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MATHEMATICS 
 

ABASOV R.Z. 
 

THE APPROXIMATION BY ALGEBRAIC POLYNOMIALS OF SOLUTIONS 
OF ONE BOUNDARY VALUE PROBLEM WITH A PARAMETER 

 
Abstract 

 
 In the work the boundary-valued problem is investigated. The existence and 
uniqueness of the solution of this equation is proved and the evasion of evasion 
approximate solution is installed. 
 
 In the given paper the approximate method of Dzyadyk V.K. [1] is applied to 
approximation by polynomials of solutions of the boundary value problem 
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where λ  is a real parameter, and functions ( )yxf ,0  and ( )yxf ,1  are defined and 
continuous in the rectangle ( ){ }byyxhxxxyxD ≤−=+≤≤= 0

100 ,:,  and satisfies 
Lipschitz condition with respect to y  with constants 0N  and 1N  respectively. Besides, 
( ) 0,1 ≠yxf  in ( ){ }byyxxxyxD ≤−≤≤= 0

*
1 ,~:, . We notice that then function ( )yxf ,1  

preserves the sign in 1D  and therefore, changing λ  by λ−  in can of necessary be 
assumed that ( ) 0,1 >yxf  in 1D . 
 We note paper [2], where using the method of successive approximations the 
existence and uniqueness of solution of problem (1) were proved. 
 Denote 
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 We reduce problem (1) to the integral equation 
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 1. In mathematics the investigated in more detail and convenient for 
approximation of functions are sequences of different linear polynomial operators 

( )xUn ;ψ . Each of such operators will associate any function ( ) [ ]10 , xxLx ∞∈ψ  with 
(generalized) polynomial [1] of type 
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where ( )ψkk aa =  are linear functionals in [ ]10 , xxL∞ , and system ( ){ }n
k x 0ϕ  from 1+n  

linear independent functions [ ]10 , xxC r
k ∈ϕ . Number r  must be not less than the order 

of the given equation. 
 We’ll change equation (2) by the approximate one: 
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where nU  is a linear polynomial operator of type (3). 
 It is known that [1, lemma 1.1] solution of equation (4) (if it exists) represents 
itself a generalized polynomial by the system of functions ( ){ }n

k x 0ϕ , i.e. 
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.                                                 (5) 

Let [ ] ( ) ( )[ ] ( ) ( )xtxteUxxyU k
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== 00
0 ;,,, µξα  substituting these 

expressions and expression for ( )xyn , defined by equality (5) in (4) for defining the 
coefficients ka  we obtain the following system of transcendental equations: 
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 From introduced reasoning it is clear that question on solvability of equation (4) 
is equivalent to the question on solvability of system of equations (6). 
 The following theorem on the existence and uniqueness of solution of 
approximate equation (4) takes place. 
 Theorem 1. Let the following conditions be satisfied 
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 Then equation (4) has a unique solution ( )xyn  and this solution can be found by 
the successive approximations method. 
 Proof. Let ( )xyy n

0=  be any admissible function. Consider the following 
successive approximations 
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By virtue of condition 1) 
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i.e. approximation process leads to admissible values of ( )xyk
n .  

Consider the difference ( ) ( )xyxy x
n

k
n −+1 . It’s clear that 
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We estimate the difference k
n

k
n λλ −+1 . It’s easy to check that 
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The following estimation follows from (9) 
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converge absolutely and moreover convergence of the first of them is uniform relative to 
x . This proves the existence of the solution of equation (4). 
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 We prove the uniqueness of the existing solution. 
 Let ( )( )*, nn xz λ  be some different from ( )( )nn xy λ,  solution of equation (4). Then 
by analogy with (10) we have 
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 2. Now we’ll engage in establishing the estimation of deviation of obtained 
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Let the following condition be satisfied 
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 Thus, the following theorem is proved. 
 Theorem 2. Let all conditions of theorem 1 and condition (17) be satisfied. Then 
for any linear polynomials operator nU  of type (3) the polynomial ( )xyn , which is a 
solution of equation (4), approximates on [ ]10 , xx  the solution of equation (2) so, that 
condition (18) is satisfied. 
 Remark. In theorem 2 the following properties of operators nU  were used: 
a) linearity; 
b) permutability in the sense of lemma 1.1 from [1]; 
c) property of these operators to give at large n  good approximations of functions of 

Hölder classes 1H . The polynomial property of these operators was not used. 
 Note also that on the basis of mentioned above reasoning a system of 
transcendental equation (6) has a unique solution by fulfilling the conditions of theorem 
1. 
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