
Transactions of NAS Azerbaijan_____________________________ 97 

GUMBATALIYEV R.Z. 
 

ON THE EXISTENCE OF GENERALIZED SOLUTIONS OF ONE CLASS OF 
OPERATOR-DIFFERENTIAL EQUATIONS OF THE FOURTH ORDER ON 

THE WHOLE AXIS 
 

Abstract 
 

 At the paper the sufficient conditions on the existence and uniqueness of 
generalized solution on whole axis are got for operator-differential equation of the fourth 
order, the main part of which has the multi characteristic. 
  
 Let’s consider in a separable Hilbert space H  the operator-differential equation 
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where ( )tf  and ( )tu  are vector-valued functions from H , and the coefficients jAA,  

( )4,0=j  satisfy the following conditions: 
1) A  is a positive definite self-adjoint operator in H ; 
2) the operators ( )4,0=jAj  are linear in H . 

It is known that the operator A  generates the Hilbert scale, i.e. 
( ) ( ) ( ) ( ) 0,,,,,, ≥∈== γγγγ

γ
γ
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moreover we suppose that HH =0 . 
 Let’s denote by ( )HRL :2  a Hilbert space of all vector-functions ( )tf  with the 
values in H , measurable quadratically-integrable in sense of Bohner and let’s set that 
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Let’s determine further a Hilbert space 
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 Let’s denote that here and in further the derivatives are understood in the sense of 
distribution theory [1]. As is known ( )HRD :  is a set of infinite differentiable vector-
functions with compact supports in +R  densely in the space ( )HRW :2

2 , [1, p.28]. 
 At the given paper we’ll give the definition of a generalized solution of the 
equation (1) and we’ll prove the theorem on the existence and uniqueness of a 
generalized solution of the equation (1). Let’s denote that the boundary value problem on 
the semi-axis ( )+∞=+ :0R  for the equation (1) is investigated in the paper [2]. 
 Let 
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 Now let’s formulate the lemma which shows at which conditions on operator 
coefficients of the equation (1) has the meaning solution of the equation from the class 

( )HRW :2
2 . 

 Lemma 1. Let the conditions 1), 2) be fulfilled, moreover the operators 00 AB = , 
1
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Then the bilinear functional ( )( ) ( )HRLudtdP :1 2
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continued on the space ( ) ( )HRWHRW :: 2
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( ) ( ) ( )( ) ( ) ( )( )∑∑
=

−−

=
Ψ+Ψ′′−Ψ ′′−=Ψ

4

3

4
2

2
1

0
1

222
,,,1,

j
L

j
jLL

j
j

j

j uAuAuAuP . 

 Proof. Allowing for ( ) ( )HRWHRDu :: 2
2⊕∈  after integrating by parts we get 
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 Since 00 AB =  and 1
11

−= AAB  are bounded in H , then when 0=j  and 1=j  
we have ( )( ) ( )( ) ( )( )
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From the theorem on intermediate derivatives [1]  it follows 
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 By virtue of that the operator 1
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−−= AAAB  is bounded in H , then the 
inequality 
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is true. 
 Analogously in case 3=j  and 4=j  
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From the inequality (2)-(4) it follows that for ( )HRDu :, ∈Ψ  the inequality 
 Lemma 2. Let the conditions of lemma 1 hold. Then the bilinear functional 
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acting in the space ( ) ( )HRWHRW :: 2
2

2
2 ⊕ . Moreover, ( )Ψ,1 uP  is determined as in 

lemma 1. 
 The proof of the lemma follows from lemma 1 and from the equality  
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which is true for the vector-function ( )HRDu :, ∈Ψ . 
 Definition. The vector-function ( ) ( )HRWtu :2

2∈  is called the generalized 
solution of the equation (1) if for any vector-function ( ) ( )HRWt :2

2∈Ψ  it holds the 
equality 

( ) ( )
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where ( )Ψ,uP  is determined from the equality (5). 
 It holds the following 
 Theorem. Let A  be a positive determined self-adjoint operator in H  the 
operators 2
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where 
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solution, moreover 
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 Proof. It is evident that for any ( )HRD :∈Ψ  it holds the inequality 
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is true. 
 It is evident that 
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On the other hand when ( )HRD :∈Ψ  
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i.e. 
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allowing for the inequality (12) in inequality (11) we find 
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when 3=j  from Cauchy inequality and from the definition Ψ  it follows: 
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when 4=j  the inequality 
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 On the other hand from the determination of the generalized solution it follows 
that  
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and the right part of this formula determines the continuous functional in the space 
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the inequality (8) is true. Therefore there exists the unique vector-function 
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consequently  
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 The theorem is proved. 
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