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ASYMPTOTIC ANALYSIS OF BENDING
PROBLEM FOR TRANSVERSAL-ISOTROPIC
PLATE OF VARIABLE THICKNESS

Abstract

The homogeneous solutions remaining plate faces stressless were construct-
ed. The classification of homogeneous solutions was made. The constructed
homogeneous solutions allow to unload the lateral surface at arbitrary loading.
By means of the Lagrange principle a boundary value problem was reduced to
solving of infinite linear algebraic equations which are known from the constant
thickness plate theory.

Let’s consider axisymmetric bending problem of transversal isotopic plate whose
thickness is h = er (r is a distance from the origin of the plate, £ is an angular
thickness of the plate).

The plate associates with the spherical coordinates 7,60,¢ changing in the
following limits

ri<r<ry, w/2—-e<0<7/2+c¢, 0<p<2r

0y = m/2 is a middle plane of the plate.
We shall call surfaces § = 7/2 + ¢ the faces of the plate, spherical coordinates
r=rs (s =1,2) the lateral surfaces.
Suppose that the following boundary conditions are given on the faces of the
plate
op=(-1)"o(r), mo=7(r) atd =w/2+ (-1)"e (n=1,2) (1.1)

The plate is made of transversal isotropic material with spherical anisotropy.

We assume that the origin coincides with the center of the plate which is anisotropy
pole.

On the lateral surface the stresses are given

or=fir (0), T9g=for(0) atO=x/2+(-1)"e (n=1,2) (1.2)
Functions f;s (6) (i =1,2) satisfy the equilibrium conditions
w/2+e
2y / (f11sinen — fo1 cosen) cosendn =
w/2—€

w/24¢e
= 2773 / (fi2sinen — fog cosen) cosendn = P (1.3)
w/2—€

f15(0), fas (0) are sufficiently smooth functions. Besides fig (0) are odd func-
tions, fag (@) are even functions with respect to the middle plane of the plate.
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Here P is a efforts resultant, acting in an arbitrary cross section r = const.
Equilibrium equations in permutations in the spherical coordinate system have

the form [1]
b1 O ou, 2
1 (7’2 > + 7’_2 (b12 — b22 — b23) ur—l—

2 Or or

1 1 0 /(. Ou bis+1 1 0% .
T2 sind 90 (Sme ao) T g orog Cnfu) +
1 1 o, .
+ﬁ (b12 — bog — bog — ].) m % (SIDGUQ) =0 (14:)

b12 + 132ur b22 + b23 +2 8ur 4 ig 7"2% 4
r Orof 72 00  r2or or

b22 0 1 0 . (b22 - b23 + 2) Ug
22 2 il 0 =
72 96 |56 06 o0 “9)] + = 0
Relations of the generalized Hook’s law have the form [2]
oy = G1 [bner + b12 (69 + 6@)]
o, = G [biiey + bag (eg + bazey)]
op = G [biiey + baoeg + bazey]
79 = Gherg (15)

where 0,,0,,04, 7,9 are components of stress tensor, e,, ey, €y, €9 are components
of deformation tensor in the spherical coordinates [2], u,,up are components of
displacement vector

mbn == 2GOE0 (]_ - U2) s mb22 == 2G0 (1 - U1U2)
mbiy = 2Ggv; (]_ + U) ,  mbog = 2G) (’U + ’011)2)
are material constants
m=1—v— 21)11)2, Go =G G;l, E() = ElE_l, Ul,UQ,E,El,G, G1

are technical constants of material.
By using results of paper [1] we shall represent the solutio of the problem in the
form

Up = 7’)‘ [A1071F71 (0) + A2072F72 (9)]
ug = r7by [Ch1F, (0) + CoaFy (0)] (1.6)

F, (0) = P, (cosf) — P, (—cosf)
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A= =bayi (vi +1) + XA+ 1) +2(Go — 1)

bo = — [(b12 + 1) A + bag + bog + 2]

P, (cos 0) are the first genus Legendre functions, y are the roots of the biquadratic
equation
b22’}’2 (’}/ + 1) — [(b11b22 — b%Q — 2b12) A ()\ + 1) + 2b9o+

+2(b12 —baa — ba3) (Go — )]y (v+1) +[A(A+1) +2(Gp —1)] x

X [bn)\ ()\ + 1) + 2 (b12 — byy — bgg)] =0 (17)

C51, Cy2 are arbitrary constants.
We shall assume that on the faces of the plate homogeneous boundary conditions
o =71 =0 are given
op=0, 71,=0 (1.8)

The satisfaction of the boundary conditions on the faces of the plate (1.8) gives
the algebraic system of the second order with respect to the constants C.,1, Cys.

From the conditions of existence of non trivial solutions of this system we obtain
the charateristic equation for determination of eigenvalues A:

A (X, 01) = CridiaFy (61) F, (01) — Cradii Tya (61) Ty (61) —

—013 (d12 - dll) ctg@leﬂ (01) T,IYQ (01) (]_9)
Cip = (D12 A + baa + ba3) Ay — baaboyy (7p + 1) (r=1,2)

Ciz = — (bag — bag) bo
dig = A +(A—=1)by (k=1,2)

Transcendental equation (1.9) as integer function of parameter A defines a denu-
merable set \; with infinite limit point. As in paper [1] in order to study effectively
its roots we suppose

0=mn/2+en, —-1<n<l1 (1.10)

n is new variable counted off from the middle plane 67 /2.
Substituting (1.10) into (1.9), we obtain

1
D(z,e) = A (X 01) =0, z:>\+§ (1.11)
Let’s prove the following assertion respective to zeros of the functions D (z,¢):
the function D (z, €) has two groups of zeros with the following asymptotic properties
at e = 0.
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The first group consists of four zeros and is characterizied by the fact that all
of them have a finite limit at ¢ — 0 moreover, two of them are independent on the
small parameters ¢.

The second group of zeros consists on denumerable set of zeros which have the
order ¢ — 0 at O (6*1).

In order to prove the first assertion by expanding the functions D (z,¢) in series
with respect to # = w/2 in neighbourhood of the plane £ we shall represent equation
(1.11) in the form:

1

D(z,¢) = 371 Ae (22 — Z) [Do (2) + 5(1—o1m)

! Dy (2)e® + ] =0 (1.12)

where

A =162 (14 v) Egbg [y1 (v2 + 1) — 1 (91 + 1)] sin (7/2) 1 sin (7/2) 72 x

w0 D) ()]

Dy (2) = 42 + 1209 — 9 — 4E,*

Di(z) = —4(14+v) (Gy—v2) 2" +2[2(1 — v1v2) (3 — 2v) +
+ (14 v) (Go — v2) (Eo + 4EyGo + 2 — 6v1) —
—2(1+v) (2EBGo —v1 — 1) (G — 1)] 2% — (1 — vywa) x
X (40EpGo — 60v; — 20 + 23) — 1/2 (1 4 v) (G — v2) X
x (2EyGo +2 — 6v1 + Ey/2) + (1 +v) (2EGo — v1 — 1) (Go — 1) +
FA[(1 +v) (v — 1) (2EoCo — 30y + 1) +

+2(1 —vv2) (3—20) E] (Go — 1) +8 (1 +v) (1 — 1) Eg (Go — 1)?

Here I' (z) is the Euler gamma function.

It’s easy to see from (1.12) that zp,; = 41/2 are zeros of the function D (z,¢).
Note that existence of these zeros also follows from the equilibrium condition for the
plate. In order to define the rest of zeros of the first group we shall seek them in the
form

Ze = 2p0 + 22 + . (k=2,3) (1.13)

Substituting (1.13) into (1.12) we obtain

Zho = £1/2 (9 + 4E;" — 120,) "
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2Zky = — (40250) " Dy (2k0)

Let’s prove that the rest of zeros of the function D (z, ¢) infinitely increase, when
e — 0. We proceed from the contrary assuming that z, — z; +00 (k> 4)at e — 0.
Then the limiting relation D (z,e) — e3D (2}) is valid at ¢ — 0. Thus, limit points
of the set 2z, (k > 4) are defined from equation D{ (2}) = 0. In the given case

: > 1
D;(2)) = (z;;z + 1/4) (42;;2 + 1205 — 9 — 4Egl> - (z;f - Z) Do (2) =0

From the last equality it follows that the other bounded zeros except Zy 1, Zp3
don’t exist.

Thus it has been proved that the rest of zeros of the function D (z,¢) tend
to infinity for ¢ — 0. They can be divided into three groups depending on their
behaviour at € — 0.

The following limiting relations are possible:

1) ez, — 05 2) ez, — 00; 3) ez — const for e — 0.

It can be proved that the cases 1) and 2) are impossible here.

In order to construct asymptotics of zeros of the second group (case 3) we shall
find z, (n=k—,k > 4) in the form

Zn=¢ "6, +0(e) (n=1,2,..) (1.15)
Subsituting (1.15) into (1.7) we have

T2 = 21027 + @20t =0, y1 =7 i=12 (1.16)

T2 =028, S;= \/Q1 — (=1)" V@ — @

2q1 = byy (bribog — by — 2b12), @2 = biibyy

As was noted in [1] parameters q1, g2 take on different values depending on char-
acteristics of the material v, vy, v9, G, which implies different representation of
solution by means of Legendre functions.

In turn this results in different asymptotic representations of the Legendre func-

tion.
Consider the following possible cases:
L g >0, ¢f—g2>0, vi2=:=£810n,734 = £520n

Si2= \/Q1i\/Q%—Q2, a > ¢
51,2204i25=\/Q1ﬂ22\/Q2—Q%, 7 < @

2. Roots of charaxteristic equation (1.16) are multiple

Y2 =Y34=%p0n, ¢ —q2=0, p= /a1
3. q1 <0, q% —q2 75 0, Yi,2 = ii815n, V3.4 = 44556,
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Si12 = \/|Q1| +iv/q2 — qi, 7 > ¢
_ - 2
51,2—\/|Q1|i1 qi — 92, @1 > ¢

4.1 <0; ¢f—q=0; mp=r134=Fi0p, p=+/q]
In cases 1 and 2 after substitution of (1.15) into (1.11) and transformation it by
means of the asymptotic expansions of F, (0), F! (0) for d,, we obtain

v
(SQ — Sl) sin (Sl + SQ) Op — (Sl + SQ) sin (SQ — Sl) op =0 (1.17)
asin 286, — fsh2ad, = 0; (1.18)
sin 2pd, — 2pd, = 0; (1.19)

As to cases 3 and 4 for them results are obtained from cases 1 and 2 by formal
changing of S, 52 by 151, 455.These equations coincide with equations defining the
indices of the Saint-Venant boundary effects in bending problems for plates of
constant thickness

As in isotropic case [2,3] it can be proved that the function D (z,¢) hasn’t other
zeros except the zeros obtained above.

2. Let’s give characteristics of modes of deformation defined by the solutions
constructed above.

By assuming that € is a small parameter we shall perform asymptotic construc-
tion of homogeneous solutions correspondent to the different groups of zeros.

We obtain the following expressions for zy = 1/2

u, = +Cysinen, uyg = +Cpcosen

op =0,=09 =T =0 (2.1)
It’s easy to see that dispalcement of the plate as a solid corresponds to this
solution.
The solution corresponding to zero z; = —% has the following asymptotic repre-
sentation:
T 1
up = —;17701(4 (1 —viva) + 352{2 (1 —wviva) (n” +3) +
+2(1+) (Go— 1) (n” = 3) + 2[GoEp (1 +v) (Go — v2) —
-2 (1 + U) (’01 - 2) —2 (1 - U1U2)] (GU - ].) 7’]2} + )
rC 1.1
up = %5—1@ (1 —w102) + 5{[5 (1 +9) (2 = v = 30) +2(1 —v1v2) +
+(1=20) 1+ ) +4(1+0) (v; — 1) (Go — 1)} + ...) (2.2)
G.C
oy = 1102177 [2(3v1 —2) + O ()]
G,C
0, = 1 [2(3E) — 2v1) + O (£2)]

P
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op = 0(62), T = O (€)

For the rest of zeros of the first group formulas for calculation of displacements
and stresses if we shall represent them by series respective to ¢ powers have the
following form

3
"y = %nkzﬁck((%kg _3) (1 — vyw) + %{(1 1) (29 + 2Go — 9/4) x

x (2v12k0 +v1 — 2) (n” — 3) + 2 (250 — 3) (1 — v1v2) (n® + 3) — (2ro — 3/2) x
X [4GoEy (1 4 v) (Go — v2) 2y — GoEo (14 v) (Go — v2) +
+4 (1 —v1vg) +4 (1 + ) (v1 — 2)]x
X (Go — 1) % + 225 (1 — vyv2) }e2 + ...) (21 In p)

3
ug = \/iﬁa_l%Ck(? (1 —wvjv2) + %{[2 (1—wvva)+1/2(14+v)(2—3v)+

+2 (21)1 - ].) (1 + U) Zk0 — 2’01 (]. + U) ZzU]T]Q +2 (1 + U) (2EOG0 - Ul) z]%[]—i_

+4(1+v) (v; — 1) (Go — 1) — (1 +v) (EoGo — v1/2)}e* + ...) exp (23 In p)
G 3
or = +——=nY_Ci[4Boziy + 4 (v1 — 2Ep) zgo+

PSS
+3Ey — 201 + O (£?)] exp (2 In p) (2.3)
a 3
op = ——nZCk [4v1 250 +4 (1 — 201) 2o + 3v1 — 2+ O (€)] exp (2 In p)
PSS

opg= 0O (62) , 10 =0 (¢)
p=rilr
The second group of zeros describes the mode of deformation rapidly damping

far from the eage of the plate. By expanding solutions of this group respective to
powers of the small asymptotic expressions:

e > .
Up = _ﬁan [SQ (b22522 + b%Q + b2 — b11b22) €08 S0y, sin S10,1n—

n=1

On
—Sl (bQQS% + b%l + b12 - b11b22) COS ‘91611 sin ‘925n + O (6)] exXp (? lnp)

TS0 S R, (5923 + bra) 05 Sa6 €08 11—
\/ﬁ n=1

dn
_ (bQQS% + b12) cos S16,, cos Sed, + O (6)] exp (? lnp)

Uy =

G — :
Op = +[0—\/15 (b11b22 — b%Q) SISQTLZIBn5n [Sl COS Sg5n Sin Slénn_
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—S5 cos S0y, sin o0, + O (¢)] exp <%n In p)

Gl ZB 5 82 (b11b22 — b12 — 2G0 — 2G0b1251) COS 52(5 sin Slénn—
p\/_n 1

-5 (b11b22 — b%Q —2Gy — 2G0b12522) cos S10p, sin Sgénn—i-

Op = —

40 (€) exp (%” In p> (2.4)

gy = —i (b11b22 — b%Z) ZBn(5n [Sg COS SQ5n sin Slénn_

’0\/’5 n=1

—51 cos S10p, sin S20,n + O ()] exp <5?" In p)

G [oe]
P\/Iﬁ (bribog — 6%2) 3152;Bn [cos S0 cos S10n1—

— cos 518y, cos S20,1 + O (e)] exp <5 lnp)

Trg =

(SQ - SI) sin (SQ + Sl) 5 — (SQ + Sl) sm SQ + Sl) 577,
1

> )
up = —e Y [Fip (n) )] exp (—n Inp
\/’5 n=1 €

AN

)
=7 nool [Fon (1) )] exp (%" lnp>
(

[5115 Fin () + b12Fy,, (1) | exp

g9

_oo (61200 Fin, (1) + b3 Fy,, (1) (% )
(e

= — b126n Fin (0) + bao By, () + O exp

p\/ﬁnﬂ[unln() 2F3, (1) + O (€)]
G 1)

= I[F{n () + 6uFn (1) + 0 2)] exp (21

where

Fip, (n) = (a1A1, — a2Asgy,) cos 86,1 shad,n—
— (a1Qzn — azA1y) sin 36,1 chad,n
Fon (n) = (bi241) [(BA2n, — aA1y) cos opn chad,n+
+ (BAzn — aliy) sin fonn chadyn)
a1 =1—by (&® — %), az =2bpafp
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A1y, = Dyp{a [biz + by (0 + 5?)] sin 86, shad,+
+8 [br2 + bas (@ + %)] cos Bépchady}
Aoy = —Dp{B [b12 + baz (o + B)] sin B0, shad,—
—a [bi2 + bao (a? + 2)] cos Bdnchady, }
asin 236, — fsh2a0, =0

o0

(b12 +1) . 2
up = ~———=¢ey E,{{sinpd, — (b1op” — b11) x
G
X (b12p2 + bn)il COSp(sn] sinp5n77—|—
Pon

+n cos pdy, cos popn + O (€)} exp (%n lnp>

2 o0
p* — b1y )
ug = ——=¢ Y Ep{[sinpd, — 2b11 (b12 +1) x
7 n§:1 n{[sinpdp ( )
1 —1 cos pdy,
xp (b =) (buop® + 1) = cosphun -
n

—1 cos pdy, sinpd,n + O ()} exp <%n lnp)

Op =

Gy (b12p* 4 b11)
E,[(pdy, sin pd, + cos pdy, ) sin pd,n+
PP nzl I )

On
+npdy, cos pdy, X cos pdpn + O ()] exp (? lnp>
Op = —Gl OOE En({(b23p2 + b%Z + b1 — b11b23) Ppdy, sin pd, —
P\/ﬁn_l

— (b11bag + bYy 4 biz — biy — bagp?) — 2b11 (b1 + 1) (bagp® + bi2) (brzp® + b11)] ' ¥

)
X €08 pdy, } sin pd,n + npdy, cos poy, cos pdpn + O (g)) exp <—" In p)
5

G (bribog — bYy)
E,.[(pdy, sinpd,, — cos pdy,) sin pd,n+
PP HZI I )

o =

+npdy, cos pdy, cos pon + O ()] exp (%n lnp>

Gy (b2 p? +1) & )
——————2 % FE,0,[(sinpd, cos pd,n—

Tro =

—1 cos pdy, sin pd,n + O (€))] exp (%n lnp)

where
sin 2pd,, — 2pd, =0
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Cg, Bn, Dy, E, are arbitrary constants.

From the equation for solutions of the first and second groups one can conclude
that the first group of solutions defines the fundamental stress state, the second
group - the boundary effect analogous to the Saint-Venant boundary effect in theory
of plates of constant thickness.

However for the large Gy some boundary layer solutions damp very weakly and
they have to be included in penetrating solutions.

3. Now let’s turn to investigation of stress state situation described by homoge-
neous solutions (2.1)-(2.6).

Consider relation between the homogeneous solutions and the stress resultant P,
acting in the section p = const

1
P = —27r7’%5,02/ (o sinen — 7,9 cos en) cos endn (3.1)

-1

Supposing Cp = 0 we shall represent displacements and stresses in the form

oo oo
ur = uy + Yy Uy (n) p* =112, ug =wy + y_CpWi (n) p™~'/?
k=2 k=2
o0 oo
or = Qr1+ > CrQuup™ 2, 0o = Q1+ > CrQur () p™ 75/
k=2 k=2
o0 o0
09 = Qo1+ Y _CrQurp™ /7, o =T1 + »_CyTi () p™ 5/ (3.2)
k=2 k=2
In formulas uq,...,T7 correspond to the eigenvalues z; = —1/2. The rest of

solutions are included into the second addend.
Substituting (3.2) into (3.1) we obtain

P =ciyi+p"?Y Crp™ (3.3)
k=2

where
Y1 = 16G17T (’U1 — Eo) 7"%62 + 0 (53)
1

= =G [ [Que () sinn + Ty (1) cos e cos endy
~1

Let’s prove that all v, (k = 2,3,...) are equal to zero. In order to do this let’s
consider the following boundary problem

Or = pikig/ZQrm Trg = Pikig/sz (p=p1)

or =03 Qe me=03 T (p=p1) (3.4)
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It’s easy to see that solution of problem (3.4) exists and can be obtained from
formulas (3.2) if put there Cj = 0y, where dj, is the Kronecker symbol.

On the other hand it is well-known that the necessary condition for solvability
of first boundary problem of elasticity theory is the vanishing of the resultant and
principal moment of all external forces. In the considered case the resultant of
external forces in projection onto axis of symmetry 6§ = 0 has the form:

P, = (pi’“_?’/2 - pi’“_?’/Q) vs =0 (3.5)

The last equality is possible only for v, = 0.
For the resultant finally we obtain

P=Cv (3.6)

Thus stress state (2.3)-(2.6) is self-balanced in every section p = const.
Let’s make clear the stress state situation correspondent to zeros zj (k > 2). In
order to do this let’s find bending moment in section p = const

1
9.2 2 -
M =2rimp 5/ [or sinen — 79 (1 — cosen)] cos endn =~
“1

1

~ 27T7“%p262/770rd77 + 0 (%) (3.7)
~1

Let’s find bending moment for stresses (2.3). We have

3
M, = 2/37rpr%G52p1/QZCk[4Eozzo + 4 (v1 — 2Ep) 2o+
k=2

+3Ey — 2v1 + O (£%)] exp (2 In p) (3.8)

Let’s prove that principle part of bending moment for stresses correspondent to
the second group of zeros is equal to zero. Consider the solution defined by formula
(2.4). Other cases are considered analogously.

1
My = 271'7"%62,02/770,«(1’)7 + 0 (64) = 2mr?e’ Gy (b11b22 — b%Q) ,02,0*3/2><
—1

x (S cos Sa6,, sin 814, — S1 cos S1oy, sin Sa6,,) exp (Z?n lnp) -0 (54) =

= 27rie’p’oy (£1) + O (%)
Since oy (£1) = 0 finally we obtain

My~ O (64)

Thus principle we parts of bending moment define solution of the first group.
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Expanding the bending moments M; (k = 2,3) acting on the surface p = p; in
series with respect to ¢

Mf = M{ + M{,e* + - - (3.9)

and finding at C}, in the form C} = Cj, + £2C, + ... for defining C, we obtain the
linear system

3
2/3112G1pg "> Cio[4E023, + 4 (01 — 2Ey) 25, +
k=2

+3Ey — 2v1]exp (24, Ing) = M, (s =1,2) (3.10)

Thus constants C}, are defined by the principle parts of bending moments on the
lateral surfacee of the plate.

The first term of expansion (2.2) combined with the first terms of expansions
(2.3) can be considered as a solution in applied theory.

It follows from (3.6), (3.9) that first term of asymptotics (2.4), (2.5), (2.6) corre-
sponds the stress state self-balanced in the section p = const and the solution itself
has a character of boundary effect which is equivalent to the Saint-Venant boundary
effect in the theory of plates of constant thickness.

4. Let’s examine question on unloading the lateral surface of the plate by means
of a class of homogeneous solutions. Let conditions (1.2) be given on the lateral
surface. As it was shown above the principle parts of resultant and bending moment
are defined by the solution of the first group.

Therefore below we shall suppose that Cy, =0 (k =1,2,3) and consider case
(2.4). Other cases are considered analogously.

We shall seek the solution in the form (2.4). In order to define arbitrary constants
By, as in paper [1] we shall use Lagrange variational principle.

Since homogeneous solutions satisfy equilibrium equations and boundary condi-
tions on conic surface the variational principle accepts the form:

1

2
rie Zp?/ [(or = fis) Our + (7o — f2s) ug],—,, cosendn =0 (4.1)
s=1 74

Assuming o0B,, independent variations from (4.1) we shall obtain the infinite
system of linear algebraic equations:

ZMkan = N, (k=1,2,..) (4.2)

n=1
1

2
Min = ZeXp (2 + 2n) lnpz/ (Qrnuk + Trwy) cos endn ;
s=1 ‘1

5 1
N = Zexp [(zk +3/2) Inp,] / (fisug + faswy) cosendn ;
—1

s=1
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The solvability and convergence of the reduction method of system (4.2) follow
from work [4].
We shall seek the unknown constant B,, in the from

By = Bno +€Bny + - (4.3)

Substituting (4.3) into (4.2) we shall obtain the following system of infinite linear
algebraic equations with respect to By,

o0
> MgnBny = Hy (4.4)
n=1

2
mpn, = +G1 (b11b22 — b%g) SISZZ exXp [571 (0n + k) lnpz] X
s=1

1
x/{5n (S1 cos S0y, sin S10,1m — S3 cos S1 6, sin Sed,n) X
21

X [S2 (b22S3 + biy + bra — br1ba2) cos Sady sin Sy dxn—
— S (b22S7 + b3y + biz — bi1bog) cos Sy sin Sadxn]—
— (cos S26,, €os S10,m — cos S1d, cos S20,1m) X S159 %
X [(b22822 + b12) cos S90, cos S10kn — (bQQS% + b12) cos S0 cos Sg(ikn] Hdn;

) 1
)
Hy = E p3/% exp (;k 1H,Os> /{f1s[52 (2253 + bYy + b1z — b11ba2) X
s=1 -1

X €08 S0y sin S10kn — S (bQQS% + b%Q + b1y — b11b22) cos S0y sin ‘9251977]_
— f255152[(b22.S3 + b12) cos Sady, cos S10xn — (b22S5 + bi2) x
X cos S90y, cos S10xn] }dn;

The matrix of system (4.4) has been already met in the theory of transversal-
isotropic plate of constant thickness. Defining of B,; (i =1,2,...) is permanently
reduced to inversion of t he same matrices which coincide with matrix (4.4).

In conclusion we note that for Gy = 1 we obtain results for the case of bending
of isotropic plate of variable thickness.
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