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Emil B. NOVRUZOV

ON EXISTENCE OF ABSORBING SET ON INITIAL
BOUNDARY VALUE PROBLEM FOR A

NON-LINEAR DEGENERATE EQUATION

Abstract

The paper is devoted to the investigation of properties of solution of initial-
boundary value problem for a non-linear degenerate equation. In particular the
existence of absorbing set for the considered problem is proved.

In the paper the qualitative properties of a nonlinear parabolic equation with
generation

∂u

∂t
− ∂

∂x

((
|u|p0 +

∣∣∣∣∂u

∂x

∣∣∣∣p1
)

∂u

∂x

)
+ d |u|γ u + c (x) = 0 (∗)

are investigated.
Some results on smoothness of solution of similar type equations are contained

in [1], [2].
We also note that the solvability problems for similar equations under the

sufficiently general conditions on non-linearity are considered in [3], [4].
In the present paper the results on smoothness of initial-boundary value

problem for the equation (*), obtained in [5] (in the case d ≡ 0) are generalized by
means of which the existence of absorbing set of the investigated problem is shown.
The problem with free boundary was also investigated in the mentioned paper [5].
We also note [6] where the some maximum principle type results were obtained for
similar equation.

§1. Investigation of initial-boundary value problem.
Consider the following problem:

∂u

∂t
−D ((|u|p0 + |Du|p1) Du) + d |u|γ u + c (x) = 0, (1.1)

u (x, 0) = u0 (x) , x ∈ Ω ≡ (a, b) (1.2)

u|Γ = 0, Γ = ∂Ω× (0, T ) , (1.3)

where Q ≡ (0, T ) × Ω; p0 ≥ 2, p1 ≥ 2, γ ≥ 0, are some real numbers; D ≡ ∂
∂x ;

u0 (x) , c (x) are some functions.
Introduce the following intersection of spaces of the functions u : Q → R :

P1 (Q) ≡ Lν

(
0, T ;S1,p0+p∗,2 (Ω) ∩ L∞

(
0, T ; W̊ 1

k+2 (Ω)
)
∩ Lµ

(
0, T ; S̊1,p∗,p1+2 (Ω)

)
∩

∩Lm (0, T ;S1,γ+p∗,2 (Ω)) ∩W 1
2 (Q) ∩ Lp0+2

(
0, T ; S̊2,p0,2 (Ω)

)
∩

∩Lp1+2

(
0, T ;S1

1,p1,2 (Ω)
)
∩ {u|u (x, 0) = u0 (x)} ,
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where

S̊1,α,β (Ω) =

u (x)|
∫
Ω

|u|α |Du|β dx < +∞, u|∂Ω = 0

 ,

S̊2,α,β (Ω) =

u (x)|
∫
Ω

|u|α
∣∣D2u

∣∣β dx < +∞, u|∂Ω = 0

 ,

S
◦

1
1,α,β (Ω) =

u (x)|
∫
Ω

|Du|α
∣∣D2u

∣∣β dx < +∞, u|∂Ω = 0

 ,

S̊1
1,α,β (Ω) =

u (x)|
∫
Ω

|Du|α
∣∣D2u

∣∣β dx < +∞, u|∂Ω = Du|∂Ω = 0

 ,

(Sα,β,γ consider [3] as regards spaces).
Definition. The solution of problem (1.1)-(1.3) will call the function u (x, t) ∈

P1 (Q), which satisfies the equation (1.1) in the sense of the space L2 (Q), i.e. for
any ϑ (x, t) ∈ L2 (Q) the following equality holds∫

Q

∂u

∂t
· ϑdxdt−

∫
Q

D ((|u|p0 + |Du|p1) Du) ϑdxdt + d

∫
Q

|u|γ uϑdxdt+

+
∫
Q

c (x) ϑdxdt = 0.

Theorem 1. Let u0 (x) ∈ W̊ 1
r (Ω) , c (x) ∈ C1 [a, b] , r = (4p0 − 2) (k + 2). Then

for any p0 ≥ 2, p1 ≥ 2 the solution of the problem (1.1)-(1.3) is contained in

P2 (Q) ≡ P1 (Q) ∩W 1
∞ (0, T ;L2 (Ω)) ∩

{
u| |Du|

p1
2 Dut ∈ L2 (Q)

}
∩

∩
{

u| |u|
p0
2 Dut ∈ L2 (Q)

}
.

As it was said above the solvability problems of the given problem are investi-
gated in [3], [4]. Theorem 1 confirms that the solution of the problem is contained
in P2 (Q) under the mentioned conditions. In other words the problem has more
smooth solution at some additional conditions.

The proof of this theorem maybe led by the scheme of the proof of general
theorem from [3], [4]. The basic diffuculty, in addition, is in construction of cor-
responding operator generating the coercive pair with operator generated by the
problem (1.1)-(1.3).

The construction of the mentioned operator is sufficiently explicitly stated in
[5]. For the brevity of account we omit the proof of theorem 1 we note the corollary
from theorem 1 whose proof is led analogously to the proof of the corresponding fact
from [5].

Corollary. At fulfillment of the conditions of theorem 1 for solution of the
problem (1.1)-(1.3) the following inclusions are hold

u ∈ C0
(
0, T ;Cα

(
Ω̄
))

, 0 < α < 1,
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Du ∈ C0
(
0, T ;Cβ

(
Ω̄
))

, 0 < β < 1.

§2. On existence of absorbing set.
At first we prove the following theorem.
Theorem 2. Let the conditions of theorem 1 be fulfilled and u (x, t) be a

solution of the problem (1.1)-(1.3). Then for any χ ≥ p1 the following inequality
holds

‖u‖Lχ+2(Ω) ≤
(

δ

C1

) 1
γ+1

+
1

(C1γt)
1
γ

, ∀t > 0,

where δ, C1 are some positive constants.
Proof. Multiply the equation by |u|χ u and integrate by Ω. We have∫

Ω

ut · |u|χ udx−
∫
Ω

D (|u|p0 Du + |Du|p1 Du) |u|χ udx + d

∫
Ω

|u|χ u |u|γ udx+

+
∫
Ω

c (x) |u|χ udx = 0.

Hence it follows that

∂

∂t

∫
Ω

|u|χ+2

χ + 2
dx + (χ + 1)

∫
Ω

|u|p0+χ |Du|2 dx + (χ + 1)
∫
Ω

|Du|p1+2 |u|χ dx+

+d

∫
Ω

|u|γ+χ+2 dx ≤ l

∫
Ω

|u|χ+1 dx,

where l = max |c (x)|.
Applying the Hōlder inequality to the right hand side of the last inequality we

obtain

∂

∂t

∫
Ω

|u|χ+2

χ + 2
dx + (χ + 1)

∫
Ω

|u|p0+χ |Du|2 dx + (χ + 1)
∫
Ω

|Du|p1+2 |u|χ dx+

+d

∫
Ω

|u|γ+χ+2 dx ≤

∫
Ω

|u|χ+2 dx


χ+1
χ+2

· l · |Ω|
1

χ+2 ,

Thus

∂

∂t

∫
Ω

|u|χ+2

χ + 2
dx + d

∫
Ω

|u|γ+χ+2 dx ≤

∫
Ω

|u|χ+2 dx


χ+1
χ+2

· l · |Ω|
1

χ+2 .

Divide the last inequality to integral in the right hand side. Hence it follows that

1
χ + 2

∂

∂t

∫
Ω

|u|χ+2 dx

∫
Ω

|u|χ+2 dx


χ+1
χ+2

+ d

∫
Ω

|u|γ+χ+2 dx

∫
Ω

|u|χ+2 dx


χ+1
χ+2

≤ l · |Ω|
1

χ+2 .
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Hence it follows that

∂

∂t
‖u‖Lχ+2(Ω) + d |Ω|

1
χ+γ+2

− 1
χ+2

∫
Ω

|u|χ+2 dx


γ+1
χ+2

≤ l · |Ω|
1

χ+2 .

or
∂

∂t
‖u‖Lχ+2(Ω) + C1 ‖u‖γ+1

Lχ+2(Ω) ≤ δ.

Consequently,

‖u‖Lχ+2(Ω) ≤
(

δ

C1

) 1
γ+1

+
1

(C1γt)
1
γ

.

The last implication follows from the following lemma.
Lemma 1. ([7]) Let y (t) satisfy the inequality

y′ (t) + C1y
γ+1 (t) ≤ δ.

Then

y (t) ≤
(

δ

C1

) 1
γ+1

+
1

(C1γt)
1
γ

∀t > 0.

Thus theorem 2 is proved.
Using lemma 1 we can also prove the following fact.
Theorem 3. Let the conditions of theorem 1 be satisfied. Besides, assume that

d ≥ p2
0+

2p1−1(p1+χ+1)2p1

p
p1
1

, where χ = (4p0 − 2) (k + 2)−2, p1 ≥ 3, γ ≥ max {2p0 − 2, p1}.
Then the following inequality holds

‖Du‖Lχ+2(Ω) ≤
(

α

β

) 1
p1+1

+
1

(βp1t)
1

p1

∀t > 0,

where α, β are some positive constants.
Proof. Multiply the equation (1.1) by |Du|χ D2u and integrate by Ω

−
∫
Ω

ut |Du|χ D2udx +
∫
Ω

|u|p0 D2u |Du|χ D2udx + (p1 + 1)
∫
Ω

|Du|p1+χ×

×
∣∣D2u

∣∣2 dx + d

∫
Ω

|u|γ |Du|χ+2 dx +
∫
Ω

C (x) |Du|χ D2udx+

+p0

∫
Ω

|u|p0−2 u |Du|χ+2 dx = 0. (1.4)

In order to estimate the last integral in the left hand side of (1.4) we use the
following lemma.

Lemma 2. For any a, b, c ≥ 0 the inequality

ap0−1bχ+2c ≤ bp1+χc2

p0
+

ap0bχc2

p0
+ p0a

γbχ+2 + p0b
χ+1, (1.5)
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where χ > 0, p0 ≥ 2, p1 ≥ 3, γ ≥ 2p0 − 2, holds.
Proof of lemma 2. At first note that if only one of the numbers a, b or c is

equal to 0, then the inequality (1.5) is obvious. Consider the case a 6= 0, b 6= 0,
c 6= 0 and assume that (1.5) is incorrect.

Then the equivalent inequality

1 ≤ bp1−2c

p0ap0−1
+

ac

b2p0
+

p0a
γ−p0+1

c
+

p0

ap0−1bc
, (1.6)

is also incorrect. But if the last inequality is incorrect, then each of addends in the
right hand side of the last inequality is less than unit. Then multiplying the fourth
and first addends from (1.6) we obtain

bp1−3

a2p0−2
< 1. (1.7)

At the same time multiplying the fourth and second addends we obtain that

1
ap0−2b3

< 1. (1.8)

Since p0 ≥ 2 and p1 ≥ 3, then it follows from (1.7) and (1.8) that a ≥ 1, since
otherwise the alternative inequalities bp1−3 < 1 and b−3 < 1 are satisfied. Thus,
a ≥ 1.

Since by virtue of assumption the third addend from (1.1.6) is also less than
unit, then allowing for a ≥ 1 we obtain

1 ≤ aγ−p0+1 ≤ c

p0
.

Hence it follows that
1 ≤ aγ−p0+2 ≤ ac

p0
.

But it follows from the second addend from (1.1.6) that ac
p0
≤ b2. Thus b2 ≥ 1.

Moreover, multiplying the third and first addends from (1.1.6) we obtain that

bp1−2aγ−2p0+2 < 1.

But It’s impossible, since we showed that a and b ≥ 1. The lemma is proved.
We return to the proof of theorem 3.
As it was said above we try to estimate the integral from (1.4):

p0

∫
Ω

|u|p0−1 |Du|χ+2 dx ≤ .

∫
Ω

|Du|p1+χ
∣∣D2u

∣∣ dx +
∫
Ω

|u|p0 |Du|χ
∣∣D2u

∣∣2 dx+

+p2
0

∫
Ω

|u|γ |Du|χ+2 dx + p2
0

∫
Ω

|Du|χ+1 dx.

Substituting the last inequality in (1.4) we obtain:

1
χ + 2

∂

∂t

∫
Ω

|Du|χ+2 dx + p1

∫
Ω

|Du|p1+χ
∣∣D2u

∣∣2 dx ≤
∫
Ω

|Du|p1+χ
∣∣D2u

∣∣2 dx+
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+
∫
Ω

|u|p0 |Du|χ
∣∣D2u

∣∣2 dx + p2
0

∫
Ω

|u|γ |Du|χ+2 + p2
0

∫
Ω

|Du|χ+1 dx+

+
∫
Ω

|c′ (x)| |Du|χ+1

χ + 2
dx−

∫
Ω

|u|p0 |Du|χ
∣∣D2u

∣∣2 dx−
∫
Ω

|Du|p1+χ
∣∣D2u

∣∣2 dx−

−d

∫
Ω

|u|γ |Du|χ+2 dx.

Now prove that

1
2

∫
Ω

|Du|p1+χ+2 dx ≤ p1

∫
Ω

|Du|p1+χ
∣∣D2u

∣∣2 dx +
1

2εp1

∫
Ω

|u|γ |Du|χ+2 dx+

+
1

2εp1+1

∫
Ω

|Du|χ+1 dx,

where
ε =

p1

2 (p1 + χ + 1)2
. (1.10)

For the further reasonings we use the following lemma.
Lemma 3. Let a and b be arbitrary non-negative numbers, ε > 0, χ ≥ 0, γ ≥

p1 ≥ 3. Then the inequality

ap1+χb2 ≤ ε2ap1+χ+2 +
bγaχ+2

εp1−2
+

aχ+1

εp0−1
(1.11)

holds.
Proof of lemma 3. The inequality (1.11) is equivalent to the following

1 ≤ a2ε2

b2
+

bγ−2

ap1−2εp1−2
+

1
ap1−1b2εp1−1

(1.12)

(it’s assumed that a 6= 0, b 6= 0, since in case only one of the numbers is equal to
zero, the fulfillment of the inequality (1.11) is obvious).

Consider the various variants

I) εa ≤ 1, b ≤ 1; II) εa ≥ 1, b ≤ 1; III) εa ≤ 1, b ≥ 1; IV) εa ≥ 1, b ≥ 1.

In case of alternatives I), II), III) the inequality (1.12) is fulfilled by virtue of
that in case of I) 1

(aε)p1−1b2
> 1; in case of II) (aε)2

b2
≥ 1; in case of III) bγ−2

(aε)p1−2 ≥ 1.

Consider case IV). If assume that (1.12) is incorrect, then (aε)2 ≤ b2. Hence it
follows that aε ≤ b. Since we assumed that (1.12) is incorrect then bγ−2

(aε)p1−2 < 1.
But this is impossible, since

b2

(aε)p1−2 =
(

b

aε

)p1−2

· bγ−p1 ≥ 1.

Consequently, the initial assumption is incorrect. Lemma 3 is proved.
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We again return to the proof of the theorem.
By virtue of the formula of integration by parts we have∫

Ω

|Du|p1+χ+2 dx =

∣∣∣∣∣∣−
∫
Ω

|Du|p1+χ D2u · u · (p1 + χ + 1) dx

∣∣∣∣∣∣ ≤
≤
∫
Ω

|Du|p1+χ
∣∣D2u

∣∣2 dx·(p1 + χ + 1) ε̃+
1
ε̃

(p1 + χ + 1)
∫
Ω

|Du|p1+χ |u|2 dx. (1.13)

Applying lemma 3 to the last integral in the right hand side of (1.13) we obtain∫
Ω

|Du|p1+χ |u|2 dx ≤ ε2

∫
Ω

|Du|p1+χ+2 dx +
1

εp1−2

∫
Ω

|u|γ |Du|χ+2 dx+

+
1

εp1−1

∫
Ω

|Du|χ+1 dx. (1.14)

We choose ε̃ = p1

p1+χ+1 (1.13) and substitute (1.14) in (1.13)∫
Ω

|Du|p1+χ+2 dx ≤ p1

∫
Ω

|Du|p1+χ
∣∣D2u

∣∣2 dx +
(p1 + χ + 1)2

p1

∫
Ω

|Du|p1+χ |u|2 dx ≤

≤ p1

∫
Ω

|Du|p1+χ
∣∣D2u

∣∣2 dx + ε2 (p1 + χ + 1)2

p1

∫
Ω

|Du|p1+χ+2 dx +
(p1 + χ + 1)2

p1εp1−2
×

×
∫
Ω

|u|γ |Du|χ+2 dx +
(p1 + χ + 1)2

εp1−1p1

∫
Ω

|Du|χ+1 dx.

If we choose ε from the equality ε2(p1+χ+1)2

p1
= 1

2 , we obtain the inequality (1.10).
Then it follows from (1.9) and (1.10) that

1
χ + 2

∂

∂t

∫
Ω

|Du|χ+2 dx +
1
2

∫
Ω

|Du|p1+χ+2 dx ≤

≤

(
p2
0 +

max |c′ (x)|
χ + 2

+
2p1 (p1 + χ + 1)2(p1+1)

pp1+1
1

)∫
Ω

|Du|χ+1 dx−

−

(
d− p2

0 −
2p1−1 (p1 + χ + 1)2p1

pp1
1

)∫
Ω

|u|γ |Du|χ+2 dx ≤

≤

(
p2
0 +

max |c′ (x)|
χ + 2

+
2p1 (p1 + χ + 1)2(p1+1)

pp1+1
1

)∫
Ω

|Du|χ+1 dx.

Further if we act in exactly the same way as at proving theorem 2 we obtain that∫
Ω

|Du|χ+2 dx

 1
χ+2

≤
(

α

β

) 1
p1+1

+
1

(βp1t)
1

p1

∀t > 0.



192
[E.B.Novruzov]

Transactions of NAS Azerbaijan

Theorem 3 is proved.
Since we assumed that χ + 2 = (4p0 − 2) (k + 2), then

‖u‖
W̊

(1)
(4p0−2)(k+2)

(Ω)
≤ c ·

((
α

β

) 1
p1+1

+
(

δ

c1

) 1
γ+1

+
1

(βp1t)
1

p1

+
1

(c1γt)
1
γ

)
,

where c is a constant depending on u (x, t).
The validity of the following theorem follows from theorem (1)-(3).
Theorem 4. The set

B0 =
{

u (t) ∈ W̊
(1)
(4p0−2)(k+2) (Ω) , ‖u (t)‖

W̊
(1)
(4p0−2)(k+2)

(Ω)
≤

≤ c

((
α

β

) 1
p1+1

+
(

δ

c1

) 1
p1+1

+ ε

)}
is an absorbing set ([2]) for solution of the problem (1.1)-(1.3) under the conditions
of the theorem (1)-(3) and for any ε > 0.
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