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GASYMOV T.B.

ON BASISNESS OF EIGEN- FUNCTIONS OF DISCONTINUOUS SECOND
ORDER DIFFERENTIAL OPERATOR

Abstract

In paper the spectral on finite segment problem for discontinuous second order
differential operator with alternating high coefficient and with discontinuous boundary
conditions is considered. A class of regular boundary conditions is selected and for
regular boundary problems the asymptotic of eigenvalues and Green- function has been
got, the basis properties of eigen- and associated functions in the space L,,1<p<wx

have been studied.

Let’s consider the spectral problem for the second order differential operator

1(0)= po ()" + pi ()" + Py (x)y = 2y (1)
with the boundary conditions
2 k\/ . .
1, ()= X @y +0)+ By (x, —0))=0, v=14, )

s=1 j=0
—w<a=x,<x <X,=b<+w,0<k, <1, p,(x), p,(x)e L (a,h), and the function p,(x)
on each interval (x,,,x,) has the form: p,(x)= p,,(x)e™,0< 0, <27, p,(x) is a
positive absolutely continuous on [xH,xs] function. The expression l(y) and boundary
conditions (2) define in space L, (a,b), 1< p<ow, linear operator L with domain
D(L)z {y (Ve sz(xo,xl)@) sz(xl,xz),uv(y)z 0,v =1,_4}, acting by the rule Ly = l(y).

In the present paper the asymptotic formulas for eigenvalues and Green’s
function of operator L — A/ are obtained, basic properties of eigen- and associated
functions of operator L in the space L, (a,b) , | < p<oo are studied. Such questions for
discontinuous differential operators were investigated in details in [1-5]. In [1-3]
po(x)=1, p,(x)eW!(a,b) and in [5] p,(x)eW; ™ (xx,)D W (x,,x,), k=01,
Do (x)> 0. The first order differential operator with piecewise-constant higher
coefficients is considered in [4]. As distinct from the mentioned works in the present

paper conditions on functions p, (x) and pl(x) were relaxed, particularly, p, (x) may be
alternating function.

Let’s assume that A =—p° and denote by m,,,m,, the different square roots of
the complex number —e'® , s=1,2. Let consider the following angles in complex p-
plane

o _
Ssyz{p:%Sargpe 2 S@}, y=03, s=1,2.

As it follows from [6] it is valid the following.
Assertion 1. On each segment [xs_l,xs], s =12 equation (1) has two linear

independent solutions y,(x), y,,(x) which are regular on peS,, and at sufficiently

large | p| have the asymptotics
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Vi(x )=(paak)’ pne 0y (el +o(0)].

_ds B -
Nrach ()= (P, (x)) 2, (x),

e

1. Regular boundary conditions. Suppose @, =a,, Vy (x,), B, =

j=01; k,s=12; a

—=

=B Vi, (xx). Let m= (ml,mz) be a multi-index, where m_ adopts the Values -1;-0;

+0;+1. We’ll determine numbers 6, = det( jk), v =1,_4; k,s =12, where elements d,

are defined depending upon values of indices m, by the following way:

s _ s _ k, _1-
dvl - vs 31 b de vsa)32 > if mg = 1 >
S v s __ kv T — .
d = a)vl ’ dv2 = PuDs2 if mg = -0 ’ (4)
S M —_ .
di =a,0%,d,=a,w, if m =+0;
s —_— v s —_— v 1 —
dvl - vsa)sl H dv2 - avsa)SZ s lf ms - +1 .
9270
From the definition of numbers @, it follows that 0 , =-w.,, ®,, =e¢ ? ®,,.
sk K s2 2k 1k

From here immediately follows the correctness of the following statement.
Assertion 2. For multi-indices m, with |m| =2 all the numbers 6, on absolute
value are equal: |¢9m| =0

Definition 1. The boundary conditions (2) are called regular if number 6 is non-
zero.

Denote by A( p) the characteristic determinant of problem (1), (2), i.e.
Alp)= detu, vy 755 )

where y, (x), Ve (x) is a fundamental system of solution of equation (1) from assertion 1,

and u,, are linear forms of y(j )(XH + O) , y(j )(xs - O) defined by the equality
kV . .
Uy (.ysk ) = Z(avsjy.gli)('xs—l + O) + ﬂvyygl{t)('x€ - O)) (6)
=0
Definition 2. The boundary conditions (2) are called strongly regular, if they are
regular and zeros of the characteristic determinant A(p) are asymptotically simple and

separated.
The main properties of function A(p) are led in the following lemma.

Lemma 1. Let A(p) be the characteristic determinant of regular problem (1),

(2). Then:
1°. For any number &>0 there exist such constant m, >0, depending on

function A(p), that on the set obtained from complex p-plane by throwing out ¢-
neighbourhoods of zeros of A(p) the inequality

> ® =
= 1
A(p) = m , ®=k +-+k, (7)
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holds.
2" Number of zeros of function A(p) in circular ring {f:rS|p|<r+l} is

bounded by a constant independent on v, these zeros can be divided into 4 series with
the asymptotics

Pros = izl+0(1)), I=1.2,... (8)

Dy O (xs ) (
if ¢, # 0, and into 2 series with the asymptotics
1

o, (e (x, ) T, (xz ))(

irl+0(1)), I=12,... 9)

Prr =

e =0,.
Proof. Substituting asymptotic formulas (3) for y,, (x) into (6) and taking into

Toodr
): _r
x:[l v pOs E[)
u,(r)=(p0, )" (o, ]+ [, Jer ), (10)
Here and later on we use denotation [A]: A+ 0(1), p| — o, Substituting (10) into (5)

and taking the common multiplier in rows out the determinant sign, we obtain

2 df
Ap)=p* Y16, ]e"* = p*A,(p), (11)

|m|=0

account that o, (xs >0, we obtain

where @ =k, +k, + ks +k,, m=(m,m,),
+1,+0 (]il|:1,|i 0|:0); numbers 6,

Q, =0, if m =%0,Q, =o,a/x,), if m =1,Q, =w,a,(x,) if m=-1. Let

numbers @, @, be enumerated such that (see [7]) for all peS the inequality

sl»

m|:|m1|+|m2, m,, m, possess the values

are defined by (4); W, =Q,, +Q, , moreover

Re po,, <Re pw,, holds. Consider half-string TT, (k)= { pp=¢ exp(é((ps (k- 1)7[)),

Re§20,|lm§|sh }, k,s =1,2. Note, that at p 6<|p|SR0, where R, is sufficiently

large number, inequality (7) is obvious. Therefor, at sufficiently large |p

, having
asymptotic representation (11) and taking into account that &, for |m| =2 are different
from zero, number 4 may be chosen so large that on boundaries of strings IT, (h) the
following inequality will be satisfied
0<¢ <|A0(p] e_H(p)<c2 <o,

where H (p) is a Minkowsky function [8] of rectangular D with vertices at points
@y ,s,k=1,2. It means, that function Ao(p) belongs to the class S, of integer
functions of exponential type and assertion and the fist part of assertion 2 follow from
assertion 1° theorem 2,2 of paper [8].

Let ¢, #, and p eI, (k). In this case Re pw,, <0,Re pw,, >0 and from (11)
it follows that

AO(P) =¢ pmzzaz(XZ)([H(H,A)]emllml )y [9(70,71) + 9(+o,71)]+ [9(71,71)]3[7@12% (xl))-
At pelly, (h) we have Re pw,, <0, Re pw,, >0 and from (11) we obtain
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Ay(p)=erm (xl)([0(_1&1)]6,0&;2,%()(2) + [0(—1,—0) + 9(—1,+0)]+ [9(—1,—1)]epw22a2(X2)).

Now by repeating analogous reasoning from [7, p.80-83] we obtain formulas (8).
In the case @, =¢, numbers ®,, and ®,, coincide. In accordance with this

1, (k) and I, (k) also coincide. Therefore, from (11) taking into account, that
®,, =—,,, We obtain

Ao(p): e*wn(‘ll(xl Fraa(x,)) ([0 ] 2 poy; (a (x e (%) [‘9 1.-1) ]ezpwnal()ﬁ) + [0(+1,+0) + 0(+1,—0)]X
pany (2a (x Jray (x,)) [9 0) + 9( )] poni (e (x ey (%)) + [9 Zo+1) + 9(+0 " )kpwll(al(xl)""zaz(xz)) +

[9 (-0,-1) +9(+o 1)]‘3/0{0“01l %) [‘9 -1,-0) +¢9( 1+o)]epm“a2()r2)+(‘9( ))ezpwl]%(XZ)+[‘9(—1,—1)])'

In this case the validity of formula (9) follows from lemma 1 of paper [9, p.113].
An important part later on plays the following lemma.

xe +0,+

—1,+1

Lemma 2. For Green’s function of the operator L+ p*I generated by regular
boundary value problem (1), (2) the following asymptotic representation is valid
2
2pG(x 5 P ) Os‘r(x é ,0) ZAs‘rkj(xagap)usk(x’p)lgrj(gap)’ (12)
k,j=1

where xe[qu, ] §e[x,1,x] peS, NS, ., st=12;y,y =14

uy (x, p)=exp(pwga,(x)), u,(x, p)=explpo,(a,(x)-a,(x,))), } 13)
9.(& p)=explpay (a.(x,)- (&), 9,(& p)=exp(- po e, (£));
Posr(x,g,p)z at s#t and P,

Oss

(x,f, p) is a regular in the sector S, function

Ay lp) =72 gg,; 0 (P + 0+ v E.0). (14

where ag,; (p) is @ meromorphic function with the poles in zeros of A,(p), at that if from
the sector S,, (1S, we throw out circles of the same radius &>0 and with the centers
at zeros of Ao(p), then in remained part the following estimation
2, (p) < Ce), (15)
and functions @ (x, p) and y ; (§, p) tend to zero as | p| — o uniformly on x € [xH,xS]
and & € [xr_l,xr].
Proof. Let p belong to the fixed sector S, N S, (assume, that intersection is

non-empty) and numbers @, , s,k =1,2 are enumerated such that Re pw, <Re pw,. As

sl —
was shown in [5] at x e [xs X ] e [x, X, ] for Green’s function the following formula
is valid

Glr.&—p?)= H”f(c;;;’p ) detHHO H'H?,

where A(p) is a characteristic determinant, deﬁned by (5); H? and H! are block-

matrices of dimensions 1x5 and 2 x5 respectively, defined by the equalities
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&se Ya Ve

ulr(gr) ulrl UITZ
H) =\u,(g.)|, H=|u, u,|, s7=12,

u3r(gr) u371 u3Tz

u4r(gr) u:l uZQ

where g, =0,,g,, Vi =0,.Vy » Oy, is Cronecker’s symbol,

s

lyrl(x)zz‘l(‘é:)’ lf x72x>(§2xr—1’

g.(x.&.p)= 21
_Eyrl(x)zrl(§)= if x,  <x<&<x;
=) NG
Zn(f):ma ZTZ(g)Zm ; (16)
W(§)=ra()ria €)=y (En(6). (17)

By elementary transformations ([7], p.93-96) of elements of the first column of
determinant Hsr(x,f, p) we reduce to the following form

POST
pkl Pl‘r
])ST :L pk2P2T H
2p
ka P3r
pk4 P4T
Where POsr = 5STPOTT s
L _ ytl(x)zrl(f)ﬂ lf x12x>52xr—1’ (18)
2 o _yTZ(x)ZTZ(f)’ lf xr—l ngggxr 5
1 —pw, oo, (x, o
pkva :Z(e POs> 1(5)[awa)z_2]_ep rl( r( r)‘ r(f))[ﬂwa)rl])' (19)
On the other hand, from (16), (17) and (3) it follows that
1 —paa
7, (&)= e 1(5)[_ 0] (20)

PVOT(f)

Taking into account (18)-(20) and estimation (7), open the determinant
H,,(x.&,p) and divide the obtained addends by A(p) we obtain the statements of the

lemma.

2. Basisness in space L,(a,b),1< p<o. We remind, that the system {e, };" of
elements of Banach space X is called a basis with brackets in this space if there exists
the sequence of indices 0=m, <m; <m, <... such that each element xe X can be
expanded in series

O My

x=3 2.ce;

k=0 j=m, +1
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convergent by norm of X . If m, =k then the system {ek }TO is called simply a basis in

X.

Let’s formulate the main result of the work.

Theorem. Eigen- and associated functions of regular problem (1), (2) form a
basis with brackets in space L, (a,b), 1< p <o and an ordinary basis in this space if the

boundary conditions are strongly regular.
Proof. At first consider the case @, # ¢, . Without loss of generality it can be
%
assumed that ¢, =0 (in opposite case by introducing new spectral parameter p = pe 2

this can be archieved). In this case half-strings IT, (h) and IT,, (h) are arranged along

the positive and negative real axes respectively. If 0< ¢, <7z, then strings Hl,l(h) and
Hz’l(h) completely lie in half-plane S obtained from the half-plane S=S5,,US,; by
shifting for some number z (§ =S+ z). If 7<¢,<27,then IT,, (h)c S5 and in this
case strings Hljl(h) and IT,, (h) are completely in half-plane S . For definiteness
consider case ¢, <z . The case 7 <@, <27 is considered analogously. Let p,,, = p,gl)
and p,,, =p,£2) be zeros of the function Ao(p) lying in poles Hlﬁl(h) and Hz,l(h)
respectively. Write around each point p,gs) circles O, (g)z {p : ‘ p— p,(f)‘ < e}, s=1,2 and

form the domain G, (&)= GOSk (¢). From the properties of function D(p) in lemma 1 it
-1

follows that at small £>0 G,(g)= GGsN(g), where GsN(g) are simply connected
N=1

components containing no more than N, points p,(f), at that number N, is independent
of N . From asymptotic formulas (8) it follows that we can show a system of contours
I’y , having the following properties:

1) Hu(h) is a part of circle of the radius R, located in the sector S, U S, ;;

2) radii R, tend to infinity and Ry —R,_, = O(l) as N > o;

3) between the neighbouring contours I'y, and T, there is only one domain G, (8)
and G, (¢);

4) at mapping A=—p* images of each of domains G, N(a) and G,y (8) are found for
sufficiently large N at distance >¢ from each other and from circles- images of

contours Iy .

Let R(4)=(L—AI)" bearesolvent of the operator L. Denote

By ==5— IR(/‘L)‘M ’ By = _% IR(/‘L)‘M

Gy, Gy

N -
and for f(x)e L, (a,b), oy (f)zZEkf , where G, is an image of domain G, (¢) at
k=1

mapping A =—p°. With the help of contours I, we construct a new system of contours
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by the following way: we drow from the origin two zero-free rays of Ao(p) and forming

angles y, and y, with positive real axis respectively, such that 0 <y, < % <y, < z

2
The cross points of rays with contours I'y, denote by a, and b, , and parts Iy, on

which it is divided by points a,, b, by 7](\,2), 7/53) (at counter clockwise). Suppose
Doy = 7’1(\}) U [aNaaN—l]U 71(\?21 U [bN—labN]U VS)a [y =Ty . Then

N b
1) =L E S =5 [RA) far=—— [ p[Glx.cp?)r(&)acdp.

where 1:]'\, is an image of '}, at mapping A=—p°.

Let xe[x ] Then using representation (12) and taking into account that

s—1 s X

P

Osz

(x,g, p) is a regular function on A -plane, we obtain
e (NN)=L 2[5 [y edephuy (ep)s, (E0)FEdzdp. @)
k J=ITy 7=y,
We’ll show that partial sums o, ( f ) are uniformly bounded by norm of L, (a,b),

i.e. there exists a positive constant C >0 independent of N and f such that

low (7Y, <clf],. N=12,... (22)
We introduce the following denotations
wslas(x)—"_a)rl(ar(xr)_ar(é:))’ if k:j:1 5
wslas ()C)— wrzar (é:) lf k = 13 ] = 2 5
o. .. 5 = . 23
2 ) ) o ) @), i K2, =1 P
(e, (x)-a,(x,))-o.a.(). if k=j=2
and also
as(x)+ar(xr)—ar(§), if k:j:l;
e, (x)+a. (), if k=1,/=2;
a”ki(x,é:)_ a, (xs)_ a, ()C)+ a, (xr)_ a, (g)’ if k= 2’ ] =1 ; (24)
as(xs)_as(x)—‘rar(g)’ if k=j=2.

Taking into consideration denotations (23), (24) in (21) and changing the order of
integration, we obtain

oy(f)x)= - Z jf )[ A (& p)e P g (25)
Tk Jor=lx Ty
According to lemma 2 functions A”kj(x,z:,p) are uniformly bounded by

xelx, .x,], £€lx,.x,] and peT}. Suppose

sz’kj( .65 Px

= ax
xe[xsfl ax.y]’ é‘:e[xrfl ’Xr]’ per
Then, estimating module (25) we obtain

o (M) =c, Z IlffM el

kojr=lx,,
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We separately estimate |O'2N( f )(x)| and |0'2N_1(f )(xl Since I3, =T then

assuming p = Rye' in this case we obtain

N‘§

oo (Nl =esry 3 [l7(E) [ o g (26)

k,jr=lx,_, V4

2
We revise the values of @ in all interval of integration in (26):

if pe ——,——+7} then peS,;NS,, and o), =-w, =i, 0, =-w,, =—ie *

if pe —E+70} then pe S ;MNS,; and @, =0, =—i, ®; =~y =—ie *

if pe O,%} , then peS (NS,; and o, =-w, =i, ©, =-w,, =—ie ?;

—jr2

if (pe{(p; %} , then peS (NS,, and @, =-w, =i, v, =-w,, =ie

Allowing for the last relation (23) and estimating integrals in (26) in each integration
interval separately we arrive at the following estimation:

Vi

2 Ry Re(e""c? k-(x,f)) Cy
A P W 27)
J;r RNasrk_/ (x,f)

2
From (26) and (27) it follows that

j|<;2N f)(x)|"dx<c4[ixj (5 j }dx. (28)

v Hsrij (x S
Making change of variable n=a,(x), if k=1,7=a,(x,)-a,(x) if k=2 and
also ¢=a,(&), if j=2,¢=a,(x,)-a,(&), if j =1 and by the next application of
Riesz theorem [10] on boundedness of Hilbert transformation, we obtain

e P et Y
J[I |f(§)|§)d§J dvses [ ] )

X1 asz‘lg/ ()C 0 0 n+ é/ dé’ dﬂ : ‘e I ‘f X

Xs-1

<c, | () dx. (29)

From (28) and (29) the estimation (22) follows for even partial sums. In order to
estimate the norm o, (f )(x) we remember, that contours I, , consist of arcs
)/](\1,) , )/](\le and 75321 on which estimation (22) is already proved. Therefore, we’ll prove
estimation (22) for segments [a Noa N—l] (for segments [bel,bN] it’s proved analogously).
Note, that a, =R,e"". Then making change of variable p=re’”" and taking into
account, that Re(p&ﬂ(j (x,§ ))S 0, we obtain
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,.[ Py (8) J‘eRe(pb k,(ré))drSCS(RN_RAH)SC(,.

RNI

dp| <

ay

Subject to the latter

j oo () dx < Z j L j 1) oRelediey () |dp|d§J dx =

X1 /T_lx 1\ Xe-1 Dova

:Cloi T T|f (

kojir=lx i\ ey

[+Tepedog } e Naphag | dese |11,

7v ay 71v| le}/)\,

Thus estimation (22) is established for all N .
In order to complete the proof of the first part of the theorem note that according
to Lorch theorem [11] there exists a projection operator £ such that at N — o« sequence

O'N(-) strongly converges to E, i.e. for any function feL, (a,b)
limo,(f)=Ef. (30)
N—ow
On the other hand, having estimation (12) for the kernel of the resolvent operator
R(/l) by a standard method (see, e.g. [12], p.445) we can show that the system {Z k} of
eigen- and associated functions of adjoint operator L* forms the complete system in the
space L, (a,b), g'+p'=1. Since the weak convergence follows from strong
convergence from (30) we have
lim(oy(f)2,)=(Ef.Z,).  k=12..
But from biorthogonality of {Z,} to the system {y k} of EAF of operator L it
follows, that at sufficiently large N
(f’Zk): (UN(f)aZk)-

From here, passing to limit at N — oo, we obtain
(f.2,)=(Ef.Z,), k=12,..
Then from completeness of the system {Z k} it follows that £ f = [, i.e.

limoy(f)=f, feL,(ab).

N—>
In order to prove the second part of the theorem note that in case of strongly
regular problems domain G,(g) consists of mutually disjoint circles O,y(¢) (at

sufficiently small &>0). Therefore, between contours I'y, and I'j,, several circles
O,y (&) can lie and their at that number is bounded above. Proceeding as above a new
system of contours I'y, can be formed, such that between two neighbouring contours I'y,

and Ty, only one circle O,y (5) is found, and on this contours estimation (22) also will

be valid.
In the case ¢, =¢, numbers w,, =®,, half-strips I1,; and II,, also coincide.

Subject to this, proof of the theorem for this case is carried out without any changes.
Remark 1. In case ¢, # ¢, regular boundary conditions will be strongly regular,

if (00,1 + 0o )] = 40011y 01, 20 and (0, o)+ 0.0 f — 40101y 01 1) 0.

Remark 2. The analogous results are correct also for boundary value problems
with any finite number of discontinuity points inside the interval.



84 Asspbaiixkan MEA-HbIH

xs10splspu
[Gasymov T.B.]

References

[1]. Nyin V.A. The necessary and sufficient conditions of Riesz basisness of root vectors of
discontinuous second order operators. Dif.equat.,, 1986, v.22, Nel2, p.2059-2071. (in
Russian)

[2]. Lomov LS. The basisness property of root vectors of loaded second order differential
operators. Dif.equat., 1991, v.27, Nel, p.80-83. (in Russian)

[3]. Muravey L.A. Riesz basis in L,(1-,1). Pr.of mat.int. V.A. Steklov, v.XCI, p.113-131. (in

Russian)

[4]. Dezin A.A. On weak and strong regularity. Diff.equat., 1981, v.17, Nel0, p.1851-1858. (in
Russian)

[5]. Kasumov T.B. The fraction power of discontinuous quasi-differential operators and on
basisness theorem. MSU, M., 1987, 74p.; Ruk.dep. v VINIITI, 16.12.87, Ne§8902-B87. (in
Russian)

[6]. Rikhlov V.S. The asymptotic of system solutions of differential equation of common form
with parameter. Uk.math jour., 1996, v.48, Nel, p. 96-108. (in Russian)

[7]. Naymark M.A. The linear differential operators. M., Nauka, 1969, 528p. (in Russian)

[8]. Levin B.Ya., Lyubarskiy Yu.l. The interpolation with the whole functions of special classes
and connected with it distributions in exponent-series. lzv. AN SSSR, ser.mat., 1975, v.39,
Ne3, p.657-702. (in Russian)

[9]. Rasulov m.L. The method of contour integral. M., Nauka, 1964, 464p. (in Russian)

[10]. Titchmarsh E.I. Introduction in Fourier integral theory. M., 1948. (in Russian)

[11]. Lorch E.R. On a calculus of operators in reflexive vector spaces. Trans.Amer.Math.Soc.,
1939, v.45, p.217-234.

[12]. Dunford N., Schwartz J.T. Linear operators. M., v.3, 1974, 661p. (in Russian)

Telman B. Gasymov

Institute of Mathematics & Mechanics of NAS Azerbaijan.
9, F.Agayev str., 370141, Baku, Azerbaijan.
Tel.:39-47-20(oft.).

Received June 11, 2001; Revised November 27, 2001.
Translated by Agayeva R.A.



