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AMIROVA L.I. 
 

ON ONE DISTURBANCES THEORY PROBLEM FOR BOUNDARY VALUE 
PROBLEMS OF OPERATOR-DIFFERENTIALS EQUATIONS OF THE 

SECOND ORDER 
 

Abstract 
 

At the paper the theorem on existence of holomorphic solutions of one class of 
boundary value problem for operator- differential equation of the second order is got, 
when the boundary conditions contains the disturbance operator. 
 
 Let H  be a separable Hilbert space, A  be a normal operator with completely 
continuous inverses ( ) ( )*111*11 , −−−−− = AAAAA  and if ,...,...,, 21 nλλλ  
( )......21 ≤≤≤≤ nλλλ  are eigen-values of the operator A , and ,...,...,, 21 neee  is 

corresponding orthonormal system of eigen-elements of the operator A , then A  is 
represented by the following form  

( ) ( )ADxeexAx
n

nnn ∈=∑
∞

=
,,

1
λ . 

 Let’s denote by 

( ) ( )ADxeexCx
n

nnn ∈=∑
∞

=
,,

1
λ . 

Let’s determine further a Hilbert scale generated by the operator C , i.e. 
( ) ( ) ( ) ( ) 0,,,, ≥=== γγγ

γ
γγ

γ yCxCyxCDADH . 
 Let ( )HRL :2 +  be a Hilbert space of the vector-function ( )tf  with the values 
from H  measurable and integrable by Bokhner square [1] 
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2 :: dttftftfHRL H . 

 Let’s denote by αS  the following sector in surface 

{ }
2

0,arg: πααα <<<= zzS  

and let’s denote by ( )HH :2 α  (see [2]) the space of vector-function ( )zf  holomorphic in 

αS  and for which 

( )∫
∞

ϕ

<ϕ
∞<

0

2
sup dttef i

α
. 

The functions from ( )HH :2 α  have the boundary values in sense ( )HRL :2 +  (and almost 
everywhere) 

( ) ( )α
α

iteftf =  and ( ) ( )α
α

iteftf −
− = . 

The space ( )HH :2 α  is a Hilbert space with respect to scalar product 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )HRLHRL tgtftgtfgf :: 22
,

2
1,

2
1,

++ −−+= ααααα . 

Let’s denote further by ( )HW :2
2 α  a space of vector-functions 
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( ) ( ) ( ) ( ) ( ) ( ){ }HHzuAHHzuzuHW :,:: 2
2

2
2

2 ααα ∈∈′′=  

with scalar product 
( ) ( )( )( ) ( ) ( )( ) ( ) ( )( )ααα υυυ zAzuAzzuzzu 22 ,,, +′′′′= . 

The space ( )HW :2
2 α  is also a Hilbert space and the theorem on intermediate products 

and the theorem on traces hold in this space, i.e. if ( ) ( )HWzu :2
2 α∈ , then 

( ) ( ) ( )HHzuA jj :2
2 α∈−  

,2,1,0,2 =≤− juconstuA j
αα

 

( )( )
α

uconstu
j

j ≤
−−

2
12

0 . 

Here 
α

 is a norm in the space ( )HW :2
2 α . 

 At the given paper the following boundary value problem is considered 

                                             ( ) ( ) ( ) αSzzfzuA
dz

zud
∈=+− ,2

2

2

,                                    (1) 

                                                              ( ) 00 =− Kuu ,                                                     (2) 
where the operator A  is normal with completely continuous inverse, and the operator 

( )
3

2
2

2 :: HHRWK →+  is bounded. 

 Let’s denote that many boundary value problems for operator-differentials 
equations are investigated when operator-differentials equation has the disturbed part and 
the boundary conditions haven’t such disturbed parts (see [4]). 
 Let’s denote that the equation (1) with the boundary condition ( ) 00 =u  is solvable 
at some conditions on the spectrum of the operator A . 
 We are interested in the problem, at which conditions on smallness of the norm of 
the operator K  the problem (1), (2) is also solvable. Let’s denote that such problems are 
in book [3] for ordinary differential operators. 
 First of all let’s give some definitions 
 Definitions 1. If the vector-function ( ) ( )HWzu :2

2 α∈  satisfies the condition (1) 
in αS  identically then we’ll call it a regular solution of the equation (1). 
 Definition 2. If at any ( ) ( )HHzf :2 α∈  there exists a regular solution of the 
equation (1) which satisfies the boundary condition (2) in the sense 

( ) 0lim
2
3

arg
0

=−
≤

→
Kuzu

z
z

α

 

and holds the inequality 

αα
fconstu ≤ , 

then we call the problem (1), (2) regularity solvable. 
 First of all let’s prove the following lemma. 
 Lemma 1. Let the operator A  be normal with completely continuous inverse 

1−A  whose spectrum is contained in a corner sector 

{ }
2

0,arg: πεελλε <≤≤=S  



Transactions of NAS Azerbaijan_____________________________ 
                                                                               [On one disturbances theory problem] 
 

41 

and the number 
2

0 πεα <+< . Then a semi-group of linear bounded operators 

( )HWHe zA :: 2
2

2
3 α→−  is a continuous operator with the norm no more than the numbers 

( )( ) 2
1

cos −+ εα . 
 Proof. Let 

2
3H∈ϕ . Then 
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Let’s estimate the first summand in the equality (3). The second summand is determined 
analogously. 
 Using the spectral expansion of the operator A  we have 

( )
( )

( )
==

+
+

∑
∞

=

−−
2

:1

2
2

:

2

2
2

,
HRLn

nn
te

n
HRL

te eeeeA n
ii

ψλψ λαα
 

( ) ( )∫∑∫∑
∞ ∞

=

−
∞ ∞

=

− ===
ϕ

0 1

224

0 1

224 ,,
n

n
ete

n
n

n
te

n dteedtee
ni

n
i

n
i

ψλψλ λλ αα

 

( ) ( ) ( ) ( ) ≤≤= ∫∑∫∑
∞ ∞

=

ϕ+−
∞ ∞

=

ϕ+− dteedtee n
n

t
nn

n

t
n

nnnn

0

2

1

cos24

0

2

1

cos24 ,, ψλψλ αλαλ  

( ) ( )

( ) ( ) =
+

=≤ ∑∫∑
∞

=

∞
+−

∞

=

2

1

3

0

cos2

1

24 ,
cos2

, n
n

nt

n
nn edtee n ψ

εα
λ

ψλ εαµ  

( ) ( ) ( )
2

2
3

1

23

cos2
1,

cos2
1 ψ

εα
ψλ

εα +
=

+
= ∑

∞

=n
nn e . 

 Analogously we’ve that 
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 Allowing for these inequalities in the equality (3) we get 

( )
2

2
3

2

cos
1 ψ

εα
ψ

α +
≤−zAe , i.e. ( )( )

2
32

1
cos ψεαψ

α

−− +≤zAe . 

Lemma is proved. 
 Let’s prove now the following theorem on a regular solvability of the problem 
(1), (2). 
 Theorem. Let A  be a normal operator with completely continuous inverse 1−A  
whose spectrum is contained in corner sector 

{ }ελλε ≤= arg:S , 

where 
2

0 πε << . If the number 
2

0 πεα <+<  and the norm of the operator K  is less 

than ( )( ) 2
1

cos εα +  then the problem (1), (2) is regularly solvable. 
 Proof. First of all let’s prove that the homogeneous problem i.e. the problem (1), 
(2) has only null regular solution when ( ) 0=zf . 
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 Since the general regular solution of the equation 
( ) ( ) 02 =+′′− zuAzu  

has the form 
( ) ψzAezu −=0 , 

where 
2

3H∈ψ , then from the boundary condition (2) follows that 

( )
2

3,0 HeK zA ∈=− − ψψψ  

or  
( )

2
3,0 HKeE zA ∈=− − ψψ , 

and E  is an unit operator at the space 
2

3H . 

 Since 

( ) ( )
≤⋅≤ −

→
−
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HHW
zA eKKe

::
2

3 2
22

3
2

2 αα
ψψ  

( ) ( ) 2
3:: 2

2
2

32
3

2
2

ψ
αα

⋅⋅≤
→

−
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then applying the lemma 1 we have 
( )( ) ( )

2
3

2
2 :

2
1

2
3

cos HHW
zA KKe

→
−− +≤

α
εαψ . 

From the condition of the theorem it follows that 
1

2
3

2
3

<=
→

−

HH
zAKeχ . 

 Therefore the operator ( )zAKeE −−  is inverse 
2

3H , consequently 0=ψ , 

i.e. ( ) 00 =zu . 
Now show that for any ( )

2
3Hzf ∈  there exists a regular solution 

( ) ( )HWzu :2
2 α∈ . 

 It is easy to see that for any ( ) ( )HHzf :2 α∈  the vector-function 

( ) ( )
( )

( ) ( )
( )

( ) λλλ
π

λλλ
π

απαπ

λλ dfeAE
i

dfeAE
i

zu zz ˆ
2
1ˆ

2
1

22

122122
1 ∫∫

−−+ Γ

−−

Γ

−−
+−−+−=  

satisfies the equation (1) identically in αS . Here ( )λf̂  is a Laplacian transformation of a 
vector-function ( )zf  from the class ( )HH :2 α  (see [5]), and 

( ) ( ){ }απλλ
απ +±==Γ
+± 2arg

2
. 

 On these beams it holds the inequality 

                            ( ) ( ) constAEconstAEA ≤+−≤+−
−− 12221222 , λλλ .                   (4) 

Really for example when ( )
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⎟
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+
0,2

2
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 Since when 40 πεα ≤+<  ( ) 02cos ≥+ εα , then from the inequality (5) it 

follows that in this case 

                              ( )
( )

( ) 1sup 2
1

4421222 ≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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−
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−
rAEA nn
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,                         (6) 

and when ( ) 02cos24 <+≤+< εαπεαπ . Therefore using the Cauchy’s inequality in 

the inequality (5) we’ll get 
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( )
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∈

−
2

1444421222 2cossup εαλλλλ
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nnn
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 From the inequality (6) and (7) it follows the first inequality from (4). The second 
inequality from (4) is proved analogously. From the inequality (4) follows that 
( ) ( )HWzu :2

2 α∈ . Since a general regular solution of the equation (1) is represented in the 
following form 
                                                            ( ) ( ) ψzAezuzu −+= 1 ,                                             (8) 
where 

2
3H∈ψ  then from the boundary condition (2) it follows that 

( ) ( )( )ψψ zAezuKu −+=+ 11 0  
or 

( ) ( )011 uzKuKe zA −=− − ψψ . 
 Since ( ) ( )0111 uzKu −=ψ , then from the last equation we get that 

( ) 1ψψ =− − zAKeE . 

As shown that the operator zAKeE −−  is inverse in 
2

3H  then ( )
2

31
1

HKeE zA ∈−=
−− ψψ . 

Thus ( )zu  is regular solution of the problem (1), (2). 
 On the other hand 

( ) ( ) ( ) ( ) 222222 22
αααα

uzuAzuzuAzu =⎟
⎠
⎞⎜

⎝
⎛ +′′≤−′′ , 

then by the Banach theorem on the inverse operator it follows that it holds the inequality 

αα
fconstu ≤

2
. 

 Theorem is proved. 
 The author expresses his thanks to Prof. S.S. Mirzoyev for the discussion of the 
received results. 
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