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Bala A. ISKENDEROYV, Vugar G. SARDAROV

MIXED PROBLEM FOR BOUSSINESKA
EQUATION IN A CYLINDRICAL DOMAIN AND
BEHAVIOR OF ITS SOLUTION AT t — +o00

Abstract

The existence and uniqueness of a mixed problem for Boussineska equation
was proved in multidimensional cylindric domain, convergence to zero of the
solution of mized problem for t — 4o0o when the longitudinal dimension of
cylinder is a unit was shown.

Introduction. Boussineska equation appears by describing longitudinal waves
in bars in the theory of long waves in water, and also by describing waves in plasma
[1-3].

Cauchy problem and various questions mixed and connected with it for a class
of Sobolev type equations were studied in [3-6] in which there is a large reference.
We note also paper [7] where main initial-boundary value problems were investi-
gated, and the existence of wave front is established for the equation describing the
dynamics of one-dimensional flow.

The uniqueness, existence and behaviour at great values of time of the solution
of mixed problem for Boussineska equation in multi-dimensional cylindrical domain
is studied. The results of the paper are new.

§1. Definition, notations and uniqueness of solution of mixed problem
for Boussineska equations.

Let R, (y) be a m-dimensional Euclidean space with elements y = (y1,vy2, ..., Ym),
and R, (z) is the similar space with elements = (1,2, ...,zy). Denote by II =
= R, x Q a cylindrical domain in R, () X Ry, (y), where Q is a bounded domain in
Ry, (y) with sufficiently smooth boundary 9. Consider in II x (0, 00) the following
mixed problem

(U2An+m - 1) D?u (z,9,1) +72An+mu (z,y,t) =0 (1.1)
with initial condition
U({L'7y70):1/10 (‘Tay) 9 'LL; ($7y70) :1/}1 (-T,y) (12)

and with boundary condition

u(z,Y,1) |arx (0,00) = 0 (1.3)

Here A, .., is a Laplace operator on variables (z,y), OII is a lateral surface
of cylinder II, ¢y (x,y), ¥ (x,y) € Cé“’v) (IT) is a space of finite, continuously
differentiable with respect to (x,y) functions in II up to the order p with re-
spect to x and up to order v with respect to y, u and v we’ll define below. By
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CP47) (IT x [0,00)) denote a class of functions determined for (x,y,t) € I x [0, 00),
such that D%DgDZu (z,y,t) € CO00) (1 x [0, 00)) and

DYDBDYu (2, y,t)| < Ces =0l (1.4)

0
&rj’

0
Ea OS ’04’ Spa OS ‘ﬁ’ S(L F)/Sn ‘Oé| :Oél—i—,,.—i-Oén, ‘B| :/81+"'+Bn7 €

is sufficiently small number, ¢y are some constants, C(0:0:0) (IT x [0, 00)) a space of
functions continuous in II x [0, 00).

Definition. The function u (z,y,t) will be called a classic solution of problem
(1.1)-(1.3), if u(z,y,t) € C***(II x (0,00)) N CL! (II x [0, 00)) and satisfies the
equation, initial and boundary conditions in an ordinary sense.

Theorem 1. Classic solution of problem (1.1)-(1.3) is unique, if it exists.

Proof. Show that the solution of homogeneous problem corresponding to prob-
lem (1.1)-(1.3) is only trivial solution. Multiplying equation (1.1) by u; (z,y,t) and
integrating with respect to II x [0,t) , we get

uniformly on y € Q, where D¢ = D..D¢ D, = DY = Dyi..Din,

D, =

// [(UQA,H_m - 1) Dfu + 72An+mu] udIIdt = 0 (1.5)

Denote by og () a ball of radius R with a center at the origin of coordinates in
R, (z) and I = Q x or () by Green’s first formula

/ (An+th2u) updll =
g

- 0 é?ut i But 0
_ _/ Z;awi (Dt s + Z@yj D2 ) + /“tan (Dfu) ds
IIp L&

0y;
dllp
ou Ouy ou Ouy 0
A M= — I < 1.
/( rbmt) / Zc‘?azzaxz Zayy oy, | T /“tands (1.6)
I Allp

where
8HR:89XO'R(JI)UQX80'R(CE) R

and ds is an element of the surface OIlg.
Then by virtue of condition (1.3)

/uta (D2u) ds = / wel (D) ds |

Ir Qxdog(x)

/utgzds = / utands

IIr Qxdor(x)
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For R — oo by virtue of condition (1.4) the integrals in (1.7) tend to zero.
Passing in (1.6) to the limit for R — oo and taking into account the above said we
get

/ (A D20) wpdl] =
11

m
—— [ (S ot g+ 35 ot 5 am -
j=1

Il
(1.8)
n m
au ou
—4 o3 () 2 ()|
=1 7=1
_ 1 8u 6u
I =1 7j=1
Similarly
/(An+mu) wydll = —Dt/ > <a ) +y° (a ) dI1 (1.9)
I il =1 Li 7=1 yj
Introduce notations
" 2
S 9
/Z () = IVeullm
i =1
(1.10)
/Z ) = |
o= 1

Transform the second addend in (1.5)

1 1 1
/(Dfu) wydIl = 2/1)1t (Dyu)? dIT = 2Dt/ (Dyu)? dIl = 5Dt |Dwll7,  (1.11)
11 11 11

we get from (1.5), (1.6), (1.8)-(1.11)

t

23 [ (1l By + 19l ) + el ] +
/ (1.12)

2 (Ve 3y + IVl )}t = 0

Denote energy integral of problem (1.1)-(1.3) by E (t)

E®) =3 [0 (190wl ym) + IVl ) ) +
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+ |\Ut|’%2(n) +7° |\qu|’%2(n) + HWJ“H%(H)

Then we get from (1.12)
E(t)=E (o).

since for a homogeneous problem F (0) = 0, then
E({)=0 for t>0

Hence it follows that u (z,y,t) = 0. The theorem is proved.

§2. Construction of Green’s function for the stationary problem.

By virtue of estimation (1.4) there exist Fourier transformation with respect to =
and Laplace transformation with respect to ¢ of function u (z, y,t) and its derivatives.
Therefore performing Laplace transformation with respect to ¢ in problem (1.1)-(1.3)
we get

(UQAn+m - 1) k2V (377 Y, k) + ngAn—O—mV (.’L’, Y, k) =% (.’L‘, Y, k) ) (2'1)

Vv (xvyv k) |8H =0 (22)

where

¢ (x,y, k) = (G2An+m - 1) (1!)1 (l’,y) + k¢0 (l‘,y)) = fl (l‘,y) + kf2 (x,y) (23)

Further performing Fourier transformation in problem (2.1)-(2.2) with respect
to x, we get the following boundary value problem

(2K +4%) ARV (5,9, k) — [|s]? (%K% +72) + 2]V (5,9, k) = B (s,y,k)  (2.4)

V(s,y,k)on =0 (2.5)
where V (s,y,k) and F (s,y, k) is a Fourier transformation with respect to x of the
functions V (z,y, k) and F (z,y, k), Rek > 0.

Consider a differential operator L, generalized by differential expression L = A,
with domain of definition

(1) = {w(y):wy) e @) NC @), Aww(y)eLla(@), wy)lon =0}

Operator Lisa negatively defined self-adjoint operator. It is known that [8,
p.177-178], a spectrum of this operator is discrete and for its eigenvalues \; it holds
the inequality

O>A>2X>..> N> ey lim /\l = —0 (2.6)

l—o00

Eigenfunctions ¢; (Y) of the operator L corresponding to eigenvalues ); forms a
basis in space Ls (2). Using the abovesaid we prove the following theorem.

Let
cr=cifo (i von(-2)]

where Ojs (k) is a circle of radius § with a centre at the point k& and
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Ct={k:ke€C, Rek >0}

C is a space of complex number.
Theorem 2. Green’s function of problem (2.1)-(2.2) is an analytical function of

a complex parameter k excluding the points k§12) = :I:z'\/7 and k%) =+i,/ #j\l_l
k) o 9 1
which are singular points and for it the representation holds

I CLNE B B R R
G (ZE, Y, %2, k') T 1 (k20242) |$| Z Al — k252172 X
=1

(2.7)

1
xH(%zl (|95| Al — #@) e (Y) e (2)

where H(%lzl (z) is the first-kind Hankel function of the first genus of order % —1.
For |z| > 61 > 0 series in (2.7) uniformly converges with respect to (k,x,y,z) in
every compact K CII x CsNCT.

Proof. For constructing Green’s function of problem (1.1)-(2.2) we’ll apply
the method of [9]. Using theorem 3.6 from [8, p.177], for the solution of problem
(2.4)-(2.5) we have

. Gh )
(4028 = 2 G2 20— [P (2R ) +

(2.8)

where
Ci (s, k) = / (5.9.k) 01 (4) dy
Q

The solution of the problem (2.2)-(2.3) is defined as the inverse Fourier transfor-
mation from V (s,y, k)

Cy (s, k) e 5% ds
= 2.
vk Z% / PV I Ce R R M

here term by term integration is valid by virtue of uniform convergence of series
(2.8) [10, p.253] and convergence of series (2.9) in C5. Note that Cj (s, k) sufficiently
fast decrease over | and |s| by virtue of the fact that ¢, (z,y), ¥, (x,y) are finite
and sufficiently smooth functions of (x,y). Allowing for

O (s,y,k) = F (P (2,y,k))

where F is a Fourier transformation with respect to = from (2.9) we get

Vv (33 yv - ZSDI

- e~/ (+670) s d 2.10
></ 1 (k) /(kQO_Q +42) N — [|s]2 (02k2 +~2) + k2] 3 (2.10)
Rn R
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where

BER) = [0k w)dy
Q
Here change of integration order is valid, and it is performed as in [11, p.377-382].
Moreover, it is required that functions ¢ (x,y),v; (z,y) have absolutely summable
on the whole space R,, derivatives with respect to x up to the order [%] +1. Calculate
intrinsic integral in (2.10). For this aim denote 7 = £ — x and

i(s,7)

1 e
TR = Gy NILOO/ (F2oZ+ 72 M — 1512 (02K2 + %) + K] —
[s|<N
(27r) hmjl (1,k) (2.11)

Passing to spherical coordinates in (2.11) and allowing for spherical symmetry
of integrand in (2.11) we get

N n
sz Ja_1 (|7] |s]) d|s]

e (r) = o [ e s
0

(2.12)

where Ja_; (2) is a Bessel function of order § — 1.
Applying a residue method, we calculate the integral in (2.12). Let n be an odd
number. Then Z%J%_l (z) is an even function. Therefore

1 n n

T (7,0 = 5 (2m) ") |8
N
I swn 1 (17 sl dls o1

k2o +92) A — [[s? (072 +72) + k7] '
Now, using formula [12, p.175]
L (g (2)
Ty () =5 (0, o)+ 2D, (2)) (2.14)
we get from (2.13)

T (r,k) = 3 (2m) D) 7=

Wlsl® [, (7] Jsl) + 7, (7] [s1)] dlsf 015

(k202 +92) A = [Is[? (02K +97) + k2]

The poles of integrand in (2.15) are at the points

! k2
St = 2y - gt 210
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here we take a branch for the root, for which v/—1 = i. For Rek > 0 the roots are
equally arranged in upper and lower half-planes symmetrically with respect to origin
of coordinates. Allowing for the analyticity of integrand in (2.15) and asymptotics of

Hankel functions at z — oo (for H(ﬂlzl (z) at Im z > 0 and for H(le (z) at Imz < 0)
2 2
and using a residue method we get

Ji (7, k) =

2\ @,

allowing for [12, p.218]

for J; (7, k) we get from (2.17)

(2m) "% |r|t" ¢
4 (k%02 +~2)

21
k2 2 ) k2
X\/)\l — m H%—l |7" )\l - m (219)

Now let  be an even number. Then 22 Ju_1(2) is an odd function. Expressing
the Bessel function by Hankel function according to formula (2.14), in addition
performing a cut (—oo, 0), since Hankel functions have a logarithmic branching point
at the point z = 0 for entire indices, and allowing for (2.18) we get

%(T,k):—

N
st% [H (7] [s]) + HE, (] Is))] ds
| 202 +92) N = 5P (0 ) £ K

(2m)~(5+1)

A

\71,N (7—7 k) =

Using (2.18) we get

\7Z,N (7—7 k) =

—(% N 2H£L 7| |s]) ds
(271_) ( +1)|7_|1 7L/( | | 1(| H D (220)

2 k0% + %) A — [Is|* (0%k2 +7%) + k7]

Applying a residue method to integral (2.20), going out to upper half-plane, and
tending N — oo we get

-1

|3

k‘2
2r) %4, | A g + 72
T (7_7 k) = Thl k252 +72
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(M K
XH%—I <’T|\/)\l - W) (221)

Thus, for J; (7, k) at even and odd n we got the same expression (2.19), (2.21).
Substituting this expressions into (2.10) and changing the order of integration
and summation, for the solution of problem (2.1)-(2.2) we get

w3
I
—_

(2 2 g k2
Vi(z,y,k) =— szer7 |517 —¢] Al — m X

k‘2
)1 <|1‘_§| \/)\l - W) e1(y) @1 (2) @ (&, 2, k) dII

Hence for the Green’s function of problem (2.1)-(2.2) for Rek > 0 we get the
following expression

(2.22)

0|3

-1
n 0o

~(2m)” 2 |12
G k A
(x7yazv ) ]{72 2+’Y ; l — k2 2+7 X

7 K
%,1 |$‘\/)\l m o1 (Y) @i (2) -

Now study the convergence of series in (2.7) and its derivatives up to the second
order. To this end we prove the following lemma.
Lemma 1. At sufficiently large | and k € Cs, the asymptotics

\/—)\l + % =v/=N—(1+0(1)) (2.23)

k202 + o
holds.
Represent the left hand side of (2.23) in the form
k> k?
AN+ 55— =4/"N|[1+—F55—5 2.24
\/ TRy \/ ’< +>\z(k'202+72)) 224
For k € C;,
/{72
| <M
K202 42| =0

M is some number. Therefore for | — oo by virtue of (2.6) we have

/{?2

N (W02 +77)| ot

Then we get from (2.24)

k’2
\/_Al T 2er 1 2=V —A(1+0(1)) .
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Lemma 1 is proved.
Now continue the proof of theorem 1. In [9] it is shown that

H(pl (Y)HH([%HQ < C ‘)\l’([%]Jﬂ)/Q

)

where parenthesis [7] means the entire part of 7.
Hence by means of Sobolev’s embedding theorem we get

et ()l < € D72 (2.25)
It is known that [10, p.190]
2 2
colm < |)\l| <clm (2.26)
where cg, ¢ are constants not depending on /. Then it follows from (2.25) and (2.26)
et ()l < cUE1D/m (2.27)

Since A, (y) (v > 1) is also an eigenfunction of the operator L with eigenvalue
A7, then as above, we can show that

[t (Vg @y < CULETFD/™ (2.28)
Now prove a uniform convergence of the series (2.7) with respect to (z,y, z, k)

in each compact K C II x Cj for |z| > d; > 0.
Estimating on modulus, we get

;L
o) k2
G @y, 2 K) < Co |1+ \/Az—Wﬂz .
I=lo

2

2
(1) k 2
x Hu' | | || \/Az e ler Ml | - (2.29)

Cp is a constant and [y is sufficiently large number.
Further, using the asymptotics of Hankel function H (2111 (z) for z — oo lemma
2
1 and estimates (2.25), (2.27) we get from (2.29)

> n m —A
G (2,9, 2, k)llo(xy < Co 1+Z|)\l|%1+[7] 6—51\/; <
1=l

o0

nt1 cp ;L

< Co |14 om HlemiVzim
1=lo

Hence, it follows a uniform convergence of series in (2.7) in the compact K for
|z| > §1 > 0. Using the estimate (2.26) we can show as above that the series in (2.7)
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may be term-by-term differentiated with respect to (x,y, z) for |z| > 01 >0, k €
65 NnCt.

Theorem 2 is proved.

Corollary 1. The Green function G (x,y, z,k) is an even function with respect
to k. Therefore we can evenly continue it to the left half-plane. Thus, G (z,y, z, k) is
defined with respect to k on the all complex plane with singular points k = :t?, k=

_1
+id (a2~ &) 7.
Putting the expression ® (z,y,k) from (2.3) to (2.22), for the solution of the
problem (2.1)-(2.2) we get

V(x,y,m—/G<x—§,y,z,k>f1<§,z>dﬂ+
I

(2.30)
—i—k/G (x =& y,2,k) f2(§,2)dll = Vi (x,y, k) + kVa (2, y, k)

II

§3. Behaviour of solution of mixed problem for Boussineska equation.
Solution wu (z,y, k) of nonstationary problem (1.1)-(1.3) is defined as the inverse
Laplace transformation with respect to k from V' (z,y, k). Then we have form (2.33)

u(xvyvt):ul (ﬂf,y,t)+UQ (xvyvt)v (31)

where wu; (x,y,t) is the inverse Laplace transformation with respect to k& from
Vi (z,y,k), j = 1,2, in this u; (z,y,k) is a solution of problem (1.1)-(1.3) with
initial data

U (-ﬁ,y,O) :¢0 (.’L’,y), ullt (:anvo) =0 (32)1

and wus (x,y, k) is a solution of problem (1.1)-(1.3) with initial data

U2 (Qf,y, O) =0, ul2t ($7y7 0) = ¢1 (x,y) (32)2

Now we get estimate (1.4) for the solution of problem (1.1)-(1.3). To this end
the following lemmas are necessary
Lemma 2. For |k| > N for all |

k2
Re\/—)\l + m > 4/ —)\l > 4/ —)\1,

where N is a sufficiently large number.
Proof. Using the formula for a real part of a quadratic root of complex number,
and relation (2.6) we have

k? 6
Rey[~M+ jga = Rey/~ N+ u (k)] e >

> /=N + (k) cos O > /=N > /=1,
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where

L2
Since |k| > N where N is sufficiently large number, then 6 will be sufficiently

small angle. Lemma 2 is proved.
Lemma 3. For Rek > ¢ > 0 for all | the estimate

2\ —1
w(k) = <0’2 + V) , 0 =argu(k) (3.3)

k.Q
Re\/—)\l+WZCQ>O

1s valid, where co is a constant independent of .

Proof. For [ > [y or for |k| > N, where [y, N are sufficiently large numbers, the
proof of lemma follows from lemmas 1 and 2 respectively. Therefore we’ll assume
that [ < ly and |k| < N. Then for Rek > & >0

—g+5§argk§g—5

and for the points k2 and k%02 + 72 we have
0§arg(k202+’y2)gargk2<7r—25, 0<O0<m—26
forIm £ >0and forIm k<0
-7+ 26 < argk2 < arg (k:20'2+72) <0, —w+26<60<0

where 6 = d () and § (¢) — 0 for e — 0, 6 is defined in (3.3). Denote

k2
= (N )

analogously

0 < 01 <7m—26 for Im k>0, Rek>e>0,
—rm4+20 < 0: <0, for Imk<0, Rek>>0.

Hence
2
cos & >

1
Re,/—Al+L:‘_M+L 01
k2024+2 k2024+2 2 N (3.4)

1
k2|2 k2|2
Z‘—/\Wm 005(3—5)2’—)‘l+m

The zeros of the function

k2
F(l,k)= ‘—)\l-i- 1207 4 o2
are on the imaginary axis at points
— A2

kyo = i
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since A\; < 0. Therefore for k < N (Rek > ¢ > 0) and | < [y there exists a number
My, such that
F(l,k) > My (3.5)

Then it follows form (3.4), (3.5) that

k2 1/2 .
]I_{e\v/—)\l—i-]{:20_24_,.)/2 ZMO/ sm(5

If we assume

cy = min{|)\1|1/2,MS/2 siné} ,

then we get the proof of lemma 3 from lemmas 1,2 and (36).

Theorem 3. If ¢y (x,y), ¥, (z,y) € Cg’“ (IT), where p = [2] + m+ "TJ“?) then
for solution of the problem it holds estimate (1.4).

Proof. By integrating the series term-by-term in (2.9) we get

wj (z,y,t) = —% (2m) 72 Y2, @ (y) %

e+1i00 n_y
-2 11 k22 (1
X/|JI—§ 2 o / )\l—m Hgilx (37)
Ry, £—100

X (‘x - f’ AL — k20.132_'_72) k2]:.27_:72 ektdk} fjl (5) df )

where

(@) = [ [i (& 2) ¢ (2)dz,  j=1,2.
/

here term by term integration is valid by virtue of uniform convergence of series
(2.9) and (3.7) that will be shown later. Denote

£4100 %
Bii (Uat):% )\l—m
£—100
«HY U L (3.8)
5\ T k202 42 ) K202 120 :

where n = |z — ¢|, j = 1,2. Estimate Bj; (n,t) at large [ and 7. To this end we
introduce the following contour

le=L.U(s—iN, e+iN)ULT,

where L_ is a ray starting from the point ¢ — ¢N and composing with negative
imaginary semi-axis the angle -z and LT is a ray starting form the point & + iN
and composing with positive imaginary semi-axis the angle +¢. Further by Cauchy
theorem we substitute in the expression Bj; (n,t) an integration contour into I,

along which integrand for k — oo decreases exponentially. Estimating by modulus



Transactions of NAS Azerbaijan 129
[Mixed problem for Boussineska equation]

Bji (n,t) and its derivatives with respect to ¢, assuming here 7 sufficiently large,

(1)

taking into account asymptotics of Hankel function H,’ , (2) for z — oo and lemmas
2

1-3, we get
n—3
1D} Bji (n, )] < C|\| T e =27, (3.9)

v=0,1,2 j=1,2 [=1,2,..

Estimating (3.7) by modulus, where integration contour with respect to k is
substituted into I'c and using estimate (3.9) we get

o ,8) | £ Ce Y iy ()l I
=1

x / eo2ll|z — ¢[175 | £ (€) |ae (3.10)
Q;

Qj is a support of the function v; (§,n) with respect to . Using estimate (2.25), we
get from (3.10)

uy (g 8) | < Cest=oalel 3 |y 315t / e2Melle — e[ E (6 |dE (3.10)

=1

Represent (3.11) in the form

luj (z,y,t) | < Cestmezlel x
2
m n—1 .
Z|)\l| m+2|)\l| 2l4m gt /602|§|$_§|1—2|fjl (€)de (3.12)
Qj

Applying Cauchy-Bunyakovski inequality to inequality (3.12) taking into ac-
count, that at large |x|

/ Ml |z — &P dg < Clef
Qj

then we get

iy (2, 8) | < Ceteale Zm m+Z|Az| [zt / f2ede|  (313)
Qj

By B.Levi theroem [13, p.142] we get from (3.13)

> m n—1
fuj (2, 9,8) | < Cest=ealel |37 317 / ZIMI?*””T 2©de|  (3.14)

=1
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Since the functions f; (§,2), j = 1,2 with respect to z satisfy the conditions of
theorem [8] from [10, p.253], then

o0

SN © =155 € ey n= 2] +m+ "ot (315)

=1

From (3.14) and (3.15) it follows

g (2,9, 8) | < Cest=eel |3 57 + / I & llde| . j=12  (3.16)
=1
Q;

Series Y2, |N| 7™ in (3.16) converges by virtue of estimate (2.26).
We have from (3.1) and (3.16)

u (z,y,t) | < Cestmezlel (3.17)

By virtue of estimate (2.28), smoothness of functions f; (£) in the same way as
above we can get estimate (3.17) of derivatives u (z,y,t) contained in equation (1.1).
For this in formula (3.7) ¢; (y)should be substituted into Dgcpl (y) and f;(§) into
Dg fi (§). Thus, estimate (1.4) for the solution of problem (1.1)-(1.3) is proved.

Theorem 4. Let n =1 ¢y (z,y), ¥;(z,y) € C’éz’“) ), p=[2]+m+1.
Then at t — +oo for the solution of problem (1.1)-(1.3) it holds asymptotic estimate

u(z,y,t) =o(1)

uniformly with respect to (x,y) in each compact from II.
Proof. To study the asymptotics of solution of problem (1.1)-(1.3) at ¢ — 400
it is sufficient to study an asymptotics of integrals (3.8) at ¢ — +oco. The integrand

in (3.8) have singular points kg = +iZ, k%) == Vi,l. Let’s perform the cut
? ) —_ l

o2

(kgl), k§1)> on the plane k. By @ denote a circle of radius  with a center at
points k%}% and by C’és)’@) a circle of radius € with a center at points k%)

We also denote

I = cOuTtue®uTEucWUTEuC®
L® = Jpuc-WugLuc-®ugg,

where Jlei, JQE, J36 compose the left and right banks of the cut (kgl), ké”), respec-

tively, and C; £ _semi-circles of circles Cg( )4

half-planes k respectively.

, arranged in the right and left

Assuming in (3.8) n = 1, taking into account the obvious from of H(_li (z) and

2
that integrand decreases exponentially at Rek < 0, applying Cauchy theorem we

get
Bji (n, 1) (“ e
;1) = — 3/2621/2 / / 1 172
e TR (e g)”
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1
exp [—n |)\l|+§ dk (3.18)

Let

Consider the change of 65 at moving k in the positive direction along the banks
of the cut (k(l) k‘é )). Then

from —35 to 5, at ke C’E(l) U Jfg ,
from 5 to 0, at k€ Cj(g) U Jzt )
from 0 to -3, at kecr™y Jit
from —% to 5, at kec?y Jao s
from 5 to 0, at keC: @y Joe

0 to —-Z% at kec:®PuJ,

0y = (3.19)

from

and integrand in (3.18) has a summable singularity. Therefore in (3.18) we can
pass to the limit at ¢ — 0. Then integrals along circles CE(I)’(Z)

C+(3) @ tend to zero. Then integral in (3.18) will be on contour LM U L®?) where
P e Lt

and semicircles

Now c0n81der the change

1 o8 72
03 = ——arg [ kK2 + ——— <k2+
3 2 g( 024—)}1') o2

at passing from J- to J (7 =1,2,3) that is necessary at estimating integrals on
the banks of the cut (ké”, kél))

on J;  O3=-=F; on J1+ 03 = —3;
on Jy 03= on Jy  03=0; (3.20)
on Jg 03 = —%; on Jgr 03 = 5;

Consider the integrals on J; and J;". Allowing for (3.19), (3.20) for ¢ = 0 we
get from (3.18)

2
awir= [ () (043 -
Jr |T y
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1
xexp |—m/IN|+ o

Since the integrand in the expression ()1; has a summable singularity, then by
Riemann-Lebesque lemma at ¢t — +oo

Quj(t) =0o(1), j=1,2 (3.21)
Analogously, allowing for (3.19), (3.20) we prove that at ¢ — 400
Q3 (t)=0(1), j=1,2 (3.22)

It follows from (3.20) that

k() .
Q2J()—2/dlc_—2/kﬂl’“\/ K2+ <k2+g—§) x
k" (3.22)
X exp —77,/])\1]—1-0—12 dk, 7=1,2
Since in (3.22) k =7, 7 is a real variable, and assuming
—m/|>\1\~|— T2 =%, [k? +
\)\zl
we get
m’t 1 1
Q2 (t / (T1—7) 2 (114 7) %X
-V 02
l 1 1
X exp W (11— 7')é (11 + T)é dr (3.23)
-
ag

where 71 < 7 . We estimate the integral in (3.23) by the following way: dividing
it to intervals (—Tl, —-7T1 + 51), (—’7’1 + 61,71 — 51) s (7'1 — 51,7‘1) , where 91 is a
sufficiently small number, estimating the first and third integral by modulus, and
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once integrating the second ones by parts, and then estimating by modulus, at
t — 400 we get

Q2 (t) = N30 (1) (3.24)
It follows from (3.18), (3.21), (3.22), 3.24) that at t — 400

Bji (n,t) =n20(1) (3.25)

Putting asymptotics (3.25) in (3.7) for u; (z,y,t) at t — 400 we receive, that

o0

ui (@0 t) =0(1) S 9 (1) / e (O de, =12 (3.26)
=1

—0o0

Since functions fj; (£) are finite and sufficiently smooth, then acting as at receive-
ing estimation (1.4) we show that series in (3.26) converges uniformly with respect
to y € Q. We get from (3.1) and (3.26) that at ¢ — 400

u(z,y,t) =o(1)

uniformly with respect to (x,y) at each compact from II.

Theorem 4 is proved.

Remark. Behaviour of solution of mixed problem (3.1)-(3.3) at ¢ — +oo and
n > 2 will be obtained in another paper.

In conclusion the authors express their gratitude to corresponding member of
NAS of Azerbaijan prof. Mamedov Yu.A. for useful discussions of the results.
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