GULIEV V.S., BANDALIEV R.A.

WEIGHTED IMBEDDING THEOREMS FOR ANISOTROPIC SOBOLEV SPACES

Abstract

In this paper the weight effects for integral operators arises on the basis of the integral representation of Il'in-Besov (see [1]) for domains Ω_k , $0 \le k \le n-1$, which considered in [2] and weighted imbedding theorems in anisotropic Sobolev space $W^{l_1,\dots,l_n}_{\omega_0,\omega_0,\dots,\omega_n}(\Omega_k)$ are obtained. These weight effects for domain Ω_{n-1} was proved in [3].

Let $R_n - n$ - dimensional Euclidean space of points $x = (x_1, ..., x_n), x = (x', x''), x' \in R^k, x'' \in R^{n-k}, R^n_{++} = \{x : x = (x_1, ..., x_n) \in R^n, x_i > 0, i = 1, ..., n\}, a = (a_1, ..., a_n), a_i > 0,$ $|a| = \sum_{i=1}^n a_i, N_0 = N \cup \{0\}, N \text{ the set of natural number}, l, v \in N_0^n \text{ and } \rho(x) = \sum_{i=1}^n |x_i|^{1/a_i}.$

Assume that

$$\Omega_{0} = \left\{ x : x \in \mathbb{R}^{n}, x_{i}^{(0)} < x_{i} < \infty, i = 1, ..., n \right\},
\Omega_{k} = \left\{ x : x' \in \mathbb{R}^{k}, \varphi_{i}(x') < x_{i} < \infty (i = k + 1, ..., n) \right\}, k = 1, ..., n - 1,
\Gamma_{0} = \left\{ x : x \in \mathbb{R}^{n}, x_{i} = x_{i}^{(0)}, i = 1, ..., n \right\},
\Gamma_{k} = \left\{ x : x' \in \mathbb{R}^{k}, x'' = \overline{\varphi}(x') \right\}, k = 1, ..., n - 1,$$
(1)

where the vector-function $\overline{\phi}(x') = (\phi_{k+1}(x'),...,\phi_n(x')), k = 1,...,n-1$ satisfies an anisotropic Hölder condition

$$\rho(\overline{\varphi}(x') - \overline{\varphi}(y')) \le M \ \rho(x' - y'), \ \forall x', y' \in R^k,$$

$$\rho(x, \Gamma_0) = \rho(x - x^{(0)}), \ \rho(x, \Gamma_k) = \inf_{y \in \Gamma_k} \rho(x - y), \ k = 1, ..., n - 1 \ \text{and} \ x^{(0)} = (x_1^{(0)}, ..., x_n^{(0)}) \ \text{be a}$$
fixed point in R^n . If $x^{(0)} = (0, ..., 0)$, then $\Omega_0 = R_{++}^n$.

Let ω be a measurable, almost every positive, non-negative and locally summable in Ω_k function. Denote by $L_{p,\omega}(\Omega_k)$ the set of all measurable function f(x) on Ω_k such that norm

$$||f||_{L_{p,\omega}(\Omega_k)} = \left(\int_{\Omega_k} |f(x)|^p \omega(x) dx\right)^{1/p}, \quad 1 \le p < \infty$$

is finite.

Let $b = (b_1,...,b_n)$, $c = (c_1,...,c_n)$, where $0 < b_i < c_i < \infty$, and i = 1,...,n. The set $R(1/a) = \{y : y_i > 0, b_i h < y_i^{1/a_i} < c_i h \ (i = 1,...,n), 0 < h < \infty \}$ is called 1/a horn (see [1]).

Lemma 1 [2]. The domains Ω_k , k = 0,1,...,n-1, satisfies 1/a-horn condition, i.e. there exists R(1/a) such that

$$\Omega_k + R(1/a) = \Omega_k$$
.

We put

[Guliev V.S., Bandaliev R.A.]

$$\pi_{k}(x) = \rho(x'' - \overline{\varphi}(x')) = \sum_{i=k+1}^{n} |x_{i} - \varphi_{i}(x')|^{1/a_{i}}, \quad k = 1,..., n-1,$$

$$\pi_{0}(x) = \rho(x - x^{0}), \qquad k = 0.$$

Lemma 2 [2]. Suppose that Ω_k has the form (1). Then $\rho(x, \Gamma_k)$ is equivalent to $\pi_k(x)$ for all $x \in \Omega_k$ more precisely,

$$\exists C_0 > 0, \quad \forall x \in \Omega_k , \quad C_0 \pi_k(x) \le \rho(x, \Gamma) \le \pi_k(x).$$

Let K_{α} be a given on $R_n \setminus \{0\}$ function such that supp $K_{\alpha} \subset R(1/a)$ and having the following properties:

- a) $K_{\alpha}(x) = \rho(x)^{a-|a|}$ for $0 < \alpha < |a|$;
- b) if $\alpha = 0$, then K_0 satisfies the following conditions

$$K_0(t^a x) = t^{-|a|} K_0(x), \quad \int_{S_k} K_0(x) \sum_{i=1}^n a_i x_i^2 d\sigma(x) = 0, \quad \int_0^1 \omega_{K_0}(t) \frac{dt}{t} < \infty,$$

where $\omega_{K_0}(t) = \sup\{K_0(x) - K_0(y) | x, y \in S_k, |x - y| \le t\}$, $S_k = S \cap \Omega_k$, k = 0,1,...,n-1, $S = \{x : \rho(x) = 1\}$ and $d\sigma$ is area element.

Consider the integral operator $K_{\alpha}: f \to K_{\alpha}f$, where

$$K_{\alpha}f = \int_{\mathbb{R}^n} K_{\alpha}(y) f(x+y) dy$$
, supp $K_{\alpha} \subset R(1/a)$.

The weight ω is said to belong to $A_p(\Omega_k)$, k = 0,1,...,n-1, 1 , if

$$\sup \left(\frac{1}{|B|} \int_{B \cap \Omega_{k}} \omega(x) dx\right) \left(\frac{1}{|B|} \int_{B \cap \Omega_{k}} \omega(x)^{1-p'} dx\right)^{p-1} < \infty,$$

where the supremum is taken over all balls $B \subset \mathbb{R}^n$, and $p' = \frac{p}{p-1}$.

Theorem 1. Let $0 \le \alpha < |a|, 1 < p < \frac{|a|}{\alpha}, \frac{1}{p} - \frac{1}{q} = \frac{\alpha}{|a|}$. Suppose that the function $\varphi \in A_{\frac{1+q}{p'}}(\Omega_k)$.

Then there exists a positive constant C such that for any $f \in L_{p,\phi}(\mathbb{R}^n)$ the following inequalities

$$\left(\int_{\Omega_k} \left| K_{\alpha} \left(f \cdot \varphi^{\frac{\alpha}{|\alpha|}} \right) (x) \right|^q \varphi(x) dx \right)^{1/q} \leq C \left(\int_{\Omega_k} \left| (f(x)) \right|^p \varphi(x) dx \right)^{1/p}.$$

If $\alpha = 0$, then assume that, the kernel of anisotropic singular integral operator (ASIO) K_0 satisfies the condition b).

Note that, if $\Omega_k = R^n$, then for $0 < \alpha < |a|$ the theorem 1 in the isotropic case was proved in [4] and in the anisotropic case in [5], but also for $\alpha = 0$ in the isotropic case was proved in [6], and in the anisotropic case in [7]. In the case of for all domains Ω_k the prove of theorem 1 lead analogously.

Theorem 2. Let
$$1 , $0 \le \alpha < |a|$, $\alpha = |a| \left(\frac{1}{p} - \frac{1}{q}\right)$ and $\varphi \in A_{1 + \frac{q}{p'}}(\Omega_k)$ the$$

radial function depend on $\rho(x,\Gamma_k)$ (i.e. $\varphi(x)=\varphi(\rho(x,\Gamma_k))$). Suppose that u and u_1 are the positive monotone function on $(0,\infty)$.

Suppose that the weight pair of radial function $(\omega(t), \omega_1(t))$ satisfies the conditions 1) or 2):

1) ω and $\omega_1 = u_1 \varphi$ are weights defined on $(0, \infty)$

$$\exists C > 0, \ \forall t \in (0, \infty), \ \omega_1(t)^{p/q} \le C \varphi(t)^{-\frac{\alpha p}{|a|}} \omega(t)$$

where u_1 is increasing function on $(0,\infty)$;

2) $\omega = u\varphi$ and $\omega_1 = u_1\varphi$ are weights defined on $\omega = u\varphi$ and

$$\sup_{t>0} \left(\int\limits_0^{t/2} \omega_1(\tau) \tau^{|a''|-1} d\tau \right)^{p/q} \left(\int\limits_0^{\infty} \left(\varphi(\tau)^{-\frac{\alpha p}{|a|}} \omega(\tau) \right)^{1-p'} \tau^{-1-|a''|} p'/q d\tau \right)^{p-1} < \infty,$$

where u and u_1 are decreasing function on $(0,\infty)$ and $\varphi(\rho(x,\Gamma_k))$ is equivalently to $\varphi(\pi_k(x))$.

Then if $1 , then the operator <math>f \to K_{\alpha} f$ gives a bounded mapping from $L_{p,\omega}(\Omega_k)$ to $L_{q,\omega_k}(\Omega_k)$, i.e.

$$\left(\int_{\Omega_{k}} \left| K_{\alpha} \left(f \cdot \varphi^{\frac{\alpha}{|\alpha|}} \right) (x) \right|^{q} \omega_{1}(\rho(x, \Gamma_{k})) dx \right)^{1/q} \leq C \left(\int_{\Omega_{k}} \left| f(x) \right|^{p} \omega(\rho(x, \Gamma_{k})) dx \right)^{1/p}. \quad (2)$$

In the case $\alpha=0$, assume that, the kernel of ASIO K_0 satisfies the b). In this case the operator K_0 acts boundedly from $L_{p,\omega}(\Omega_k)$ to $L_{p,\omega_1}(\Omega_k)$.

Proof of theorem 2. Let $f \in L_{p,\omega(\rho(x,\Gamma_k))}(\Omega_k)$ and suppose that the weight pair $(\omega(\rho(x,\Gamma_k)), \omega_1(x,\Gamma_k))$ satisfies condition 1) of theorem 2.

Without restriction of generality we may assume that the function u has the form $u_1(t) = u_1(0) + \int_0^t \psi(t) d\tau$, where $u_1(0) = \lim_{t \to 0} u_1(t)$ and ψ is non-negative on $(0, \infty)$ function.

In fact there exists a sequence of absolutely continuous functions u_n such that $u_n(t) \le u(t)$ and $\lim_{n \to \infty} u_n(t) = u(t)$ for any $t \in (0, \infty)$. For such functions we may take $u_n = u_n(t) = u_n(t)$

$$= u(+0) + n \int_{0}^{t} \left[u(\tau) - u(\tau - \frac{1}{n}) \right] d\tau.$$

Estimate the left-hand side of inequality (2):

$$\left\| K_{\alpha} \left(f \cdot \varphi^{\frac{\alpha}{|a|}} \right) \right\|_{L_{a,m}(\Omega k)} \leq \left(u_{1} \left(0 \right) \int_{\Omega_{k}} \left| K_{\alpha} \left(f \cdot \varphi^{\frac{\alpha}{|a|}} \right) (x) \right|^{q} \varphi(\rho(x, \Gamma_{k})) dx \right)^{1/q} +$$

[Guliev V.S., Bandaliev R.A.]

$$+ \left(\int_{\Omega_k} \left| K_{\alpha} \left(f \cdot \varphi^{\frac{\alpha}{|\alpha|}} \right) (x) \right|^q \left(\int_0^{\rho(x, \Gamma_k)} \psi(\tau) d\tau \right) \varphi(\rho(x, \Gamma_k)) dx \right)^{1/q} = A_1 + A_2.$$

If $u_1(0) = 0$, then $A_1 = 0$. However if $u_1(0) \neq 0$, then by theorem 1 and also by condition theorem 2 we have

$$A_{1} \leq C_{1}u_{1}^{\frac{1}{q}}\left(0\right)\left(\int_{\Omega_{k}}\left|f(x)\right|^{p}\varphi(x)dx\right)^{1/p} \leq C_{1}\left(\int_{\Omega_{k}}\left|f(x)\right|_{B}^{p}\varphi(x)u_{1}^{\frac{p}{q}}\left(\rho(x,\Gamma k)\right)dx\right)^{1/p} \leq C_{2}\left(\int_{\Omega_{k}}\left|f(x)\right|^{p}\omega(\rho(x,\Gamma k))dx\right)^{1/p}.$$

Estimate A_2 . It is not hard to prove that $\pi_k(y) > \pi_k(x)$ for $x \in \Omega_k$ and $y \in R(1/a)$, k = 0,1,...,n-1. If use the fact that $K_{\alpha}(x)$ is zero outside the horn R(1/a), then in view of the condition 1), theorem 1 and lemma 2, we obtain

$$A_{2} = \left(\int_{0}^{\infty} \psi(\tau) d\tau \int_{\rho(x,\Gamma_{k}) > \tau} \left| K_{\alpha} \left(f \cdot \varphi^{\frac{\alpha}{|a|}} \right)(x) \right|^{p} dx \right)^{1/q} =$$

$$= \left(\int_{0}^{\infty} \psi(\tau) d\tau \int_{\pi_{k}(x) > \tau/c} \left| \int_{\pi_{k}(y) > \pi_{k}(x)} K_{\alpha}(y - x) f(y) \varphi^{\frac{\alpha}{|a|}}(y) \right|^{q} dx \right)^{1/q} =$$

$$= \left(\int_{0}^{\infty} \psi(\tau) d\tau \int_{\pi_{k}(x) > \tau/c} \left| \int_{\pi_{k}(y) > \tau/c} K_{\alpha}(y - x) f(y) \varphi^{\frac{\alpha}{|a|}}(y) \right|^{q} dx \right)^{1/q} \le$$

$$\leq C \left[\int_{0}^{\infty} \psi(\tau) d\tau \left(\int_{\pi_{k}(x) > \tau/c} \left| f(x) \right|^{p} \varphi(x) dx \right)^{q/p} \right]^{1/q} \le C \left[\int_{\Omega_{k}} \left| f(x) \right|^{p} \varphi(x) \left(\int_{0}^{c\pi_{k}(x)} \psi(\tau) d\tau \right)^{p/q} dx \right]^{1/p} \le$$

$$\leq C \left[\int_{\Omega_{k}} \left| f(x) \right|^{p} \varphi(x) u_{1}(c\pi_{k}(x))^{p/q} dx \right]^{1/p} \le C \left[\int_{\Omega_{k}} \left| f(x) \right|^{p} \varphi(x) u_{1}(\rho(x,\Gamma_{k}))^{p/q} dx \right]^{1/p} \le$$

$$\leq C \left[\int_{\Omega_{k}} \left| f(x) \right|^{p} \varphi(x) u_{1}(c\pi_{k}(x))^{p/q} dx \right]^{1/p} \le C \left[\int_{\Omega_{k}} \left| f(x) \right|^{p} \varphi(x) u_{1}(\rho(x,\Gamma_{k}))^{p/q} dx \right]^{1/p} \le$$

The first part of theorem 2 is proved.

We now consider the case weight pair (ω, ω_1) satisfies the condition 2).

Let u_1 be an arbitrary positive decreasing on $(0,\infty)$ and let us extend the function u_1 on the left of zero by $u_1(\infty)$. Consider the sequence of functions

$$\mathcal{G}_n(t) = u_1(\infty) + \int_{t}^{\infty} \psi_n(\tau) d\tau,$$

where $\psi_n(\tau) = n[u_1(\tau) - u_1(\tau + 1/n)]$. Since u_1 decreases we have $\psi_n(\tau) \ge 0$. On the other hand,

$$\mathcal{G}_n(t) = n \int_{1}^{t+1/n} u_1(\tau) d\tau ,$$

and thus $\mathcal{G}_n(t) \le u_1(t)$ and $\lim_{n \to \infty} \mathcal{G}_n(t) = u_1(t)$ a.e. t > 0. Consequently

$$\lim_{n\to\infty} \mathcal{G}_n(\rho(x,\Gamma_k)) = u_1(\rho(x,\Gamma_k))$$

for almost $x \in \Omega_k$ (see [3, 10])

Without restriction of generality we may assume that the function u_1 has the form

$$u_1(t) = u_1(\infty) + \int_{t}^{\infty} \psi(\tau) d\tau$$

where $u_1(\infty) = \lim_{t \to +\infty} u_1(t)$ and ψ is positive on $(0,\infty)$ function.

In [8, lemma 3] (for $1 see[9, lemma 2.5]), if <math>b \ge 1$, then there exists a positive constant c such that for an arbitrary t > 0 the inequality

$$u_1^{\frac{p}{q}} \left(\frac{t}{\beta} \right) \le cu(t) \tag{3}$$

holds, where c depend only on |a| and β

We have

$$\left| K_{\alpha} \left(f \cdot \varphi^{\frac{\alpha}{|a|}} \right) \right|_{L_{q,\omega_{1}(\rho(x,\Gamma_{k}))}(\Omega_{k})} \leq \left(\int_{\Omega_{k}} \left| K_{\alpha} \left(f \cdot \varphi^{\frac{\alpha}{|a|}} \right) (x) \right|^{q} u_{1}(\infty) \varphi(x) dx \right)^{\frac{1}{q}} + \left(\int_{\Omega_{k}} \left| K_{\alpha} \left(f \cdot \varphi^{\frac{\alpha}{|a|}} \right) (x) \right|^{q} \varphi(x) \left(\int_{\varphi(x,\Gamma_{k})}^{\infty} \psi(t) dt \right) dx \right)^{\frac{1}{q}} = B_{1} + B_{2}.$$

If $u_1(\infty) = 0$, then $B_1 = 0$. However if $u(\infty) > 0$, then by theorem 1 we obtain

$$B_1 \leq C u_1^{\frac{1}{q}} \left(\infty \left(\int_{\Omega_k} |f(x)|^p \varphi(x) dx \right)^{\frac{1}{p}} \leq C \left(\int_{\Omega_k} |f(x)|^p \varphi(x) u_1^{\frac{p}{q}} (\rho(x, \Gamma_k)) dx \right)^{\frac{1}{p}}.$$

Using the inequality (3) we get

$$B_1 \leq C \left(\int_{\Omega_k} |f(x)|^p \omega(\rho(x,\Gamma_k)) dx \right)^{\frac{1}{p}}.$$

Now estimate B_2

$$B_{2} = \left(\int_{0}^{\infty} \psi(\tau) \left(\int_{\rho(x,\Gamma_{k}) < \tau} \left| K_{\alpha} \left(f \cdot \varphi^{\frac{\alpha}{|\alpha|}} \right) (x) \right|^{q} \varphi(x) dx \right) d\tau \right)^{\frac{1}{q}} \le$$

[Guliev V.S., Bandaliev R.A.]

$$\leq \left(\int_{0}^{\infty} \psi(\tau) \left(\int_{\rho(x,\Gamma_{k}) < \tau} \varphi(x) \left| \int_{\rho(x,\Gamma_{k}) < \frac{2}{C_{0}} \tau} K_{\alpha}(y-x) f(y) \varphi^{\frac{\alpha}{|a|}}(y) dy \right|^{q} dx \right) d\tau + \left(\int_{0}^{\infty} \psi(\tau) \left(\int_{\rho(x,\Gamma_{k}) < \tau} \varphi(x) \left| \int_{\rho(x,\Gamma_{k}) \geq \frac{2}{C_{0}} \tau} K_{\alpha}(y-x) f(y) \varphi^{\frac{\alpha}{|a|}}(y) dy \right|^{q} dx \right) d\tau \right)^{\frac{1}{q}} = B_{21} + B_{22}.$$

By theorem 1 and by the generalized Minkowski inequality we get

$$B_{21} \leq C \left(\int_{0}^{\infty} \psi(\tau) \left(\int_{\rho(x,\Gamma_{k}) < \tau} \int_{\rho(x,\Gamma_{k}) < \frac{2}{C_{0}} \tau} |f(x)|^{p} \varphi(x) dx \right)^{\frac{q}{p}} dt \right)^{\frac{1}{q}} \leq$$

$$\leq C \left(\int_{\Omega_{k}} |f(x)|^{p} \varphi(x) \left(\int_{\frac{C_{0}\rho(x,\Gamma_{k})}{2}} \psi(\tau) d\tau \right)^{\frac{p}{q}} dx \right)^{\frac{1}{p}}.$$

Using again the inequality (3) we get

$$B_{21} \leq C \left(\int_{\Omega_k} |f(x)|_B^p \omega(\rho(x, \Gamma_k)) dx \right)^{\frac{1}{p}}.$$

Now estimate B_{22} . Since $\varphi(\rho(x,\Gamma_k)) \sim \varphi(\pi_k(x))$, then

$$B_{22} \leq C \left[\int_{0}^{\infty} \psi(\tau) d\tau \int_{\rho(x,\Gamma_{k}) < \tau} \varphi(x) \int_{\rho(y,\Gamma_{k}) \geq 2\tau/c_{0}} \frac{|f(y)| \varphi^{\frac{\alpha}{|a|}}(y)}{\rho(x-y)^{|a|-\alpha}} dy \right]^{q} dx \right]^{1/q} =$$

$$= \left(\int_{0}^{\infty} \psi(\tau) A^{q}(\tau) d\tau \right)^{1/q}.$$

Further by virtue of lemma 2 we have

$$A^{q}(\tau) \leq \int_{\pi_{k}(x) < \tau/c} \varphi(\pi_{k}(x)) \left(\int_{\pi_{k}(y) > 2\tau} \frac{|f(y)| \varphi^{\frac{\alpha}{|a|}}(\pi_{k}(y))}{\rho(x-y)^{|a|-\alpha}} dy \right)^{q} dx =$$

$$= \int_{\rho(x'' - \overline{\varphi}(x')) < \tau/c} \varphi(c\rho(x'' - \overline{\varphi}(x')) dx'' \int_{R^{k}} dx' \left(\int_{R^{k}} dy' \times \frac{1}{|a|} dx' \right) dx' dx' dx' dx'$$

$$\times \int_{\rho(y''-\overline{\varphi}(y'))>2\tau} \frac{\|f(y)\|_B \varphi^{\frac{\alpha}{|a|}}(\rho(y''-\overline{\varphi}(y')))}{\rho(x-y)^{|a|-\alpha}} \right)^q.$$

It is easy to show that

$$\rho(\eta' - \xi', \eta'' + \overline{\varphi}(\eta') - \xi'' - \overline{\varphi}(\xi')) \ge C\rho(\eta - \xi). \tag{4}$$

Indeed,

$$\rho(\eta - \xi) = \rho(\eta' - \xi') + \rho(\eta'' - \xi'' - \overline{\varphi}(\eta') + \overline{\varphi}(\xi') + \overline{\varphi}(\xi') + \overline{\varphi}(\eta') - \overline{\varphi}(\xi')) \le
\le \rho(\eta' - \xi') + 2^{\frac{1}{a_{\min}''}} \left(\rho(\eta'' - \xi'' - \overline{\varphi}(\eta') + \overline{\varphi}(\xi')) + \rho(\overline{\varphi}(\eta') - \overline{\varphi}(\xi'))\right) \le
\le \rho(\eta' - \xi') + 2^{\frac{1}{a_{\min}''}} \rho(\eta'' - \xi'' - \overline{\varphi}(\eta') + \overline{\varphi}(\xi')) + 2^{\frac{1}{a_{\min}''}} M\rho(\eta' - \xi') \le
\le \left(1 + 2^{\frac{1}{a_{\min}''}} M\right) \left[\rho(\eta' - \xi') + \rho(\eta'' - \xi'' - \overline{\varphi}(\eta') + \overline{\varphi}(\xi'))\right] =
= \left(1 + 2^{\frac{1}{a_{\min}''}} M\right) \rho(\eta' - \xi', \eta'' - \xi'' - \overline{\varphi}(\eta') + \overline{\varphi}(\xi')),$$

where $a''_{\min} = \min_{k+1 \le i \le n} a_i$

Making the substitution $\eta' = y'$, $\xi' = x'$, and $\xi'' = x'' - \varphi(x')$, $\eta'' = y'' - \varphi(y')$ and applying the generalized Minkowski inequality we get

$$A(\tau) \leq C \left[\int_{\rho(\xi'') < \tau/c} \varphi(\rho(\xi'')) d\eta'' \int_{R^k} d\xi' \left[\int_{\rho(\eta'') > 2\tau} d\eta'' \times \int_{R^k} \frac{\int_{\rho(\eta'') < 2\tau} \varphi(\eta'') \varphi(\eta'') \varphi(\eta'') \varphi(\eta'')}{\varphi(\xi' - \eta', \xi'' - \overline{\varphi}(\xi') - \eta'' + \overline{\varphi}(\eta'))^{\alpha - |\alpha|}} \right]^q \right]^{1/q} \leq C \left[\int_{\rho(\xi'') < \tau} \varphi(\rho(\xi'')) \left(\int_{\rho(\eta'') > 2\tau} \varphi(\eta'') \varphi($$

where

$$B(\xi'',\eta'') = \left[\int_{\mathbb{R}^k} \left(\int_{\mathbb{R}^k} |f(\eta',\eta'' + \overline{\varphi}(\eta'))| \rho(\eta - \xi)^{\alpha - |a|} d\eta' \right)^q d\xi' \right]^{1/q}.$$

Applying the Young's inequality with $\frac{1}{q} = \frac{1}{p} + \frac{1}{r} - 1$ we get

$$B(\xi'',\eta'') \leq \left(\int_{R^k} \left| f(\eta',\eta'' + \overline{\varphi}(\eta')) \right|^p d\eta' \right)^{1/p} \left(\int_{R^k} \rho(\eta',\eta'' - \xi'')^{(\alpha - |a|)r} d\eta' \right)^{1/r} =$$

[Guliev V.S., Bandaliev R.A.]

$$= f_{1}(\eta'') \left(\int_{R^{k}} \rho(\eta', \eta'' - \xi'')^{-|a|} d\eta' \right)^{1/r} = C f_{1}(\eta'') \times \left(\int_{R^{k}} (\rho(\eta') + \rho(\eta'' - \xi''))^{-|a|} d\eta' \right)^{1/r} \le C f_{1}(\eta'') \rho(\eta'' - \xi'')^{\frac{|a''|}{r}}.$$

For $\rho(\xi'') < \tau$ and $\rho(\eta'') > 2\tau$ it follows $\rho(\xi'' - \eta'') > \frac{1}{2}\rho(\eta'')$. Therefore we have $A(\tau) \le$

$$\leq C \left[\int_{\rho(\xi'') < \tau/c} \varphi(\rho(\xi'')) \left(\int_{\rho(\eta'') > 2\tau} \varphi^{\overline{|a|}}(\rho(\eta'')) \rho(\xi'' - \eta'')^{-|a''|/r} f_1(\eta'') d\eta'' \right)^q d\xi'' \right]^{1/q} \leq C \left[\left(\int_{\rho(\xi'') < \tau/c} \varphi(\rho(\xi'')) d\xi'' \right) \left(\int_{\rho(\eta'') > 2\tau} \varphi^{\overline{|a|}}(\rho(\eta'')) \rho(\eta'')^{-|a''|/r} f_1(\eta'') d\eta'' \right)^q \right]^{1/q} \leq C \left[\int_{0}^{\tau/c} \varphi(t) t^{|a''|-1} dt \right] \int_{2\tau}^{\infty} s^{-|a''|/r+|a''|-1} \varphi^{\overline{|a|}}(s) \left(\int_{S_{++}^{n-h}} f_1(t^{a''} \zeta'') d\sigma(\zeta'') \right) ds ,$$

where $S_{++}^{n-k-1} = \{x'' : x'' \in R_{++}^{n-k}; \rho(x'') = 1\}.$

Consequently,

$$B_{22} \leq C \left[\int_{0}^{\infty} \psi(\tau/2) \left(\int_{0}^{\tau/2c} \varphi(t) t^{|a''|-1} dt \right) \left(\int_{\tau}^{\infty} t^{-|a''|/r + |a''|-1} \varphi^{\frac{\alpha}{|a|}}(s) \times \left(\int_{S_{++}^{n-k-1}} f_1(t^{a''} \zeta'') d\sigma(\zeta'') \right) dt \right)^q d\tau \right]^{1/q}.$$

Besides, we have

$$\int_{0}^{t} \psi\left(\frac{\tau}{2}\right) \left(\int_{0}^{\tau/2c} \varphi(s) s^{|a''|-1} ds\right) d\tau \leq \int_{0}^{t/2} \psi(t) \left(\int_{0}^{\tau/c} \varphi(s) s^{|a''|-1} ds\right) d\tau =$$

$$= \int_{0}^{t/2} \varphi(s) s^{|a''|-1} \left(\int_{cs}^{t/2} \psi(\tau) d\tau\right) \leq \int_{0}^{t/2} u_{1}(s) \varphi(s) s^{|a''|-1} ds = \int_{0}^{t/2} \omega_{1}(s) s^{|a''|-1} ds.$$

Therefore

$$\begin{split} &\left(\int_{0}^{t} \psi\left(\frac{\tau}{2}\right) \left(\int_{0}^{\tau/2c} \varphi(s) s^{|a''|-1} ds\right) d\tau\right)^{p/q} \left(\int_{t/c}^{\infty} \left(\varphi(\tau)^{-\frac{\alpha p}{|a|}} \omega(\tau)\right)^{1-p'} \tau^{-1-|a''|p'/q} d\tau\right)^{p-1} \leq \\ &= \left(\int_{0}^{t/2} \omega_{1}(\tau) \tau^{|a''|-1} d\tau\right)^{p/q} \left(\int_{t/c}^{t} \left(\varphi(\tau)^{-\frac{\alpha p}{|a|}} \omega(\tau)\right)^{1-p'} \tau^{-1-|a''|p'/q} d\tau\right)^{p-1} < \infty \; . \end{split}$$

Take into account the last inequality and theorem 1.7 from [3], we have

$$\begin{split} &\left[\int\limits_{0}^{\infty} \psi(\tau/2) \left(\int\limits_{0}^{\tau/2c} \varphi(t) t^{|a''|-1} dt\right) \left(\int\limits_{\tau}^{\infty} \delta^{-|a''|/r+|a''|-1} \varphi^{\frac{\alpha}{|a|}}(\delta) \times \right. \\ &\left. \times \left(\int\limits_{S_{++}^{n-k-1}} f_1 \left(\delta^{a'} \zeta''\right) d\sigma(\zeta'')\right) d\delta\right)^q d\tau \right]^{1/q} \leq \\ &\leq C \left(\int\limits_{0}^{\infty} t^{\frac{|a''|p}{r} + \left(|a''|-1\right)p} \left(\int\limits_{S_{++}^{n-k-1}} f_1 \left(t^{a'} \zeta''\right) d\sigma(\zeta'')\right)^p \omega(t) t^{-\frac{|a''|p}{r} + \left(|a''|-1\right)(p-1)} dt\right)^{1/p} = \\ &= C \left(\int\limits_{0}^{\infty} t^{|a''|-1} \left(\int\limits_{S_{++}^{n-k-1}} f_1 \left(\delta^{a''} \zeta''\right) d\sigma(\zeta'')\right)^p \omega(t) dt\right)^{1/p} \leq C \left(\int\limits_{R_{++}^{n-k}} f_1 (\eta'')^p \omega(\rho(\eta'')) d\eta''\right)^{1/p} = \\ &= \left(\int\limits_{R_{++}^{n-k}} \int\limits_{R^k} |f(\eta', \eta'' + \overline{\varphi}(\eta'))|_B^p \omega(\rho(\eta'')) d\eta'' d\eta'\right)^{1/p} = C \left(\int\limits_{\Omega_k} |f(y)|^p \omega(\pi_k(y)) dy\right)^{1/p} \leq \\ &\leq \left(\int\limits_{\Omega_k} |f(y)|^p \omega(\rho(y, \Gamma_k)) dy\right)^{1/p}. \end{split}$$

The theorem is proved.

From this theorem the following corollaries imply.

Corollary 1. Let $1 and <math>\alpha = |a| \left(\frac{1}{p} - \frac{1}{q}\right)$. Then the operator $f \to K_{\alpha}f$ acts boundedly from $L_{p,\rho(x,\Gamma_k)^{\beta}}(\Omega_k)$ to $L_{q,\rho(x,\Gamma_k)^{q\beta/p}}(\Omega_k)$ for any $\beta > 0$ and k = 0,1,2,...,n-1.

In the case $1 , the ASIO <math>f \to K_0 f$ acts boundedly from $L_{p,\rho(x,\Gamma_k)^\beta}(\Omega_k)$ to $L_{p,\rho(x,\Gamma_k)^\beta}(\Omega_k)$.

Corollary 2. Let $1 and <math>\alpha = |a| \left(\frac{1}{p} - \frac{1}{q}\right)$. Then the operator $f \to K_{\alpha}f$ acts boundedly from $L_{p,\exp\left(\rho(x,\Gamma_k)^{\beta}\right)}(\Omega_k)$ to $L_{q,\exp\left(\rho(x,\Gamma_k)^{\beta}\right)}(\Omega_k)$ for any $\beta > 0$ and k = 0,1,2,...,n-1.

In the case $1 , the ASIO <math>f \to K_0 f$ acts boundedly from $L_{p,\exp(\rho(x,\Gamma_k)^g)}(\Omega_k)$ to $L_{p,\exp(\rho(x,\Gamma_k)^g)}(\Omega_k)$.

Corollary 3. Let $1 and <math>\alpha = \left| a \left(\frac{1}{p} - \frac{1}{q} \right) \right|$. Then for any increasing radial function $\omega(x)$ the operator $f \to K_{\alpha}f$ acts boundedly from $L_{p,\omega(\rho(x,\Gamma_k))}(\Omega_k)$ to $L_{q,\omega(\rho(x,\Gamma_k))^{q/p}}(\Omega_k)$.

In the case $1 the ASIO <math>f \to K_0 f$ acts boundedly from $L_{p,\omega(\rho(x,\Gamma_k))}(\Omega_k)$ to $L_{p,\omega(\rho(x,\Gamma_k))}(\Omega_k)$.

[Guliev V.S., Bandaliev R.A.]

The weight anisotropic space Sobolev $W^{l_1,...,l_n}_{p,\omega_0,\omega_1,...,\omega_n}(\Omega_k)$ is defined as the collection of all function $f(x) \in L^{loc}_1(\Omega_k)$, $x \in \mathbb{R}^n$, having the generalized derivatives $D^{l_i}_i f$ with the finite norm

$$\left\|f\right\|_{W_{p,\omega_0,\omega_1,\dots,\omega_n}^{l_1,\dots,l_n}\left(\Omega_k\right)} = \left\|f\right\|_{L_{p,\omega_0}\left(\Omega_k\right)} + \sum_{i=1}^n \left\|D_i^{l_i}f\right\|_{L_{p,\omega_i}\left(\Omega_k\right)},$$

where l_i non-negative integers and $1 \le p < \infty$.

We give an integral representation of Il'in-Besov in terms of generalized derivatives of function in R(l) (see [1]):

$$f(x) = f_{h^a}(x) + \sum_{i=1}^n \int_0^h v^{-|a|} dv \int_{R^n} D_i^{l_i} f(x+y) \Phi_i(yh^{-a}) dy, \quad x \in \Omega_k,$$

where $a_i = 1/l_i$, i = 1,...,n and $f_{h^a}(x) = h^{-|a|} \int_{R^n} \Phi_0(yh^{-a}) f(x+y) dy$ is the average of f

and $\int_{R^n} \Phi_0(x) dx = 1$. The smooth compactly supported kernels $\Phi_i \in C_0^{\infty}(R^n)$ are

concentrated in an arbitrary previously specified cube in the first coordinate angle and are such that

$$\int_{R^n} \Phi_i(x) dx = 0 , \quad i = 1, ..., n.$$

By virtue of this integral representation we prove the following imbedding theorems.

Theorem 3. Let a = 1/l, $1 , <math>\mathfrak{X} = (v + 1/p - 1/q, 1/l) \le 1$ and $\mathfrak{X} = (v, 1/l) = 1$, where $v = (v_1, ..., v_n)$, and v_i are non-negative integer number. Suppose that the weight pairs (ω, ω_i) j = 0, 1, ..., n, satisfy the conditions of theorem 2.

Then the continuous imbedding

$$D^{\nu}W_{p,\omega_{0}(\rho(x,\Gamma_{k})),\ldots,\omega_{n}(\rho(x,\Gamma_{k}))}^{l_{1},\ldots,l_{n}}(\Omega_{k})\subset L_{q,\omega(\rho(x,\Gamma_{k}))}(\Omega_{k})$$

is valid.

Further, the inequality

$$\left\|D^{\nu}f\right\|_{L_{a,\omega}(\Omega_{k})} \leq C\left\|f\right\|_{W_{p,\omega_{0},\ldots,\omega_{n}}^{l_{1},\ldots,l_{n}}(\Omega_{k})}$$

holds, with a constant C is independent of f.

Proof of theorem 3. Applying the differentiation operation D^{ν} to equality

$$f_{\varepsilon^{\lambda}}(x) = f_{h^{\lambda}}(x) + \sum_{i=1}^{n} \lambda_{i} \int_{\varepsilon}^{h} \mathcal{G}^{|\lambda|} d\mathcal{G} \int_{R^{n}} L_{i}(\mathcal{G}^{-\lambda} y) D_{i}^{l_{i}} f(x+y) dy$$

and theorem 2, we get

$$\left\| \int_{\varepsilon}^{h} \mathcal{G}^{|\lambda| - (\nu, \lambda)} d\mathcal{G} \int_{\Omega_{k}} L_{i}^{(k)} (\mathcal{G}^{-\lambda} y) D_{i}^{l_{i}} f(x + y) dy \right\|_{L_{0, o}(\Omega_{k})} \leq C \left\| D_{i}^{l_{i}} f \right\|_{L_{p, o_{1}}(\Omega_{k})}.$$

Besides.

$$\left\|D^{\nu}f_{h^{\lambda}}\right\|_{L_{p,\omega}\left(\Omega_{k}\right)}\leq C\left\|f\right\|_{L_{p,\omega_{0}}\left(\Omega_{k}\right)}.$$

Thus, combining the estimates we obtain

$$\left\|D^{\nu}f_{\varepsilon^{\lambda}}\right\|_{L_{p,\omega}(\Omega_{k})} \leq C \|f\|_{W^{l_{1},\dots,l_{n}}_{p\varpi_{0},\omega_{1}}(\Omega_{k})}.$$

To conclude the proof of the theorem two facts are established: first, it is proved that $D^{\nu}f_{\varepsilon^{\lambda}}$ converges to some element of $L_{p,\omega}(\Omega_k)$ for $\varepsilon \to 0$, second, it is proved that this limit element is the generalized derivative $D^{\nu}f$ of the function f to which the $f_{\varepsilon^{\lambda}}$ converge for $\varepsilon \to 0$.

For the proved of converges $D^{\nu}f_{\varepsilon^{\lambda}}$ to some element of $L_{p,\omega}(\Omega_{k})$ for $\varepsilon \to 0$, it is proved that the sequence $\{D^{\nu}f_{\varepsilon^{\lambda}}\}$ is fundamental at norm $L_{p,\omega}(\Omega_{k})$.

We have

$$\begin{split} \left\|D^{\nu}f_{\varepsilon^{\lambda}} - D^{\nu}f_{\eta^{\lambda}}\right\|_{L_{p,\omega}(\Omega_{k})} &\leq C\sum_{i=1}^{n}\int\limits_{\varepsilon}^{\eta}\upsilon^{-\varpi}d\upsilon \|M_{i}\|_{L_{1,\omega}(\Omega_{k})} \|D_{i}^{l_{i}}f\|_{L_{p,\omega}(\Omega_{k})} \leq \\ &\leq C\eta^{1-\varpi} \|D_{i}^{l_{i}}f\|_{L_{p,\omega}(\Omega_{k})}, \end{split}$$

where $0 < \varepsilon < \eta$.

Then by theorem Lebesgue we conclude that the sequence $\{D^{\nu}f_{\varepsilon^{2}}\}$ is Cauchy sequence.

Hence in view of the fact that the space $L_{p,\omega}(\Omega_k)$ is complete, then $D^v f_{\varepsilon^\lambda}$ converges to some element g of $L_{p,\omega}(\Omega_k)$ for $\varepsilon \to 0$. By the definition of generalized derivative in the sense of Sobolev at each a fixed ε for arbitrary function $\psi \in C_0^\infty(\Omega_k)$ the equality

$$\int_{R^n} D^{\nu} \psi f_{\varepsilon^{\lambda}} dx = (-1)^{|\nu|} \int_{R^n} \psi D^{\nu} f_{\varepsilon^{\lambda}} dx$$

holds.

Taking into account, that $f \in L_1^{loc}(\Omega_k)$ and mean $f_{\varepsilon^{\lambda}} \to f$ in $L_1^{loc}(\Omega_k)$ and passing to the limit for $\varepsilon \to 0$ we give:

$$\int_{R^n} D^{\nu} \psi f(x) dx = (-1)^{|\nu|} \int_{R^n} \psi(x) g(x) dx$$

from that imply the limit element g of the sequence $\{D^{\nu}f_{\varepsilon^{\lambda}}\}$ is generalized derivative $D^{\nu}f$ function f.

The theorem is proved.

References

- [1]. Besov O.V., Il'in V.P., Nikolskii S.M. *Integral representations of functions and imbedding theorems.* M.: "Nauka", 1975 (in Russian); English transl., Vols.1,2, Wiley, New-York, 1979.
- [2]. Nikolskii Yu.S. *Imbedding theorems of weighted anisotropic spaces of differentiable functions.* Proc.MIRAN, 1992, v.201, p.302-323. (in Russian)
- [3]. Guliev V.S. Two-weighted inequalities for integral operators in L_p spaces, and their applications. Proc. of the Steklov Inst. of Math., 1994, 204, p.97-115. (in Russian)
- [4]. Muchenhoupt B., Wheeden R. Weighted norm inequalities for fractional integrals. Trans.AMS, 1974, 192, p.261-274.

[Guliev V.S., Bandaliev R.A.]

- [5]. Gabibzashvili M.A., Kokilashvili V. Fractional anisotropic maximal functions and potentials in weighted spaces. –Dokl.Akad.Scien. of USSR, 1985, 282, №6, p. 1304-1306. (in Russian)
- [6]. Coifman R.R., Fefferman C. Weighted norm inequalities for maximal functions and singular integral. Stud.math., 1974, v.51, p.241-250.
- [7]. Rokman I.M., Solonnikov V.A. Weighted L_p estimates for singular integrals with anisotropic kernel. Zap,scien. sem. LOMI AS USSR, 1985, v.147, p.124-137. (in Russian)
- [8]. Meskhi A. Two-weight inequalities for potential defined on homogeneous group. Proc.Razmadze math.Inst., 1987, v.112, p.90-111. (in Russian)
- [9]. Kokilashvili V., Meskhi A. Two-weight inequalities for singular integrals defined on homogeneous groups. Proc.Razmadze Math.Inst., 1987, v.112, p.57-90. (In Russian)

Vagif S. Guliev, Rovshan A. Bandaliev

Institute of Mathematics & Mechanics of NAS Azerbaijan. 9, F.Agayev str., 370141, Baku, Azerbaijan. Tel.:39-47-20(off.).

Received September 24, 2001; Revised December 12, 2001. Translated by authors.