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POINTWISE SATURATION THEOREMS FOR THE
CEZARO AND ABEL MEANS OF FOURIER SERIES

Abstract

In the paper the problems upword to the known result of G. Sunouchi on
(necessary and sufficient) conditions of constancy of conjugate function by given
rate of uniform approximation by Fejer means on some interval are considered.
The author show that the Fejer summation method is not essential and can be
changed to Cesaro and Abel methods, besides the corresponding assertions are
true if consider pointwise convergence instead of uniform one.

§1. Approximation rate of periodic functions by
Fejer means and properties of conjugate functions.

Let f (x) be a 2π- periodic summable function with Fourier series

f (x) ∼
∞∑

k=0

(ak (f) cos kx+ bk (f) sin kx) ≡
∞∑

k=0

ak cos kx+ bk sin kx,

σn (x, f) ≡ σn (x) =
n∑

k=0

(
1− k

n+ 1

)
(ak cos kx+ bk sin kx) , (n = 0, 1, ...)

be its n-th Fejer mean and f̄ (x) = lim
r→1−0

f̄ (r, x) = lim
r→1−0

∞∑
k=1

(ak sin kx− bk cos kx) rk

be its conjugate function. It’s known (se [1], p. 172-174) that function f̄ (x) has the
same meaning for almost all x ∈ [0, 2π] .

Sunouchi [2] proved the following theorem
Theorem A. If the following relation is fulfilled uniformly on interval (a, b) ⊂

[0, 2π]

σn (x, f)− f (x) = 0
(

1
n

)
, (1)

then f̄ ≡ const on (a, b) .
On the other hand as Sunouchi showed [2] the following theorem is valid.
Theorem B. If f̄ (x) ≡ const on (a, b) ⊂ [0, 2π] then (1) is fulfilled uniformly

on [a+ δ, b− δ] for any fixed δ ∈
(
0, b−a

2

)
(after possible correction of f (x) on a

measure zero set).
Sunouchi formulated this theorem incorrectly without stipulation placed in brack-

ets. Changing f (x) on a measure zero set we don’t change f̄ (x) whereas relation
(1) can be easily violated.

Theorem A is nothing but some lokal constant criterion of conjugate function.
At first note that Sunouchi’s method of proving theorem A gives a little bit more
than he has formulated. In fact, the following theorem takes place ([3], p.4).

Theorem A’. If relation (1) is satisfied almost everywhere on (a, b) ⊂ [0, 2π]
and there exists function ψ (x) ∈ L (a, b ) such that
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n |σn (x, f)− f (x)| ≤ ψ (x) , (2)

a. e. on (a, b) then f̄ ≡ const on (a, b).
It turns out that condition (2) in theorem A’ generally speaking, cannot be

disregarded, however, one can dispense with it if estimate (1) is satisfied at each
point x ∈ (a, b) . In other words the following theorem is valid (see [3], p. 4-6).

Theorem 1. a) If for 2π- periodic summable function f (x) relation (1) is
satisfied at each point of interval (a, b) ⊂ [0, 2π], then f̄ (x) has sense for all
x ∈ (a, b) and ~f (x) ≡ const on (a, b).

b) If for 2π-periodic summable function f (x) relation (1) holds everywhere on
[0, 2π] or everywhere on [0, 2π] except one interior point or everywhere on (0, 2π)
, then f (x) ≡ const on (−∞,+∞) (after possible correction of f (x) on measure
zero set).

c) If 2π-periodic function f (x) ∈ L (0, 2π) , then in order that f̄ (x) be constant
on some interval (a, b) ⊂ [0, 2π] it’s necessary and sufficient that for function f (x)
relation (1) be satisfied on (a, b) (after possible correction of f (x) on a measure
zero set).

d) For any interval (a, b) ⊂ [0, 2π] there exists 2π- periodic function f1 (x) be-
longing to all classes Lp (0, 2π) with 1 ≤ p <∞ for which relation (1) holds every-
where on (a, b) except one point and never the less f̄1 (x) 6= const on (a, b) .

e) There exists 2π-periodic function f2 (x) belonging to all classes Lp (0, 2π) ,
1 ≤ p < ∞, for which (1) is satisfied everywhere on [0, 2π], except of two interior
points however, f̄2 (x) 6= const on [0, 2π] .

Remark 1. Under the conditions of point a) of theorem1 function f (x) must
be analytical on interval (a, b) since f̄ (x) ≡ const on (a, b).

Let’s 〈a, b〉 be a segment, interval or semisegment. A set E ⊂ 〈a, b〉 ⊂ [0, 2π]
will be called exceptional on 〈a, b〉 for a given class of 2π- periodic functions f (x) if
for any function from this class the fulfillment of estimate (1) at each point of set
〈a, b〉 \E (isn’t necessarily uniformly on 〈a, b〉 \E) provides that conjugate function
f̄ (x) ≡ const on 〈a, b〉.

In theorem 1 we proved (point a)) that the empty set is exceptional on (a, b)
for the class of summable functions and for classes Lp (0, 2π) , 1 ≤ p < ∞, even
a finite set isn’t exceptional one (points d) and e)). It’s natural to expect that
constricting the class of considered functions f (x) we simultaneously expand the
class of exceptional sets.

Thus, the following theorem is valid (see [3], p.7-10).
Theorem 2. a) The denumerable set is exceptional on (a, b) ⊂ [0, 2π] in the

class of continuous functions
b) There exists perfect measure zero M -set P ⊂ [0, 2π] which is not exceptional

on [0, 2π] in the class of functions belonging to all Lipα (0 < α < 1) .
c) For any α ∈ (0, 1) there exists perfect U -set P ⊂ [0, 2π] which is not excep-

tional one in the class of functions Lipα.
d) Every zero measure set is exceptional one on (a, b) ⊂ [0, 2π] in the class of

absolutely continuous functions.
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§2. Pointwise saturation theorems
for Cesaro and Abel means.

Analyzing proofs of theorems 1 and 2 it’s easy to see that three statements
underlie them: lemma 1([3], p. 4-5), theorem B and the following Zamansky’s
theorem C([4], p. 167).

Theorem C. If f (x) is a 2π-periodic absolutely continuous function, a0 = 0
and f ′ (x) = ϕ (x) , then the relation

σn (x; f)− f (x) = − ϕ̄ (x)
n

+ ◦ (1/n) .

helds a. e. on (−∞,+∞).
Lemma 1. Let series

∞∑
k=1

uk (3)

be (C, 1)-summable to the number c and σn be it’s (C, 1)-means.
If σn − c = ◦

(
1
n

)
, n→∞, then series

−
∞∑

k=1

kuk (4)

is (C, 1)-summable to zero(and, consequently, summable to zero by the Abel method).
It’s found that these three statements with correspondent changes carry over to

the case of approximation by Cesaro means of the order α > 0

σα
n (f ;x) =

1
Aα

n

n∑
k=0

Aα−1
n−ksk (x) (n = 0, 1, ...) ,

where Aα
n =

(
n+ α
n

)
, sk (x)- are the partial sums of Fourier series for f (x), and

by Abel means

f (r, x) = a0 +
∞∑

k=1

(ak cos kx+ bk sin kx) rk (0 ≤ r < 1)

of Fourier series for f (x). Berens [5] obtained the following generalizations of the
author’s results [3].

Theorem D. Let 2π-periodic function f ∈ L (0, 2π) and α > 0. If there exists
finite limit limn→∞ σα

n (f ;x) = c (x) , then the sequence

σα
n (f ;x)− c (x)

aα
n

, where aα
n =

∞∑
k=n+1

α

k (k + α)
∼ α

n
(5)

converges iff the series
∞∑
k

k=1

(ak cos kx+ bk sin kx) (6)
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is summable by the method (C,α). Moreoves, (C,α)-sum of this series and the limit
of sequence (5) coincide.

Remark 2. Indeed theorem D is actually a theorem on summability of numerical
series

∑∞
k=0 uk and precisely if there exists a finite limit of (C,α)−means of this

series limn→∞ σα
n = c, then sequence σα

n−c
aα

n
converges iff the mentioned series is

(C,α)-summable. Moreover, the limit of this sequence and the (C,α)-sum of the
given series coincide.

Theorem E. Let 2π-periodic function f ∈ L (0, 2π) , α > 0 and limn→∞ σα
n (f ;x) =

f (x) for all x from some interval (a, b). If for all x ∈ (a, b) there exists finite limit

lim
n→∞

σα
n (f ;x)− f (x)

aα
n

= g (x) (7)

with integrable function g (x), then for all x ∈ (a, b) the conjugate function

f̄ (x) = C −
x∫
a

g (u) du, (8)

where C- is some constant. In particular, if f (x) is continuous then (8) remains
valid even if (7) is violated on a denumerable set.

As a corollary to these theorem we obtain
Theorem F. a) If for 2π-periodic function f ∈ L (0, 2π) at each point of the

interval (a, b) ⊂ [0, 2π]
σα

n (f ;x)− f (x) = ◦ (1/n) (9)

then f̄ (x) makes sense for oll x ∈ (a, b) and f̄ (x) ≡ const on (a, b).
b) If limn→∞ σα

n (f, x) = f (x) , then series (6) (C,α > 0)-is summable to zero
iff relation (9) is fulfilled.

c) If f (x) is continuous 2π-periodic function, and estimation (9) occurs every-
where on (a, b) except a denumerable set, then function f̄ (x) ≡ const on (a, b).

Besides, theorem 3 and 4 hold.
Theorem 3. If f̄ (x) ≡ const on (a, b) ⊂ [0, 2π] , then for any fixed δ

(
0 < δ < b−a

2

)
estimation (9) occurs uniformly on [a+ δ, b− δ] (after the possible correction of
f (x) on measure zero set ).

Theorem 4. If f (x) is absolutely continuous 2π-periodic function, a0 = 0 and
f ′ (x) = ϕ (x) , then equality

σα
n (f ;x)− f (x) = −α

n
ϕ̄ (x) + ◦ (1/n)

holds a. e. on (−∞,+∞) .
Using theorem F, b), theorems 3 and 4, applying method of proving theorems 1

and 2 we’ll obtain that the following theorem is valid.
Theorem 5. The statements of theorem 1 and 2 remain valid if in their formu-

lation we’ll change relation (1) by relation (9).
Note that points a) of both theorems in this case were proved by Berens (theorem

F a), b)).
The following statements are also valid.
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Lemma 2. Let for numerical series (3)

f (r) =
∞∑

k=0

ukr
k → c, (r → 1− 0) ,

hold such that
f (r)− c = ◦ (1− r) , (r → 1− 0) .

Then series (4) is summable to zero by Abel method.
Theorem 6. If f̄ (x) ≡ const on some interval (a, b) ⊂ [0, 2π] , then for any

fixed δ (0 < δ < (b− a) /2) the relation

f (r, x)− f (x) = ◦ (1− r) , (r → 1− 0) (10)

holds uniformly on [a+ δ, b− δ] (after possible correction of f (x) on a measure zero
set).

Theorem 7. If f (x) absolutely continuous 2π-periodic function, a0 = 0 and
f ′ (x) = ϕ (x), then the equality

f (r, x)− f (x) = − (1− r) ϕ̄ (x) + ◦ (1− r)

holds a. e. on (−∞,+∞).
Now basing on lemma 2 and theorems 6 and 7 and remaining of proving un-

changed we shall obtain the following theorem.
Theorem 8. The statements of theorem 1 and 2 remain valid if in their formu-

lations we’ll change relation (1) by relation (10).
Note that in this case points a) both of theorems were proved by Berens [6] and

point a) of the first theorem- also by Hedberg [7] independently and by different
methods.

It just remains to verify the fact that lemma 2 and theorems 3, 4, 6 and 7 are
valid.

Proof of lemma 2. We shall prove more general statement than lemma 2 and
precisely the following theorem 9.

Theorem 9. If there exists finite limit limr→1−0 f (r) = c , then limit

lim
r→1−0

f (r)− c

1− r
(11)

exists iff series (4) is summable by Abel method, at that A-sum of this series coincides
with limit (11).

First of all we shall show that the following lemma is valid.
Lemma 3. Let series (3) with real terms be given and f (r) =

∑∞
k=0 ukr

k, its
A- means converge at 0 6 r < 1. Let for 0 6 r < 1 the function

t (r) =
1

1− r

∞∑
k=0

f (θk) (rk+1 − rk) .

be defined, where

rk = rk (r) , r = r0 < r1 < ... < rk...u lim
r→1−0

rk = 1, (12)
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1 > θk = θk (r) > r. (13)

Then series (3) is A-summable to a number c iff

lim
r→1−0

t (r) = c (14)

for arbitrary sequences {rk} and {θk} which satisfy conditions (12) and (13).
Proof. 1. Let f (r) → c as r → 1− 0 . Then for any ε > 0 there exists such r0

that |f (r)− c| < ε is valid for all r > r0 . Considering values of r > r0 we obtain
(see (13)) that |f (θk)− c| < ε holds for all θk and, consequently,

|t (r)− c| = 1
1− r

∣∣∣∣∣
∞∑

k=0

[f (θk)− c] (rk+1 − rk)

∣∣∣∣∣ < ε

1− r

∞∑
k=0

(rk+1 − rk) = ε.

2. Let (14) hold for any sequences {rk} and {θk} which satisfy conditions (12)
and (13). Suppose θk = r (k = 0, 1, ...). Then t (r) = f (r) and lemma 3 is proved.

Proof of theorem 9. It’s sufficient to notice that

f (r)− c =
∞∑

ν=0

[f (rν)− f (rν+1)] ,

where {rν} satisfies conditions (12). Since

f (rν)−f (rν+1) =
∞∑

k=0

uk

(
rk
ν − rk

ν+1

)
=

∞∑
k=1

kukθ
k−1
ν (rv − rv+1) = (rν+1 − rν) g (θν) ,

where rν < θν < rν+1 and g (θν) are Abel means of series (4), then

f (r)− c =
∞∑

ν=0

g (θν) (rν+1 − rν) .

Applying now lemma 3 to series (4) we obtain the statement of theorem 9.
Proof of theorem 3 and 6. Since f̄ (x) ≡ const on (a, b) then by the theorem

E the relation
σn (f ;x)− f (x) = ◦ (1/n) , n→∞.

holds uniformly on [a+ δ, b− δ].
Further

f (r, x)−f (x) = (1− r)
∞∑

k=0

[sk (x)− f (x)] rk = (1− r)2
∞∑

k=0

(k + 1) [σk (f ;x)− f (x)] rk.

Consequently, for any ε > 0 there exists such a number k0 = k0 (ε) that for all
k > k0 and x ∈ [a+ δ, b− δ]

(k + 1) |σk (f ;x)− f (x)| < ε (15)

holds.
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Fixing k0 we obtain that

(1− r)2
k0−1∑
k=0

(k + 1) [σk (f ;x)− f (x)] rk = ◦ (1− r) , r → 1− 0, (16)

∣∣∣∣∣∣(1− r)2
∞∑

k=k0

(k + 1) [σk (f ;x)− f (x)] rk

∣∣∣∣∣∣ < ε (1− r) (17)

hold uniformly on [a+ δ, b− δ].
In view of arbitrariness of ε > 0 it follows from (16) and (17) that (10) holds

uniformly on [a+ δ, b− δ].
Thus, theorem 6 is proved.
Theorem 3 can be proved analogously. In fact, let 0 < α 6= 1 . Then

σα
n (f ;x)− f (x) =

1
Aα

n

n∑
k=0

Aα−1
n−k [sk (x)− f (x)] =

=
1
Aα

n

n∑
k=0

(k + 1)Aα−2
n−k [σk (f ;x)− f (x)] .

Using inequality (15) for fixed k0 and x ∈ [a+ δ, b− δ] we have:

1
Aα

n

∣∣∣∣∣
k0−1∑
k=0

(k + 1)Aα−2
n−k [σk (f ;x)− f (x)]

∣∣∣∣∣ 6
C1 (α)
n2

= ◦ (1/n) , (18)

1
Aα

n

∣∣∣∣∣∣
n∑

k=k0

(k + 1)Aα−2
n−k [σk (f ;x)− f (x)]

∣∣∣∣∣∣ 6
C2 (α) ε

n
. (19)

In view of arbitrariness of ε > 0 it follows from (18) and (19) that (9) holds
uniformly on [a+ δ, b− δ].

Proof of theorems 4 and 7. It’s known (see, e. g. [1], pp. 170, 174 and 214)
that series (6) is (C,α > 0)-summable and A-summable to ϕ̄ (x) a. e.

On the basis of theorems D and 9 we conclude that

lim
n→∞

σα
n (f ;x)− f (x)

aα
n

= lim
r→1−0

f (r;x)− f (x)
1− r

= −ϕ̄ (x) , (20)

holds a. e., q. e. d.
Remark 3. Note that relations (20) are generalization for the case of (C,α > 0)-

means and A-means of the corresponding Zamansky’s limit equality for (C, 1)-means
in theorem C.

Corollary 1. If limits (20) equal to some function g (x) ∈ L (a, b) a. e. on
(a, b) ⊂ [0, 2π], then for all x ∈ (a, b) equality (8) occurs.

Really, since g (x) = ϕ̄ (x) a.e. on (a, b) , then by theorem P.L. Ulyanov ([8],
p.584) f̄ (x) absolutly continuous on (a, b) and therefore (8) is true for x ∈ (a, b) .

Corollary 2. Let arbitrary functional series
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∞∑
n=0

cnϕn (x) (21)

with real coefficients be (C,α > 0)-summable (or A-summable) on some set E to
the function f (x) and σα

n (f ;x) and f (r;x) be (C,α)-means and A-means of series
(21) respectively. If the series

−
∞∑

n=1

ncnϕn (x) (22)

is (C,α > 0)-summability (or A-summable) on E to function ψ (x) ,, then for x ∈ E
we have

lim
n→∞

σα
n (f ;x)− f (x)

aα
n

= ψ (x)
(

or lim
r→1−0

f (r;x)− f (x)
1− r

= ψ (x)
)
. (23)

And inversely: existence of limit (23) implies (C,α > 0)-summably (or A-sum-
mability) of series (22) to the same limit.

In fact it immediately follows from theorem D (see Remark 2) and from theorem
9.

E. A. Storozhenko’s theorem ([9], theorem 3) is a particular case of this state-
ment, in which just necessity is proved for- ONS {ϕn (x)} , which are systems of
(C, 1)-summability for the method (C, 1).

In conclusion we perform the theorem which is analogous of statement from [5]
for (C,α)-means.

Theorem 10. If 2π-periodic summable function f (x) be such that

‖f (r, x)− f (x)‖1 = 0 (1− r) , r → 1− 0, (24)

then for almost all x

lim
r→1−0

f (r, x)− f (x)
1− r

(25)

exists.
Proof. By the classical Sunouch-Watari saturation theorem [10] relation (24) is

equivalent to the fact that f (x) equivalent to some function of bounded variation.
But then (see [1], p.216) series (6) is A-summable a. e. and by theorem 9 limit (25)
exists a. e.
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d’une fonction sommable. Ann. Mat. pura ed. appl. Ser. IV, 1951, v.32, p.157-177.
[5]. Berens H. On the saturation theorem for the Cesaro means of Fourier series.

Acta. math. Acad. Sci. Hung., 1970, v.21, No1-2, p.95-99.



Transactions of NAS Azerbaijan
[Pointwise saturation theorems]

39

[6]. Berens H. On the approximation of Fourier series by Abel means. J. Approx.
Theory., 1972, v.6, No4, p.345-353.

[7]. Hedberg T. On the uniqueness of summable trigonometric series and inte-
grals. Arkiv för matematik, 1971, v.9, No2, p.223-240.

[8]. Bari N.K. Trigonometric series. M.; Fizmatgiz, 1961, 936p. (Russian)
[9]. Storozhenko E.A. To the question on the order of approximation by Fejer

sums. Izv. AN SSSR, ser. mat., 1969, v.33, p.39-51. (Russian)
[10]. Sunouchi G. and Watari Ch. On determination of the class of saturation

in the theory of approximation of functions. Tôhoku Math. J., 1959, v.11, No3,
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