ), where p0 = p= (p� 1).In this paper [6] (p.53, theorem 5) it was proved that the statement of TheoremB is exact, namely, for each p 2 (1; 2] there exist the functions f0(�; p) 2 Lp(T );g0(�; p) 2 Lp(T ), such that their convolution h0 = f0 � g0 =2 A(
)(T ) for any number
 < p0=2; i.e. we cannot decrease the exponent p0=2 � 1 in the statement of TheoremB (see f.e. Example 3 in [5]). Consequently, since p0=2 > 1 at 1 < p < 2 then afortiory h0 = f0 � g0 =2 A(T ) in the case p 2 (1; 2) (see Example 2 in [5]).Theorem 1. Let 1 < p � 2; 1 < q � 2; f 2 Lp(T ); g 2 Lq(T ); h = f � g;r = pq= (p+ q � pq) ; r0 = pq= (2pq � p� q) = p0q0= (p0 + q0), where r 2 (1;1];1=r + 1=r0 = 1=p+ 1=p0 = 1=q + 1=q0 = 1; then
1) h 2 Lr(T ) in the case r < 1 (i.e. if 1 < p � 2; 1 < q < 2 or 1 < p < 2;1 < q � 2), and khkr � kfkp � kgkq;h 2 C(T ) in the case r =1 (i.e., if p = q = 2), and khk1 � kfk2 � kgk2;
2) h 2 A(r0)(T ) and �(r0)

0 (h) = �P1
jnj=0 jc�(h)jr0

�1=r0 � kfkp � kgkq;
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3) �(r0)n (h) = �P1

j�j=n jc�(h)jr0

�1=r0 �M(p)M(q) � En�1(f)p � En�1(g)q; n 2 N ,

where M(p) is the constant in the known M.Riesz inequality (see f.e. [4], x 8.20,
p.594; [2], v.2, x 12.10, p.120; [7], x 5.11, p.339)

k'(�)� Sn('; �)kp �M(p) � En(')p; n 2 Z+; (4)
1 < p <1; ' 2 Lp(T ); En(')p is the best approximation of the function ' in Lp(T )
metric by trigonometric polynomials of order � n.Proof. 1) The statement h 2 Lr(T ) in the case r < 1 and h 2 C(T ) in thecase r = 1 is the obvious consequence of Theorem A: khkr � kfkp kgkq ; 1=r =1=p+ 1=q � 1 > 0 and khk1 � kfk2 � kgk2 ; 1=r = 0 (=) r =1() p = q = 2) ;2) By virtue of equality 1=r0 = 2 � (1=p+ 1=q) = (1� 1=p) + (1� 1=q) == 1=p0 + 1=q0 = (p0 + q0) =p0q0; we obtain r0 = p0q0= (p0 + q0) ; whenceX1

jnj=0 jcn(h)jr0 =X1

jnj=0 jcn(f)jr0 � jcn(g)jr0 =X1

jnj=0 jcn(f)jp0�r0=p0 jcn(g)jq0�r0=q0 ;
and applying the H�older inequality with the exponents s = p0=r0 = 1+p0=q0 > 1 ands0 = q0=r0 = 1 + q0=p0 > 1 (1=s+ 1=s0 = 1), we obtain

X1

jnj=0 jcn(h)jr0 � �X1

jnj=0 jcn(f)jp0

�r0=p0 � �X1

jnj=0 jcn(g)jq0

�r0=q0 :
Hence, by virtue of the �rst part of Hausdor� - Young theorem (see f.e. [1], v.2,x12.2, theorem (2.3) on p.153; [2], v.2, x13.5, theorem 13.5.1 on p. 172; [4], x 2.4,p.211) we have (1 < p; q � 2)

�(r0)
0 (h) = �X1

jnj=0 jcn(h)jr0

�1=r0 �
� �X1

jnj=0 jcn(f)jp0

�1=p0 �X1

jnj=0 jcn(g)jq0

�1=q0 � kfkp � kgkq ;
3) Fix arbitrary n 2 N and denote (x 2 T )

fn�1(x) = f(x)� Sn�1 (f ;x) �X1

j�j=n c�(f)ei�x;
gn�1(x) = g(x)� Sn�1(g;x) �X1

j�j=n c�(g)ei�x;then, by virtue of (2) and (3), we have
hn�1(x) = fn�1(x) � gn�1(x) �X1

j�j=n c�(f) � c�(g)ei�x = h(x)� Sn�1(h;x);
and consequently, by virtue of estimate in 2) of the present theorem and M.Rieszinequality (4), we obtain
�(r0)n (h) � �(r0)

0 (hn) = �X1

j�j=n jc�(f) � c�(g)jr0

�1=r0 � kfn�1(�)kp � kgn�1(�)kq =
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= kf(�)� Sn�1(f ; �)kp � kg(�)� Sn�1(g; �)kq �M(p)En�1(f)p �M(q)En�1(g)q =

=M(p) �M(q) � En�1(f)p � En�1(g)q:
Theorem 1 is proved.Remark 1. Theorem 1 in the case of 1 < p = q � 2 (=) r0 = p0=2) is provedby the author in [5] (Theorem 1).Remark 2. In the proof of point 3) of Theorem 1, the equality h(x)�Sn�1(h;x) == [f(x)� Sn�1(f ;x)] � [g(x)� Sn�1(g;x)] was established. Using the obvious iden-tity

f(x) � Sn�1(g;x) = g(x) � Sn�1(f ;x) = Sn�1(f ;x) � Sn�1(g;x) = Sn�1 (f � g;x) ;
we can be convinced the validity of this equality:

[f(x)� Sn�1(f ;x)] � [g(x)� Sn�1(g;x)] =
= f(x) � g(x)� Sn�1(f ;x) � g(x)� f(x) � Sn�1(g;x) + Sn�1(f ;x) � Sn�1(g;x) =

= f(x) � g(x)� Sn�1 (f � g;x) = h(x)� Sn�1(h;x):
From this equality, by virtue of Theorem A (r > 1 at p > 1; q > 1) and M.Rieszinequality (4), we have

En�1(h)r � kh (�)� Sn�1 (h; �)kr = kf � g(�)� Sn�1 (f � g; �)kr =
= k[f(�)� Sn�1 (f ; �)] � [g(�)� Sn�1(g; �)]kr �

� kf(�)� Sn�1(f ; �)kp � kg(�)� Sn�1(g; �)kq �M(p)En�1(f)p �M(q)En�1(g)q;
whence the estimate En�1(h)r �M(p) �M(q) �En�1(f)p �En�1(g)q; n 2 N; follows.The estimates in 1) and 2) of Theorem 1 are exact in the following sense: withoutloss of statement of the theorem in the point 1) we cannot increase the exponentr 2 (1;1] in the case of r < 1, and substitute by no other one in the case ofr = 1; we cannot decrease the exponent r0 2 [1;1) (r0 = 1 for p = q = 2) in 2),namely the following is valid.Theorem 2. For any p; q 2 (1; 2] there exist functions f0 (�; p) 2 Lp(T ) andg0(�; q) 2 Lq(T ) such that

1) h0 = f0 � g0 =2 L�(T ) for every � > r in the case of r <1 andkh0k1 = kf0k2 � kg0k2 in the case of r =1;
2) h0 = f0 � g0 =2 A(
)(T ) for every 
 < r0.Proof. Put (1 < p; q <1; p0 = p= (p� 1) ; q0 = q= (q � 1))
f0(x; p) =X1n=2 �n1=p0 lnn��1 einx; g0(x; q) =X1n=2 �n1=q0 lnn��1 einx;
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since

cn(f0) � �n1=p0 lnn��1 # 0 (n " 1) ; cn (g0) � �n1=q0 lnn��1 # 0 (n " 1)
andX1n=2 np�2cpn (f0) =X1n=2 np�2n�p=p0(lnn)�p =X1n=2 n�1(lnn)�p <1;X1n=2 nq�2cqn (g0) =X1n=2 nq�2n�q=q0(lnn)�q =X1n=2 n�1(lnn)�q <1;
then by virtue of Hardy and Littlewood theorem (see f.e. [4], x10.3, pp.657-658,[1], v.2, x12.6, lemma (6.6) on p.193; [2], v.1, x 7.3.5, pp.148-149) f0 (�; p) 2 Lp(T );g0(�; q) 2 Lq(T ); moreover

kf0kp � �X1n=2 n�1 (lnn)�p�1=p ; kg0kq � �X1n=2 n�1(lnn)�q�1=q :1) For convolution h0 = f0�g0 of these functions (see above (2) and (3); cn (h0) #0 (n " 1))
h0 (x; p; q) = f0(x; p) � g0(x; q) =X1n=2 �n1=p0+1=q0 ln2 n��1 einx (5)

in the case of r <1 for every � > r we have (1=r0 = 1=p0 + 1=q0 = 1� 1=r)X1n=2 n��2c�n(h0) =X1n=2 n��2 �n1=p0+1=q0 ln2 n��� =
=X1n=2 n��2n�(1�1=r)�(lnn)�2� ==X1n=2 n�(2��=r) (lnn)�2� =1; since �=r > 1 =) 2� �=r < 1;

hence by virtue of above mentioned Hardy and Littlewood theorem (in the part-necessity) it follows that h0 =2 L�(T ). In the case of r = 1 (i.e. for p = q = 2),putting f0 = g0; by virtue of Parseval equality, we obtain (see formula (5))
kf0k2 � kg0k2 =

 1X
n=2 n�1(lnn)�2!1=2 1X

n=2 n�1(lnn)�2!1=2 =
= 1X

n=2 n�1(lnn)�2 = h0(0; 2; 2) � kh0k1 � kf0k2 kg0k2 ;
whence kh0k1 = kf0k2 � kg0k2, where h0 = f0 � g0.2) For every 
 < r (=) 
=r0 = 
 (1=p0 + 1=q0) < 1) we have (see above formula(5))�(
)0 (h0) = (P1n=2 jcn(h0)j
)1=
 = �P1n=2 n�(1=p0+1=q0)
 (lnn)�2
�1=
 =

= �P1n=2 n�
=r0(lnn)�2�1=2 =1; whence it follows that h0 = f0 � g0 =2 A(
)(T ).
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Theorem 2 is proved.Remark 3. The statement of point 2) of Theorem 2 in the case of 1 < p = q �2 (=) r0 = p0=2), was proved in [6] (theorem 5 on p. 53).Remark 4. Since r0 > 1 for r <1; i.e. in the case of 1 < p � 2; 1 < q < 2 or1 < p < 2; 1 < q � 2; then the convolution h0 = f0� g0 of functions f0(�; p) 2 Lp(T )and g0(�; q) 2 Lq(T ) taken in proof of Theorem 2 in the considered case does notbelong to the class A(T ). We also note that f0(�; p) =2 A (T ) ; g0(�; q) =2 A (T ).Remark 5. Statement 1) of Theorem 2 in the case of r =1 may be generalizedby the following way. For every function f 2 L2 (T ) with the real Fourier coe�cientsfcn(f)g � R; n 2 Z, by virtue of Theorem A, the convolution h = f � f 2 C(T )and khk1 = kf � fk1 � kfk2 kfk2 = kfk22. On the other hand, taking into accountequality (2), we have

khk1 = kf � fk1 = max fj(f � f) (x)j ; x 2 Tg � j(f � f) (0)j = 1X
jnj=0 c2n(f) = kfk22 :

Thus, by virtue of written out estimates, kf � fk1 = kfk22.In the following theorem it is shown that estimate 3) of Theorem 1 is exact in thesense of order in scale of power majorants of sequences of the best approximationsof the functions f 2 Lp(T ) and g 2 Lq(T ); where 1 < p; q � 2.Theorem 3. Let 1 < p; q � 2; �; � 2 (0;1) ; r0 = pq= (2pq � p� q) == p0q0= (p0 + q0) � 1; there exist functions f0 (�;�; p) 2 Lp(T ); g0 (�;�; q) 2 Lq (T )
such that

1) En�1(f0) � n��; En�1(g0)q � n��; n 2 N ;

2) �(r0)n (f0 � g0) = �X1

j�j=n jc� (f0 � g0)jr0

�1=r0 � n�(�+�); n 2 N:Proof. Put (1 < p; q <1; p0 = p=(p� 1); q0 = q=(q � 1))
f0(x;�; p) =X1n=1 n�(�+1=p0)einx; g0(x;�; q) =X1n=1 n�(�+1=q0)einx;

since cn(f0) = n�(�+1=p0) # 0 (n " 1) ; cn(g0) = n�(�+1=q0) # 0 (n " 1) andX1n=1 np�2cpn(f0) =X1n=1 np�2n�p(�+1=p0) =X1n=1 n�(p�+1) <1;X1n=1 nq�2cqn(g0) =X1n=1 nq�2n�q(�+1=q0) =X1n=1 n�(q�+1) <1;
then, by virtue of Hardy-Littlewood theorem, we have f0(�;�; p) 2 Lp(T );g0(�;�; q) 2 Lq(T ) and kf0kp � �X1n=1 n�(p�+1)�1=p ; kg0kq � �X1n=1 n�(q�+1)�1=q.Further, by virtue of the obvious inequality En�1(')p � k'(�)� Sn�1('; �)kp andM.Riesz inequality (4), we obtain

En�1(f0)p � kf0(�)� Sn�1(f0; �)kp � �X1�=n �p�2cp�(f0)�1=p =
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= �X1�=n ��(p�+1)�1=p � n��; n 2 N ;

En�1(g0)q � kg0(�)� Sn�1(g0; �)kq � �X1�=n �q�2cq�(g0)�1=q =
= �X1�=n ��(q�+1)�1=q � n��; n 2 N:

Besides, it is easy to note that f0 (�;�; p) 2 A(T ); g0(�;�; q) 2 A (T ) for 1=p <� < 1, 1=q < � < 1 and f0 (�;�; p) =2 A(T ); g0(�;�; q) =2 A(T ) for 0 < � � 1=p;0 < � � 1=q. Finally, by virtue of equality (2) we have (1=p0 + 1=q0 = 1=r0)
�(r0)n (f0 � g0) = �X1�=n jc�(f0) � c� (g0)jr0

�1=r0 =
= �X1�=n ��(�+1=p0)r0 � ��(�+1=q0)r0

�1=r0 =
= �X1�=n ��(�+�)r0 � ��(1=p0+1=q0)r0

�1=r0 =�X1�=n ��(�+�)r0�1
�1=r0 � n�(�+�); n 2 N:

Theorem 3 is proved.Remark 6. Theorem 3 in the case of 1 < p = q � 2 (=) r0 = p0=2) was provedby the author in [5] (theorem 2).
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