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BUCKLING AROUND THE PENNY-SHAPED INTERFACE CRACK 
 

Abstract 
 

 In the framework of the piece-wise homogeneous body model with use of the 
Three-Dimensional Linearized Theory of Stability the buckling problem of the circular 
sandwich plate with two parallel interface penny-shaped cracks is studied. The 
rotationally symmetrical buckling is considered and it is assumed that the lateral 
boundary of the plate is clamped and circumferentially compressed inward through this 
clamp by fixed radial displacement. Corresponding eigen-value and boundary value 
problems are solved numerically by employing FEM, local buckling of he coating layers 
around the cracks is investigated, the numerical results illustrating the influence of the 
problem parameters to this phenomenon are presented. 
 

1. Introduction. 
According to [1,2] the beginning of the failure of a protective coating is observed 

as its partial lifting from the surface of the basic material. It is known that this 
phenomenon is modelled as a local buckling of the coating part in compression along the 
coated surface. In this case it is assumed that there are cracks between the coating layer 
and the basic material and the local buckling of this layer is studied. As a result of this 
study a critical coating thickness is determined for a certain compressive external force, 
note that a similar failure mechanism is also applied for a near surface delamination of 
unidirectional-layered composite materials in compression, as it is well known, the 
compressive strength of structures made from laminated composite materials  may be 
reduced several times by the presence of the delamination damage, which is modelled as 
a crack and the stability loss around this crack is studied. Note that in the many cases the 
necessity arises for employing of the Three-Dimensional Linearized Theory of Stability 
(TDLTS) [3] for investigation of these problems. Such investigations were made in [4-6] 
and in many others the review of which are given in [7]. However, the investigations 
carried out by TDLTS were made in the framework of the following assumption: the 
material of the composite is taken as a homogeneously anisptropic one with normalized 
mechanical properties. Consequently, the crack in this material was assumed as a macro-
crack. In other words it was assumed that the crack length is significantly greater than the 
characteristic minimum size of the components of the composite. 

It should be noted that in the framework of this assumption we could not 
distinguish the inter-layer crack from the into-layer crack. Therefore, the approaches 
developed in the framework of this assumptions cannot be applied for the investigation of 
the local buckling of the coating layer around the interface crack. 

In [8] and in many other investigations listed therein the piece-wise- 
homogeneous body model is used. However, in these investigations only the internal 
cracks were considered, but not the problems related to the near-surface delamination. 
Therefore, the approach [8] cannot be applied for the coating is developed for the 
delamination problems around the near-surface micro-crack. All investigations are made 
on the clamped sandwich circular plate. In this case the corresponding eigen-value 
problem is solved numerically by employing FEM. 

 
2. Formulation of the problem and method of solution. 
Consider the circular sandwich plate with the geometry shown in fig. 1. Assume 

that the materials of the layers of the plate are isotropic, homogeneous and linear elastic. 
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Assume also that the materials of the upper and lower layers are the same. We suppose 
that between the middle and the upper layer as well as the lower layer of the plate there is 
a penny-shaped crack whose location is shown in fig. 1. Attempt to investigate the 
stability loss (delamination) around these cracks. 

We  associate with the middle layer of the plate Lagrangian cylindrical 
coordinate system zOrθ  (fig. 1). Assume that the plate occupies the region { ,0 Rr ≤≤  

}22,20 hzh ≤≤−≤≤ πθ  and the penny-shaped cracks occur in ( ){ uhhz −±= 2 , 
}Rr ≤≤0 . In the framework of the above-stated we suppose that the plate is compressed 

circumferentially and inward through the clamp by fixed radial displacement in the lateral 
boundary Rr = . The values of the normal forces with intensity p , which is shown in fig. 
1b, is calculated after solution procedure through the well-known operations. 
  We will denote the values related to the upper and lower layers by upper indices 
(1) and (3) respectively, however the values related to the middle layer by (2). Thus, we 
investigate rotationally symmetrical stability loss of the plate shown in fig. 1. For this 
purpose we use the second version of a small deformation theory of TDLTS [3]. Within 
each layer we write the stability loss equations 
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In (1), (4)-(6) the following notation has been introduced 
( ) ( ) ( )

( )
( )

( )

z
u

r
uT

k
rk

rz

k
rk

rr
k

rr
k

rr ∂
∂

+
∂
∂

+= 00 σσσ , 

( ) ( ) ( )
( )

( )
( )

z
u

r
uT

k
rk

zz

k
rk

rz
k

rz
k

rz ∂
∂

+
∂
∂

+= 00 σσσ , 

( ) ( ) ( )
( )

( )
( )

z
u

r
uT

k
zk

rz

k
zk

rr
k

rz
k

zr ∂
∂

+
∂
∂

+= 00 σσσ , 

                                          ( ) ( ) ( )
( )

( )
( )

z
u

r
uT

k
zk

zz

k
zk

rz
k

zz
k

zz ∂
∂

+
∂
∂

+= 00 σσσ .                                    (8) 

The other notation used in (1)-(7) is conventional. Note that the values indicated by upper 
indices 0 and entering (1)-(8) relate to the precritical state and are determined from the 
following boundary-value problem 
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 Thus, the investigation of the stability loss problem of the considered plate is 
reduced to the solution of the boundary-value problem (9)-(13) and eigen-value problem 
(1)-(8). Each of these problems is solved by employing FEM and in this case it is taken 
the problem symmetry with respect to 0=z  plane into account. In other words we 
consider only the sub-region { }20,0 hzRr ≤≤≤≤  and this sub-region is divided into 
120 rectangular Lagrange family quadratic elements, with 533 nodes and 1027 NDOF. 
Under determination of the precritical state, i.e. under solution of the boundary-value 
problem (9)-(13) we employ the classical Ritz technique, for numerical investigation we 
give the values to U  (13) and after solution of the problem (9)-(13) determine the values 
of p  (fig. 1) from the relation 
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 The analyses of the numerical results show that the stresses ( ) ( )00 , k
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k
zz σσ  differ 

from zero in the very near vicinity of the lateral boundary Rr =  and can be taken as zero 
outside this region. Therefore the existence of the crack in the plate does not change the 
stress distribution from the one without crack in the precritical state. The values of the 
precritical state correspond to that obtained for the whole plate without the crack. So, we 
determine the values related to the precritical state and for solution of the eigen-value 
problem (1)-(3) introduce the following functional 
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 From the relation 
                                        ( ) ( ) ( ) ( ) ( ) ( )( ) 0,,,,, 321321 =Π zzzrrr uuuuuuδ                                     (17) 
we obtain the equations (1) and boundary conditions (4)-(6). In this way we prove that the 
equations (1), (4)-(6) are Eurel equations of the functional (15), (16). Thus, applying the 
version of the FEM technique described in [9] to equation (17) we obtain the 
corresponding homogeneous linear algebraic equation for the nodal values of the 
displacement. Note that upon dividing the region { }20,0 hzRr ≤≤≤≤  into finite 
elements, according to [10] and others, we replace the nodes in the finite elements 
associated with the crack tip. This replacement is shown in fig. 2. In this way we keep the 
needed singularity of the stresses and strains at the crack tips. 
 

3. Numerical results and discussions. 
We assume that ( ) ( ) ( ) ( )3131 , νν == EE  and ( ) ( ) 3.021 ==νν , where ( )kE  and 

( ) ( )3,2,1=kkν  are Young’s modulus and Poisson coefficients respectively. Introduce the 
parameter ( )02Rhu=β  and analyze the influence of the problem parameters on the 
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values of ( )2Epcr . Note that this analysis will be made below in the framework of the 
following two statements which are established as a result of various numerical 
investigation: 
 1. In the cases, where ( )Rh 2<β  the values of the ( )2Epcr  do not depend on 
the geometrical parameters of the whole plate, these values depend only on the parameter 
β . Consequently, this situation allows us to conclude that the results obtained for the 
cases ( )Rh 2<β  relate to the local buckling of the coating layer which is on the crack. 
Moreover, according to these results the interaction between the upper and lower cracks 
can be neglected completely under determination of the values of the critical force. 
 2. The trustiness of the PC programs and algorithms composed by authors are 
established by comparing the corresponding results with those obtained in [6]. Note that 
in [6] the local buckling problem of the half-space near-surface penny-shaped crack had 
been investigated with employing double integral equation technique and for obtaining 
the numerical results the Galerkin method had been used. Moreover, it was assumed that 
the material of the half-space is a multilayered composite consisting of the two alternating 
layers which lie in the planes constz = . According to the present notation, Young’s 
modulus and Poisson’s coefficients for these layer’s materials can be denoted as 

( ) ( )11 , νE  and ( ) ( )212 , νE  respectively. It should be noted that in [6] it was also assumed 
that the near-surface penny-shaped crack is a macro-crack and the material of the half-
space is modelled as a transversally-isotropic one, whose isotropy axis coincides with the 
Oz  axis. Table 1 shows the values of ( ) ( ) ( )( )211 cEEcpcr +−  obtained by applying both 
present and [6] approaches in the case where 3.0=c  ( c  is a filler concentration), 

( ) ( ) 3,0,161 21 === ννβ  for various values of ( ) ( )12 EE . Note that the results given in 
Table 1 and related to the present approach had been obtained in the framework of the 1st 
statement. The comparison of the corresponding results given in Table 1 shows that the 
numerical results obtained in the framework of the present approach are very close to 
those obtained in [6]. This situation guarantees the validity of the algorithms and 
programs used in the present investigations. 
 
                                                                                      Table 1 

( ) ( )12 EE  Results of [6] Present results 
1 0.0167 0.0178 

10 0.0140 0.0154 
25 0.0126 0.0129 

 
 Now we return to the analysis of the results, which are obtained in the framework 
of the above-mentioned statements for the local buckling of the coating layer around the 
penny-shaped interface micro-crack. In fig. 3 the graphs of the relations between 

( )2Epcr  and ( ) ( )( ) ( ) ( )( )2121 loglog EEEEe =  are given for various β . While 
constructing these graphs, the values of the ( ) ( )21 EE  have been changed as follows: 

( ) ( ) 10001.0 21 ≤≤ EE  for ( ) ( ) 5001.0;008.0,04.0 21 ≤≤= EEβ  for 012.0=β ; 
( ) ( ) 1001.0 21 ≤≤ EE  for 20.0,16.0=β  because under ( ) ( ) 5021 >EE (for 12.0=β ) and 

under ( ) ( ) 1021 >EE  (for 20.0,16.0 ) the instability (failure) of the middle layer material 
arises in an earlier stage of the loading than the local buckling of the coating layer. 
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 The graphs given in fig. 3 show that the dependence between ( )2Epcr  and 
( ) ( )21 EE  has a non-monotonic character for each of the values of β . Moreover, these 

graphs indicate that the values of ( )2Epcr  increase monotonically with β . 

 
 

 
 

Fig. 1. 
 

 

 
Fig. 2. 
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