AMIROVA L.I.

ON ONE DISTURBANCES THEORY PROBLEM FOR BOUNDARY VALUE PROBLEMS OF OPERATOR-DIFFERENTIALS EQUATIONS OF THE SECOND ORDER

Abstract

At the paper the theorem on existence of holomorphic solutions of one class of boundary value problem for operator- differential equation of the second order is got, when the boundary conditions contains the disturbance operator.

Let H be a separable Hilbert space, A be a normal operator with completely continuous inverses A^{-1} , $\left(A^{-1}\right)^*A^{-1} = A^{-1}\left(A^{-1}\right)^*$ and if $\lambda_1, \lambda_2, ..., \lambda_n, ...$ $\left(\left|\lambda_1\right| \leq \left|\lambda_2\right| \leq ... \leq \left|\lambda_n\right| \leq ...\right)$ are eigen-values of the operator A, and $e_1, e_2, ..., e_n, ...$ is corresponding orthonormal system of eigen-elements of the operator A, then A is represented by the following form

$$Ax = \sum_{n=1}^{\infty} \lambda_n(x, e_n) e_n , \qquad x \in D(A).$$

Let's denote by

$$Cx = \sum_{n=1}^{\infty} |\lambda_n| (x, e_n) e_n$$
, $x \in D(A)$.

Let's determine further a Hilbert scale generated by the operator C, i.e.

$$H_{\gamma} = D(A^{\gamma}) = D(C^{\gamma}), \qquad (x, y)_{\gamma} = (C^{\gamma} x, C^{\gamma} y), \quad \gamma \ge 0.$$

Let $L_2(R_+:H)$ be a Hilbert space of the vector-function f(t) with the values from H measurable and integrable by Bokhner square [1]

$$L_{2}(R_{+}:H) = \left\{ f(t): \|f(t)\| = \left(\int_{0}^{\infty} \|f(t)\|_{H}^{2} dt \right)^{\frac{1}{2}} < \infty \right\}.$$

Let's denote by S_{α} the following sector in surface

$$S_{\alpha} = \{z : \left| \arg z \right| < \alpha \}, \qquad 0 < \alpha < \frac{\pi}{2}$$

and let's denote by $H_2(\alpha:H)$ (see [2]) the space of vector-function f(z) holomorphic in S_α and for which

$$\sup_{|\phi|<\alpha} \int_{0}^{\infty} \left\| f\left(te^{i\phi}\right) \right\|^{2} dt < \infty.$$

The functions from $H_2(\alpha : H)$ have the boundary values in sense $L_2(R_+ : H)$ (and almost everywhere)

$$f_{\alpha}(t) = f(te^{i\alpha})$$
 and $f_{-\alpha}(t) = f(te^{-i\alpha})$.

The space $H_2(\alpha:H)$ is a Hilbert space with respect to scalar product

$$(f,g)_{\alpha} = \frac{1}{2} (f_{\alpha}(t), g_{\alpha}(t))_{L_{2}(R_{+}:H)} + \frac{1}{2} (f_{-\alpha}(t), g_{-\alpha}(t))_{L_{2}(R_{+}:H)}.$$

Let's denote further by $W_2^2(\alpha:H)$ a space of vector-functions

хябярляри

[Amirova L.I.]

$$W_2^2(\alpha:H) = \{u(z)|u''(z) \in H_2(\alpha:H), A^2u(z) \in H_2(\alpha:H)\}$$

with scalar product

$$((u(z), v(z)))_{\alpha} = (u''(z), v''(z))_{\alpha} + (A^{2}u(z), A^{2}v(z))_{\alpha}.$$

The space $W_2^2(\alpha:H)$ is also a Hilbert space and the theorem on intermediate products and the theorem on traces hold in this space, i.e. if $u(z) \in W_2^2(\alpha:H)$, then $A^{2-j}u^{(j)}(z) \in H_2(\alpha:H)$

$$\left\|A^{2-j}u\right\|_{\alpha} \le const \left\| \|u\| \right\|_{\alpha}, \quad j = 0,1,2,$$

$$\left\|u^{(j)}(0)\right\|_{2-j-\frac{1}{2}} \le const \left\| \|u\| \right\|_{\alpha}.$$

Here $\left\| \cdot \right\|_{\alpha}$ is a norm in the space $W_2^2(\alpha : H)$.

At the given paper the following boundary value problem is considered

$$-\frac{d^2u(z)}{dz^2} + A^2u(z) = f(z), \quad z \in S_\alpha, \tag{1}$$

$$u(0) - Ku = 0, (2)$$

where the operator A is normal with completely continuous inverse, and the operator $K: W_2^2(R_+:H) \to H_{2/2}$ is bounded.

Let's denote that many boundary value problems for operator-differentials equations are investigated when operator-differentials equation has the disturbed part and the boundary conditions haven't such disturbed parts (see [4]).

Let's denote that the equation (1) with the boundary condition u(0) = 0 is solvable at some conditions on the spectrum of the operator A.

We are interested in the problem, at which conditions on smallness of the norm of the operator K the problem (1), (2) is also solvable. Let's denote that such problems are in book [3] for ordinary differential operators.

First of all let's give some definitions

Definitions 1. If the vector-function $u(z) \in W_2^2(\alpha : H)$ satisfies the condition (1) in S_{α} identically then we'll call it a regular solution of the equation (1).

Definition 2. If at any $f(z) \in H_2(\alpha : H)$ there exists a regular solution of the equation (1) which satisfies the boundary condition (2) in the sense

oundary condition (2) i
$$\lim_{\substack{|z|\to 0\\ |\arg z|\leq \alpha}} \|u(z) - Ku\|_{\frac{3}{2}} = 0$$

and holds the inequality

$$\|u\|_{\alpha} \leq const \|f\|_{\alpha}$$
,

then we call the problem (1), (2) regularity solvable.

First of all let's prove the following lemma.

Lemma 1. Let the operator A be normal with completely continuous inverse A^{-1} whose spectrum is contained in a corner sector

$$S_{\varepsilon} = \{ \lambda : |\arg \lambda| \le \varepsilon \}, \quad 0 \le \varepsilon < \frac{\pi}{2}$$

and the number $0 < \alpha + \varepsilon < \frac{\pi}{2}$. Then a semi-group of linear bounded operators $e^{-zA}: H_{\underline{3}} \to W_2^2(\alpha:H)$ is a continuous operator with the norm no more than the numbers $(\cos(\alpha+\varepsilon))^{-\frac{1}{2}}$.

Proof. Let $\varphi \in H_{\underline{3}}$. Then

$$\left\| \left\| e^{-zA} \psi \right\| \right\|_{\alpha}^{2} = \left\| A^{2} e^{-zA} \psi \right\|_{\alpha}^{2} + \left\| A^{2} e^{-zA} \psi \right\|_{\alpha}^{2} = 2 \left\| A^{2} e^{-zA} \psi \right\|_{\alpha}^{2} =$$

$$= \left\| A^{2} e^{-te^{i\alpha}} \psi \right\|_{L_{2}(R_{a};H)}^{2} + \left\| A^{2} e^{-te^{-i\alpha}} \psi \right\|_{L_{2}(R_{a};H)}^{2}.$$
(3)

Let's estimate the first summand in the equality (3). The second summand is determined

Using the spectral expansion of the operator A we have

$$\begin{split} & \left\| A^{2} e^{-te^{i\alpha}} \psi \right\|_{L_{2}(R_{+}:H)}^{2} = \left\| \sum_{n=1}^{\infty} \lambda_{n}^{2} e^{-te^{i\alpha}\lambda_{n}} (\psi, e_{n}) e_{n} \right\|_{L_{2}(R_{+}:H)}^{2} = \\ & = \int_{0}^{\infty} \sum_{n=1}^{\infty} |\lambda_{n}|^{4} \left| e^{-te^{i\alpha}\lambda_{n}} \right|^{2} \left| (\psi, e_{n}) \right|^{2} dt = \int_{0}^{\infty} \sum_{n=1}^{\infty} |\lambda_{n}|^{4} \left| e^{-te^{i\alpha}|\lambda_{n}|e^{i\phi_{n}}|} \right|^{2} \left| (\psi, e_{n}) \right|^{2} dt = \\ & = \int_{0}^{\infty} \sum_{n=1}^{\infty} |\lambda_{n}|^{4} e^{-2t|\lambda_{n}|\cos(\alpha+\phi_{n})} \left| (\psi, e_{n}) \right|^{2} dt \leq \int_{0}^{\infty} \sum_{n=1}^{\infty} |\lambda_{n}|^{4} e^{-2t|\lambda_{n}|\cos(\alpha+\phi_{n})} \left| (\psi, e_{n}) \right|^{2} dt \leq \\ & \leq \sum_{n=1}^{\infty} |\lambda_{n}|^{4} \left| (\psi, e_{n}) \right|^{2} \int_{0}^{\infty} e^{-2t|\mu_{n}|\cos(\alpha+\varepsilon)} dt = \sum_{n=1}^{\infty} \frac{|\lambda_{n}|^{3}}{2\cos(\alpha+\varepsilon)} \left| (\psi, e_{n}) \right|^{2} = \\ & = \frac{1}{2\cos(\alpha+\varepsilon)} \sum_{n=1}^{\infty} |\lambda_{n}|^{3} \left| (\psi, e_{n}) \right|^{2} = \frac{1}{2\cos(\alpha+\varepsilon)} \|\psi\|_{\frac{3}{2}}^{2}. \end{split}$$

Analogously we've that

$$\|A^2 e^{-te^{-i\alpha}} \psi\|_{L_2(R_{+}:H)}^2 \le \frac{1}{2\cos(\alpha + \varepsilon)} \|\psi\|_{\frac{3}{2}}^2$$

Allowing for these inequalities in the equality (3) we get

$$\|e^{-zA}\psi\|_{\alpha}^{2} \leq \frac{1}{\cos(\alpha+\varepsilon)} \|\psi\|_{\frac{3}{2}}^{2}, \text{ i.e. } \|e^{-zA}\psi\|_{\alpha} \leq (\cos(\alpha+\varepsilon))^{-\frac{1}{2}} \|\psi\|_{\frac{3}{2}}.$$

Let's prove now the following theorem on a regular solvability of the problem (1), (2).

Theorem. Let A be a normal operator with completely continuous inverse A^{-1} whose spectrum is contained in corner sector

$$S_{\varepsilon} = \{ \lambda : |\arg \lambda| \le \varepsilon \},$$

where $0 < \varepsilon < \frac{\pi}{2}$. If the number $0 < \alpha + \varepsilon < \frac{\pi}{2}$ and the norm of the operator K is less

than $(\cos(\alpha + \varepsilon))^{\frac{1}{2}}$ then the problem (1), (2) is regularly solvable.

Proof. First of all let's prove that the homogeneous problem i.e. the problem (1), (2) has only null regular solution when f(z) = 0.

хябярляри

[Amirova L.I.]

Since the general regular solution of the equation

$$-u''(z) + A^2u(z) = 0$$

has the form

$$u_0(z) = e^{-zA}\psi$$
,

where $\psi \in H_{\frac{3}{2}}$, then from the boundary condition (2) follows that

$$\psi - K(e^{-zA}\psi) = 0$$
, $\psi \in H_{\frac{3}{2}}$

or

$$(E - Ke^{-zA})\psi = 0$$
, $\psi \in H_{\frac{3}{2}}$

and E is an unit operator at the space $H_{\frac{3}{2}}$.

Since

$$\begin{aligned} & \left\| K e^{-zA} \psi \right\|_{\frac{3}{2}} \leq & \left\| K \right\|_{W_{2}^{2}(\alpha:H) \to H_{\frac{3}{2}}} \cdot \left\| e^{-zA} \psi \right\|_{W_{2}^{2}(\alpha:H)} \leq \\ & \leq & \left\| K \right\|_{W_{2}^{2}(\alpha:H) \to H_{\frac{3}{2}}} \cdot \left\| e^{-zA} \right\|_{H_{\frac{3}{2}} \to W_{2}^{2}(\alpha:H)} \cdot \left\| \psi \right\|_{\frac{3}{2}}, \end{aligned}$$

then applying the lemma 1 we have

$$\left\|Ke^{-zA}\psi\right\|_{\frac{3}{2}} \leq \left(\cos(\alpha+\varepsilon)\right)^{-\frac{1}{2}} \left\|K\right\|_{W_2^2(\alpha:H)\to H_{\frac{3}{2}}}.$$

From the condition of the theorem it follows that

$$\chi = \left\| K e^{-zA} \right\|_{H_{\frac{3}{2}} \to H_{\frac{3}{2}}} < 1.$$

Therefore the operator $(E-Ke^{-zA})$ is inverse $H_{3/2}$, consequently $\psi=0$, i.e. $u_0(z)=0$.

Now show that for any $f(z) \in H_{3/2}$ there exists a regular solution $u(z) \in W_2^2(\alpha : H)$.

It is easy to see that for any $f(z) \in H_2(\alpha : H)$ the vector-function

$$u_1(z) = \frac{1}{2\pi i} \int_{\Gamma_{(\pi/-\alpha)}} \left(-\lambda^2 E + A^2\right)^{-1} e^{-\lambda z} \hat{f}(\lambda) d\lambda - \frac{1}{2\pi i} \int_{\Gamma_{(-\pi/-\alpha)}} \left(-\lambda^2 E + A^2\right)^{-1} e^{-\lambda z} \hat{f}(\lambda) d\lambda$$

satisfies the equation (1) identically in S_{α} . Here $\hat{f}(\lambda)$ is a Laplacian transformation of a vector-function f(z) from the class $H_2(\alpha:H)$ (see [5]), and

$$\Gamma_{\pm(\pi/2+\alpha)} = \left\{ \lambda \middle| \arg \lambda = \pm \left(\pi/2 + \alpha\right) \right\}.$$

On these beams it holds the inequality

$$\left\| A^2 \left(-\lambda^2 E + A^2 \right)^{-1} \right\| \le const, \quad \left\| \lambda^2 \left(-\lambda^2 E + A^2 \right)^{-1} \right\| \le const. \tag{4}$$

Really for example when $\lambda \in \Gamma_{\left(\frac{\pi}{2} + \alpha\right)} \left(\lambda = re^{i\left(\frac{\pi}{2} + \alpha\right)}, r > 0\right)$

$$\left\|A^{2}\left(-\lambda^{2}E+A^{2}\right)^{-1}\right\| = \left\|A^{2}\left(-r^{2}e^{i(\pi+2\alpha)}+A^{2}\right)^{-1}\right\| = \left\|A^{2}\left(r^{2}e^{i2\alpha}+A^{2}\right)^{-1}\right\| = \left\|A^{2}\left(r^{2}e^{i2\alpha}+A^{2}\right\|$$

$$= \sup_{\lambda_{n} \in \sigma(A)} \left| \lambda_{n}^{2} \left(r^{2} e^{2i\alpha} + \lambda_{n}^{2} \right)^{-1} \right| = \sup_{\lambda_{n} \in \sigma(A)} \left(\left| \lambda_{n} \right|^{2} \left(r^{4} + \left| \lambda_{n} \right|^{4} + 2\left| \lambda_{n} \right|^{2} r^{2} \cos 2 \left(\arg \lambda_{n} + \alpha \right) \right)^{-\frac{1}{2}} \right) \le$$

$$\leq \sup_{\lambda_{n} \in \sigma(A)} \left(\left| \lambda_{n} \right|^{2} \left(r^{4} + \left| \lambda_{n} \right|^{4} + 2\left| \lambda_{n} \right|^{2} r^{2} \cos 2 \left(\varepsilon + \alpha \right) \right)^{-\frac{1}{2}} \right). \tag{5}$$

Since when $0 < \alpha + \varepsilon \le \frac{\pi}{4}$ $\cos 2(\alpha + \varepsilon) \ge 0$, then from the inequality (5) it follows that in this case

$$\left\| A^{2} \left(-\lambda^{2} E + A^{2} \right)^{-1} \right\| \leq \sup_{\lambda_{n} \in \sigma(A)} \left(\left| \lambda_{n} \right|^{2} \left(\left| \lambda_{n} \right|^{4} + r^{4} \right)^{-\frac{1}{2}} \right) \leq 1, \tag{6}$$

and when $\frac{\pi}{4} < \alpha + \varepsilon \le \frac{\pi}{2}$ $\cos 2(\alpha + \varepsilon) < 0$. Therefore using the Cauchy's inequality in the inequality (5) we'll get

$$\left\|A^{2}\left(-\lambda^{2}E+A^{2}\right)^{-1}\right\| \leq \sup_{\lambda_{n}\in\sigma(A)} \left(\left|\lambda_{n}\right|^{2} \left(r^{4}+\lambda_{n}^{4}+\left(r^{4}+\lambda_{n}^{4}\right)\right) \cos 2\left(\alpha+\varepsilon\right)^{-\frac{1}{2}}\right) =$$

$$= \sup_{\lambda\in\sigma(A)} \left(\left|\lambda_{n}\right|^{2} \left(r^{4}+\left|\lambda_{n}^{4}\right|\right)^{-\frac{1}{2}} \left(1+\cos 2(\alpha+\varepsilon)\right)^{-\frac{1}{2}}\right) \leq \left(2\cos 2(\alpha+\varepsilon)\right)^{-\frac{1}{2}}.$$
(7)

From the inequality (6) and (7) it follows the first inequality from (4). The second inequality from (4) is proved analogously. From the inequality (4) follows that $u(z) \in W_2^2(\alpha : H)$. Since a general regular solution of the equation (1) is represented in the following form

$$u(z) = u_1(z) + e^{-zA}\psi$$
, (8)

where $\psi \in H_{\frac{3}{2}}$ then from the boundary condition (2) it follows that

$$u_1(0) + \psi = K(u_1(z) + e^{-zA}\psi)$$

or

$$\psi - Ke^{-zA}\psi = Ku_1(z) - u_1(0).$$

Since $\psi_1 = Ku_1(z) - u_1(0)$, then from the last equation we get that

$$(E - Ke^{-zA})\psi = \psi_1.$$

As shown that the operator $E - Ke^{-zA}$ is inverse in $H_{3/2}$ then $\psi = (E - Ke^{-zA})^{-1}\psi_1 \in H_{3/2}$. Thus u(z) is regular solution of the problem (1), (2).

On the other hand

$$\|u''(z) - A^2 u(z)\|_{\alpha}^2 \le 2(\|u''(z)\|_{\alpha}^2 + \|A^2 u(z)\|_{\alpha}^2) = 2\|u\|\|_{\alpha}^2$$

then by the Banach theorem on the inverse operator it follows that it holds the inequality

$$\left\| \|u\| \right\|_{\alpha}^{2} \leq const \|f\|_{\alpha}$$
.

Theorem is proved.

The author expresses his thanks to Prof. S.S. Mirzoyev for the discussion of the received results.

References

Gasimov M.G. On solvability of boundaaary value problems for one class of operatordifferential equations. DAN SSSR, 1977, v.235, №13, p.23-28. (in Russian)

хябярляри

[Amirova L.I.]

- [2]. Lions J.L., Madjenes E. *Non-homogeneous boundary value problems and their applications*. M., Mir, 1971, 371p. (in Russian)
- [3]. Kato T. Disturbance theory of linear operators. M., Mir, 1972, 740p. (in Russian)
- [4]. Mirzoyev S.S., Amirova L.I. On existence of holomorphic solutions of operator-differential equations of the second order. Transactions of AS of Azerbaijan, ser,phyz.-tech. and math. sci., 1998, v.XVIII, №2, p.61-66. (in Russian)
- [5]. Sidorov Yu.V., Fedoryuk M.V., Shabunin M.I. Lectures on the theory of the complex variable. M., Nauka, 1989, 477p. (in Russian)

Leyla I.Amirova

Baku State University. 23, Z.I. Khalilov str., 370148, Baku, Azerbaijan. Tel.:38-35-08(off.).

Received April 30, 2001; Revised September 17, 2001. Translated by Mamedova V.I.