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DIRECT AND INVERSE PROBLEMS FOR DIFFERENTIAL OPERATORS
WITH SINGULARITY AND DISCONTINUITY CONDITIONS INSIDE THE
INTERVAL

Abstract

In this paper some aspect of direct and inverse problems for differential
operators with singularity and discontinuity conditions inside the interval are
investigated. The completeness of the system of eigen and adjoint functions of the given
operator is proved.

1. Introduction. Consider the differential operator with non-integrable
singularity

Iy:=—y"+[%+q(x)jy,0<x<T,

on a finite interval. Here q(x) is a complex-valued function, v, is a complex number. Let
1 .

v, = V2 3 and for definiteness Rev>0,v¢N. We’ll assume, that

q(x)‘ xmin(0.1-2Rev) L(O,T).

The not self-adjoint boundary value problem L of the form

ly=1y, 0<x<T, (1)
y(x):O(xV“/z), x—>0, )
y(T)=0, 3)
Jas0-a Ja-o. A {a{}i ailﬂ, acOT)iz0p @
y y & ap
is considered with discontinuity conditions (4) in interval points X=a;, I =ﬁ of the

interval (O,T), where a, =0,a,, =T . Here agik) are complex numbers,

detA #0,i=1Lp.

The aim of the work is the investigation of direct and inverse spectral analysis
problems for the boundary problem L. Boundary value problems with singularities and
discontinuity conditions appear in different branches of mathematics, mechanics, radio
electronics, geophysics and other spheres of natural sciences and techniques. For
example, discontinuity conditions inside the interval are connected with discontinuous
and non-smooth properties of medium [1,2]. Such type inverse problems are also
connected with investigation of discontinuous solutions of some non-linear equations of
mathematical physics.

For classical Sturm-Liouville operators, Shrodinger equation and hyperbolic
equations, direct and inverse problems are sufficiently completely studied (see [3-6] and
references). Existence of singularity and discontinuity conditions inside the interval
introduces qualitative changes in investigation.

Some aspects of direct and inverse problems for differential operators with
discontinuity conditions were studied in [7-9]. In paper [18] some aspects of the operator
L were studied when in solution there is only one discontinuity point inside the interval.
As distinct from [18] in this paper the operator L is studied when in solution there are




22 Asspbaiixkan MEA-HbIH
XS0spIsipu
[Amirov R.Kh.]

any finite number p>2 of discontinuity points inside the interval and the uniqueness

theorem of solutions of the inverse problem by two spectrums is proved. Inverse
problems for equations with singularity without discontinuity conditions were considered
in [10, 11] and etc. In the given paper properties of eigen and adjoint functions of the
problem are studied and inverse problem of restoration of L by the data its spectral
characteristics is investigated.

For definiteness we restrict ourselves with the most important particular case

al(iz) =0, i=1,p. The general case is considered analogously.
Remark 1. If Rev > % , then condition (2) is equivalent to condition y(O) =0.

Remark 2. Problem (1)-(4) will be self-adjoint iff v,q(x),a\}) are real and
detA =1.

2. Fundamental systems of solutions. 2.1. At first consider differential equation
Vv

ly=-y"+—=>y=y 5
X

in a complex X-plane. Denote by I1_ the X-plane with the cut X<0. Let numbers
Cjo» J =1,2 be such that

Cy ' Cio :2_1/.
Functions
Cj(x):x”iicjkxz'(, pi=E1) v+, j=12, (6)

Cik =(—1)"Cj°@((25+#1)(25+“1 _1)_1/0)}_1

are solutions of equation (5). Here and later on Xx* = exp(,u(ln|x| +iarg X)),

argx (- z,7]. Functions C i (x) are regular in TT_ and

detle™(x)], , =1. (7)

Denote &, =(~1)"-i. Equation (5) has solutions e, (x),k=12,(-1)"Imx>0,
satisfying the integral equations

e (%)= explX)+ - Jexpli(t— ) - explitx ~t)) 2, ()t

t

Using fundamental system of solutions {C i (X)}j:1 , We can write

e ()= B4C;(x). 8)
j=1

In particular, it gives the analytical extension for function e, (x) in I1_. Denote
Q5= {X:argx € [—ﬂ' + 5,7[]}, Q,5= {x:argx € [— T, — 5]},5 >0. We can show
(see[12-14], that

(here argt =argX,

> X))
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elgm—l)(x)zglgm_l)exp(gkX{l-i‘O(%)J, X —>o0, km=1.2 )
uniformly in Q, 5 at each fixed 6>0. Since according to Ostrogradsky-Liouville

theorem Wronskian det[e&m_l)(x)] doesn’t depend on v, then using (9) we find

k,m=1,2

detle(™(x)], > =21 (10)

Lemma 1. The following equalities take place
ﬂgj:ﬂlojexp(iﬂ./uj)’ =12, (11)
ﬂlolﬂloz = ; . (12)

sinzv
Proof. From construction it follows, that
e,(x)=e,(~x), Imx>0. (13)
Since at Imx > 0(— x) = x* exp(— izu), then by virtue of (6) and (8) we have

ez(_ X):jiﬂzoj eXP(_i”ﬂjkj(X)- (14)

Substituting (8) and (14) into (13) and equating coefficients at C, (X), we obtain (11).
Further, according to (7), (8) and (10) det|}] 1, =21 From here and from

(11) follows (12).
2.2. Consider now the differential equation
lby=4y,x>0. (15)
Let 1=p”. Obviously if y(x) is the solution of equation (5), then y(p X)
satisfies (15). Functions

C;(x,4):=p"C;(px)=x" icjk(px)zk, j=1,2,x>0
k=0

are integer by A solutions of equation (15), where

det[C(™(x,2)] I

jsm=1,2

Denote S, = {p xIlmp> 0},Sk0 = {p rargp e (k0%9(ko + 1)%]} , kp=—21.In
each sector S, roots of the equation R*+1=0 can be enumerated such that
Re(pR, )< Re(oR,), peS . It’s clear, that R, =¢, for S, and S, and R, =&, for

S_, and S, . For definiteness let Rep>0,1i.e. peS,US.
Using the results of p.2.1 we obtain that in each sector S, ~equation (15) has a

fundamental system of solutions {y, (X, p)}k=1’2 such, that

Vi (% 0)= Y, (pX),

m- m— 1 —
Y (x. )= (pR )™ exp(pR, X)(l + O(;B’ pesS,.,

plx =0, km=12,

2
det]y™ (%, p)k s s =-20R1s Vie(60)= 30 p"C, (%, 4),
=
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where bfj =ﬂj°k for S}, and bkoj =ﬂ3°_k’j for S”,. Note that y,(x,p)=¢ (ox) for S,

and y, (x, p) =5, (px) for S7;.

2.3. Now we pass to the investigation of equation (1) and construct for it
corresponding systems of solutions by the perturbation method.

At xe (O,T) equation (1) has integer by 4 solutions S (X,/l), j =12, satisfying

the integral equations
$,(x,4)=C,(x.A)+ [(C,(tA)Cs (x.4)- C, (6. A)C, (x. A)alt)s, (1 A)ct
where 0
Sj(m)(x,/l)zo(x”fm), (Sj(x,/i)—Cj(x,/l))x_“j =o(x2"), Xx—0,

uniformly by 4 on compacts. Besides,
det[s ™ (x,4)]

jm=1,2

L plx <t (17)

1, (16)

‘ng)(x,ﬂj <clx”

Here and later on by the same symbol C we’ll denote different positive constants
in estimations, independent on X, A4 .

In [15] the fundamental system of solutions of equation (1)
v, (x, ,o)}k:L2 , xe(0,T ], p €35, was constructed, which has the following properties:

1) for each Xxe (O,T] functions Yk(m)(x,p),m =0,1 are regular at pe Sko, |p| > p, and

continuous at p €Sy,

Pz p.;
2) functions Y, (X p) satisfy the integral equations
Y (x.0)=yi(x.p +—ZJ (x.0)ys.(t. p)alt) (t.o)dt
J 15
where ¢, =0,at j<k, &, =T;
3) the following correlations hold:

) C -
‘Yk(m>(x,p)(ka) mexp(—kax)—l‘SW, peS, xe(0,T]|ox=1, m=0,1, (18)

det,™ (%, o)) s> =—20R (1 " o( D (19)
Yol

MN

Y (x.0)=>by(p);(x.2), (20)

Il
—_

i

b (p)=bigp" (1 + O(%B :

Note, that later on the asymptotic (21) of Stock’s multipliers by (p) is of great

where

— o, peS_kU. 2n

importance.
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Using (18)-(21), we’ll study the asymptotic of solutions S j(X,/l). Denote
= % /2i, dY=—-p"/2i. Then

dode——— L
4isinzv

x>1,xe(0,T] j=1,2, m=01 the following

Lemma 2. At |g|
asymptotic formula holds:

s (x,2)=d’ o ((ip)" exp(~ iz, JexplipX)[i], +
+(—ip) exp(=ipx)i,)- (22)

Here and later on the following denotation is used

0 =1+0{ 5

(i.e. equality f(x,p=[1],) notes that | (x, p)-1< ol | , |p[x=1).

x>1

Proof. Solving (20) with respectto S. (X /1) we obtain
5,(,2)= 2 d (o, (x.p). J=12. (23)
k=1
where [d jk (p)]j,kzl,z - ([bki (p)]k,j:l,z F :

By virtue of (21) we have
dkj( ) jkp o [1]
where [d })k (p)]j’k:l’2 = ([bjok (p)]k’j:l’zyl and the denotation [#]=6 + O(1/p) is used. We’ll
write equation (18) in the form
Y, p)=(pR)" exp(p R [1)y, peSy

Let for definiteness peS_0 (for other p calculations are analogous). We have

—w, pes, | (24)

plx=1; m=0,1, k=12. (25)

Ry =&, bfj = ﬁfj and, consequently, using (11), we find

|:d101 d102:|:|:d10exp(_iﬂ-/ul) dlo:| (26)

dy, d3 dgeXP(_'”ﬂz) d;
Substituting (24), (25) into (23) and taking into account (26) we obtain (21).

3. Properties of spectrum. Consider functions

s;(x.4) x<a,
0;(xA)=1 . 27)

o\)(2)5,(x,2)+ 0\)(2)S,(x,2), & <x<a,,i=1p.

jl

Here a)gl) (1) and 0)2'2) (1) are defined from the following recursive correlations:

HoHE bl sealies s =

21

where the first approximation is defined by the formula:
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60511)(/1) :{31(11) 0} Sj(al’ﬂ“) |:Sl(al’/1) Sz(alsi)}_I.
o\J(2)| |al) a¥ || (a.2)||si(@.4) si(a.2)

By the construction of function ¢ J-(X,/?L), j=1,2 they are solutions of equation

()at a_, <x<a;,i=1p+1 and satisfy the conditions:

(Pj(ai+0) _ al(il) 0 (Pj(ai_o)
Lpa (ai+o)Ha§z> )] o (a—0)]__ e

According to (16) and (28) we have
1, X<a,

detfp™(x, )] (29)

—Ji
j,m=1,2 HdetAk, a <Xx<ay,,i=1p.
k=1

Denote

b - L(a) a)

and suppose that b #0. We’ll call conditions b, #0,i =ﬁ the conditions of sewing

regularity (SR) at the points a;, izﬁ. Below in p.5 the contrary instance is given,

showing the essentiality of SR condition during the investigation of the boundary value
problem 1.

Lemma 3. At |p[x>1,xe(0,T], j=1,2;m=0,1 the following asymptotic
formulas hold:

oM (x,2) =20 (ip)" expl(- i, Jexplipx)tl, + (- i) expl- ipn)i), ) x <. (30)

cp(jm)(xal)=d?p_"’{(ip)”‘{BN expl-imy )y ¥ Bmexp(i((—l)'k“ﬂpask—

I=1 1<s/<5,<..<5 <N k=1

—inu5, ) ﬂe)qo(ipX)[l]0 +(- ip)’”[BN £y Y8y exp[lZ((— 1) 2ipa, -

1=1 1<5,<5,<..<5 <N k=1

_iﬂ,uj(l—dsk ) ﬂexp(— ipX)[l]O}, ay <x<ay,, N=1p, (31)
where
1, at k is even
S5 = | N
%0, atk is odd,By =By (s,-s;)=TTbs - TTb:
k=1 k=1+1
N
By=> b, B,=1.
k=1
Here {s, f,_w is permutation of numbers 1,...,N , numbers {s, }, —+ are complement of

{8 J7 to the numbers 1,..,N .
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Proof. Formula (30) follows from (22), therefore we’ll prove only formula (31).
We expand ¢ (x,4) by the fundamental system of solutions {Y, (X, ,0)}k=1,2 at

a_, <x<a,i=1lp+l

(Pj(xafl): Ay (P)Yk (X,p), Qi <X<g. (32)

k=
By virtue of (23) and (27)
Aio(p)=d i (p). (33)

In order to calculate Ay, (p) we’ll use the sewing conditions (28). At first we’ll

calculate Ay, . For this substituting (32) into (28), we obtain
|:Yl(a1’p) Yz(al’P)}{Ajn(p)}z al(ll) 0 |:Yl(al’p) YZ(al’p):||:Aj10(p)i|
Yll(al’p) YZ,(alap) Aj21(p) a(l) a(l) Yl,(alﬂp) YZ,(alap) Ajzo(p)

21 22
Consequently,

Am(/’) 7791)(/?) ﬂglz)(p) Ajzo(/’)

An(e)] _[al(p) 7)) Ano(o) ,
where { } { M } N

1 , '
771(|1<)(P) = m(al(ll)Yk (al , p)Y2 (al ,,0) - agll)Yk (al ,,0)Y2 (al ,,0) — &Yy (al > p)Y2 (al ,,0)),
1 I/ !
77912(/)) = _w(al(ll)Yk (al :p)Yl (al ,,0) - agll)Yk (al :p)Yl (al ,,0) —ayYy (a‘l ap)Yl (al ,p)),
W(p) = det[Yk(m_l)(a’ p)]k,m:l,z :
Let for definiteness p € S_O. Then R, = ¢, . Using (35) and (28), we find
Wp) m(i)(p)} br] [b;]exp<—zipal>}, 6

n(p) n¥p)] hbf Jexp(-2ipa;) Iy ]
Substituting now (36) into (34) and using (32), (34) and (26) we obtain
Ajll(p) =djp™ (bl+ exp(— 7 )+ b exp(-2ipa, ))[1] ,
Aj21 (/7) =d ?p_#j (bl_ exp(— i”ﬂj )exp(2ip a, )+ b1+ )[1]:

which with (32) and (25) gives (31).
In the case N =2 analogously we obtain, that

{Ajlz(/))} _ 771(12)(,0) 771(5)(,0) {Ajn(/’)} '
Ajx (o) 3)(,0) Ug)(P) Ajn (o)
Then for Ay, , k=12 we obtain the following formulas:
Am(p)z d?,o_”J {bsz+ exp(— iz )+ b, by exp(— 2ipal)+

+b by exp(— i )exp(— 2ip(a, —a,))+bb; exp(-2ipa, )}[1],
A ()= o™ {bb5 +byb5 expl— iz, Jexp(2ia, )+

+b/by exp(— i, )exp(— 2ipa, )+ b b; exp(-2ip(a, —a, ))}[1]
By the similar way any N < p for Ay, i,k =1,2 we obtain the following formulas:

(35)
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Ale(p)zd?p—#j (ip)m{BN exp(—i;r,uj)+§1: > By exp(zl:(_ 1)I—k+12ipa5k 3

1<5,<8,<..<§ <N

~imu,s,) H exp(ipx)[t], .

3
—
~—

L
&
D
o

|

AJZN(p>=d;>pf'f(—ipw{swi S sy 30

I=11<s;<s,<..<§ <N

—imu,(1-5,) H exp(—ipx)[i], .

which with (32) and (25) gives (31).
Denote A(ﬂ)z 0, (T,ﬂ). Function A(ﬂ) is integer analytical by A function and
its zeros {4, }

that if A, is zero multiplicity y,, then functions
o (pz(xﬂ% , $=0,7,-1

(Pns( ) a/,{/s . jﬂ

form the chain of eigen and adjoint functions for the eigen value A,. Function A(/’t) is

called a characteristic function of the problem L. By virtue of (31) the following
asymptotic formula hold:

A(/l)zAO(p{l+O(%B ,
where

Ay(p)=d?ps {[Bpexp(_ )y YB, exp(zl:((—l)'_k”ﬁpask _ims, )ﬂ

=
i

coincide with the eigen values of the boundary value problem (1)-(4). At

nxl1

pl—> o, (37)

1=1 1<5,<5,<..<§ <p k=1

< explipT[1], + {B vy T, eXP(Z(( 1) *2ipa, iﬂuz(l—&k))Hexp(—ipT)[l]o}

I1=11<s,<8,<..<§ <p
Consider the case when Imp>0. Then taking out the multiplier exp(— ipT)
from the expressions for A,(p), we obtain
Ag(p)=d;p e B (1+R,(p)), (38)
where

N, (p)=exp(—imu, + 2ipT)+Zp: ZB,\”(SI, . J)exp(zll((— I)HMZipaSk — im0, )Jx

I1=11<s,<...5<N k=1

xexp(2ipT )+ Zp: 2Bl (SH 2] )eXp(ZI: ((_ 1 2ipas, — iz, (l — 0, ))J ’

I1=11<s,<8,<...5 <N k=

where By, =By, /B, .
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| |
Since included in expression X,(p) terms Z((— l)l_k+1 a,, +T) and Z(— 1)I_k a,,
k=1 k=1

are positive, then there exists such constant C , that |N1(p] <C . Analogously, in the case
Im o <0 we obtain, that

Ao(p)=d; p7 6" - B, (1+%,(p)),
where

P |
N, (p)=exp(- izz',u2)+z > B (Sl,...,sj)exp( ((— l)l_k“?.ipask — im0, )Jx
=11 k=1

<5 <...5 <N

; {iz B (5,...5, )exp(lzl((— ) *2ipa, —imw(i-5, ))Hexp(—ﬁpT).

k=

!
Since included in the expression N,(p) terms Z(—l)'_k”ask and
k=1

|
kZ(— l)l_k (ask —T) are negative, then there exists such constant C , that |N2(pl <C.
|

By virtue of the SR condition By #0. Then using known methods (see, for

example, [16]) it can be stated, that characteristic function and its zeros have the
following properties:
1) at | p| —>©
A(A)= O(‘ereH/z exp(IImp|T )),
2) there exist h>0 and C, >0 such, that
|A(/1l >C, |,0|7ReH/2 exp(IIm p|T)
at |Im p| >h; consequently, all the eigen values A, =p, of the boundary value
problem L lie in the strip |Im p| <h;
3) number N of zeros A(/”t) in the rectangular IT, = ﬂImp|<h,Repe[§,§+1]} is
bounded on & ;
4) denote G; ={p:|p—pn|25, Vn}, then
|A(/11 >G5 -|,0|_Rev_l/2 exp(IImp|T), peGy; 39)
5) there exist numbers Ry — oo such that at sufficiently small 6 >0 circles | p| =Ry lie
in G4 atall N ;
6) let {p,?} be zeros of the function Ao(p) of the form (38), then at n — o

Po=po +0(1).

4. Weyl solution. Weyl function. Let function ®(x,4) be the solution of
equation (1) and satisfy the conditions ®(x,4)~c,,-x",x—0,®(T,4)=0 and also
sewing conditions (4). We’ll call the function <I>(X,/1) the Weyl solution for the boundary

value problem L (by analogy with the Weyl solution for the classical Sturm-Liouville
problem). Denote
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M(1)= ——), (40)

where §(4):=¢,(T,2). It’s clear, that
D(x,2)=,(x,2)+ M (2)o,(x,2). (41)
We’ll call the function M(/i) Weyl function for L. Weyl solution and Weyl

function all meromorphic by A functions with poles on spectrum of the problem L.
From (40) and (41) it follows that

D(x,1)=—

; (42)

where
P(x,4)=0,(T, )0, (x,2) = 0, (T. )0, (x.2). 43)
Function ‘P(X,/l) is integer by A solution of equation (1), satisfying the
conditions ‘I’(T,/i)zo, ‘P'(T,/I):det Ay and also splice conditions (4). Note, that by
virtue of (29), (41) and (42)
1, X<a

= N-l D Al
<®(x,2),0,(x,4)>= [TdetA ay, <x<ay,N=2,p+1,

k=1

1, X<a,
= AN —
<0, (x.4). ¥(x.2)>=A(2) [IdetA ., ay, <x<ay,N=2,p+1, (44
k=1

where <y, z>=yz'-y'z.
Lemma 4. At [p| > o, |p|x>1,x€(0,T), je(0,T), j=1,2,m=0,1 the following
asymptotic formulas hold:

Wy, p)= LAY (exp(Cip(T - x))i], —explip™ — )i} ), x>a,,  (45)

2ip
Y1, p) = 2 (expl- (T = )l — expliplT X)L+
det A, P

;Li 3By {exp(zl:(—l)lk (r-2a, )-ip XJ[l]0 _

N-I i
HdetAk 21p 15 1<8,<8,<..<§ <N k=
k=1

—_

- exp(zll(— 1)*(-2a, -T)-i pxj [1]0}, ay <X<ay,;. (46)

k=1
Proof. We’ll expand W(x,4) by the fundamental system {Yk (X,p)}

k=1,2
separately at ay_; <X<ay,ap, =T
2
Y 0)=2 An (P p) s ays <x<ay,. (47)
k=1

Using initial conditions ‘P(T,/i)z 0, ‘P'(T,/i)z det A, , we calculate A :
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An(p) ==y 7 ) A ()= By (T ),
w(p) w(p)

W(p)= det[Yk(m_l)(T:p):lk,mzl,z . (48)
Further, using sewing condition (4), as in the proof of lemma 3, we obtain

SOLRG e,

where functions ng,’l)(p) are calculated by formula (35). Since det[ng'?)(,o)]s’kzh2 =
=det Ay then from (49) it follows
|:A1N1(p):|_ 1 { 77?2\‘)(/7) _771 ( )} |:A1N( )} (50)
AZN—I(p) - det Ay _7791\”(/7) 7711 ( ) AZN( )
Let for definiteness p e §0. Then R, =¢&,. Substituting asymptotic formulas (25) and
(36) into (48) and (50), we obtain

det A
Ay (/3): 2ip

Ana(p)= ﬁ(bﬁ exp(=ipT)+by explin(T —2a, )1,

det A

Nexp(—ipT)I].  An(p)=- 2ipN exp(—ipT)[1],

1 (. . .
Aoi(p)= _E(bN exp(-ip (22 ~T))+ by explipT))l]
In the case a,_, <x<a,_, for Ak n_2» K=1,2 analogously we obtain that

! {b by exp(=ipT)+byby  explip(T - 2ay )+
)

A =
w-2(0) detAy, 2ip

+byby s exp(—ip(2ay —2ay , —T))+byiby , explin(T —2a,  )I[1].

-1 1 +]t -t H
AzN_z(P)ZW'ﬂ{b by_i exp(—ipT)+byb_ explip(2ay —T))+
N—1

+byby_ exp(-ip(2ay —2ay, —T))+byiby_ explip(2ay_, - ))} [1].
Using the mathematical induction method we obtain that

%@):%-ﬁ{swxp(—w)& > BN.exp[im)'-k(zask—T)j}m

Hdet Ak 1=11<5;<8,<..<§ <N k=1
k=1

swen{ S0 -2, )j} i

k=1

Azl(p):N_l_—l 21 {B exp( i,OT)-i-Z z
Hdet A ! 1=1 1<s,<s,<..<§ <N
k=1

which together with (47) reduces to (45) and (46).
Corollary 1. At peG; the estimations

@™ (x, )< Cl o™ expl-[tmplx), m=0.1, |plx=1, GD

IM(2)<Cy | o (52)
hold.
Really, estimation (51) follows from (42), (39) and lemma 4, but estimation (52)-
from (40), (39) and lemma 3.
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5. Completion theorem. Let « be real number and 1< p <o . Consider Banach

spaces @, , = {f (x): F(x)x ™ e Lp(O,T)} with norm || f ||a’p = H f(x)-x™

, Where |||| s a
p
norm in space Lp(O,T). By (Dz,p we denote the conjugate space. It’s clear, that
o, =d_, . (p+q7 =1, p>1). We’ll show, that
O,,cPs, 1<s<p<oo, f-a<s'—p! (53)

(symbol < denotes the dense inclusion [17]). Really, at a>f,s<p we have
@a,pgtbﬂjp, q)ﬁ,pgcl)ﬁ’s, and (53) is evident. Suppose now, that a<f,s<p.

Consider function f(X)e @, ,. Assume I = p/s,r'= p/(p - S). Then r™ +(r')‘1 =1.
Since f-a<s' —p', then (a - ,B)Sf’ >—1. Using Hélder inequality, we obtain

H f (x)x”’”s < “ f(x)x™
f||ﬁ,S < C'”f”a,p' Since @, , is dense in @, then we obtain (53).

x%#

sr

sr'

and, consequently,

From (53), in particular, it follows that

O,,cly, ISs<p<o, a> p—s.

Denote @ =Rev + % . The following completion theorem is valid.

Theorem 1. System of eigen and adjoint functions of the boundary value problem
L is complete in spaces @, at 1<s <o, ,B<a)+l.

’ S

Proof. For brevity we confine ourselves to the case of simple spectrum, i.e. the
case, when characteristic function A(/”t) has only simple roots. The general case is
considered analogously. Since eigen values {/ln }n21 of the problem L are zeros of the
characteristic function A(/i) , then by virtue of (44) and sewing conditions (4) we have

lIJ(X’ﬂ'n):ﬂn(Pz(X’ﬂ“n)ﬂ P #0. (54)

Functions ¢,(x,4,) and ¥(x,4,) are eigen functions of the problem L for eigen values
A

n-

Let function f(x), x(0,T) be such that

f(x)x” e L(0,T), ]'(pz(x,/in )i(x)dx=0, n>1. (55)
Consider the function 0
Y(x,/i):ﬁ(‘l’*(x,i)i(pz(t,i)f (0ht + (pZ(X,/i)'TX[‘P(t,/i) f (t)dt] 6
where
1, X<a;;

X)=4N 7
[]detA . ay <x<ay,.

k=1
Since by virtue of (44)
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02 ¥ (. 2) =02 (6 2)¥(x,2)= A(2),
then by direct calculation we are convinced, that function Y (x, ) satisfies the differential
equation
IY (x,2)- 2Y (x,4)= f(x) (58)
separately at X <@, and at each ay_, <x<ay, N =2,n. Using (54)-(57), we calculate

the residue of function Y(x,1) at the points of spectrum A =4,
T

Ijisv(x,@):.;(\y*(x,zn fonlt.2)F (0ht-+ 0304, )I‘I‘(t,/in)f(t)dth

e 4
ﬂ T
=15 (x,4 t,4,) f(t)dt
A(ﬂn)q)Z(X’ n)!;(Pz(: 2) f(t)dt,
where A(/l)z(f—/lA(/i). According to (55) we have
ResY(x,4)=0.
A=A,

So, at each fixed x €(0,T) function Y (x, 1) is an integer analytical by A.

On the other hand, using results of p.3, 4, we estimate function Y (x,ﬂ) in domain
Gys. We fix xe (O,T). Then |p|X >1 at sufficiently large p. By virtue of (30), (31) and
(45), (46) we have

o) <Cla™ explimp). ozt
¥ (x, 1) <Clp™ explimp|(T = %)), |o|x=1. (59)
Consequently, subject to (39) and (57) we obtain the estimate

|Y (X,l) <C; £|p|w1 exp(— |Im,0|X)':|j|(p2 (t,A)f (t)'dt +

T
v expl-fim (T —x))ﬂ‘l’(t,l)f(t]dt) (60)
Further, by virtue (17) and (27)

o, A)<Ct?, t< 1

-, 1)
||

and consequently,
Vel lol
[lo,(t.2) f(t)dt<C [t] f(t)dt.
0 0

Using (59), we have

JX.|(P2 (t,2)f (t)| < C|,0|_w J)Eexp(llmp| f (t))dt <

Ylel Ylel

< C|p|_w exp(llrnp|x) jﬂ f (t)'dt <C exp(]lmp|x) ]Et”( f(t))dt,
el Yol
and also
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}l‘l’(t,i) f(t)< Clpl’liexp(llmpl (T -0)|f (t)dt <

<C exp(IImp|(T - X))|p|w_l}t’”| f (t]dt )

Substituting into (60), we get estimation
|Y(X,/11SC5|,0|QH , peG;.
Since at fixed x function Y(x,4) is an integer by A, then from the last estimation it
follows, that Y(X,ﬂ) is a polynomial by A, which together with (58) gives Y(X,/i)z 0
and f(x)=0 a.e.on (0,T).
So, we proved that at each p (1< p<) system of functions {o,(x,4,)}

ne1 18

complete in @, . Since by condition f—w<1/s, then f—w <1/s—1/p at sufficiently
large p, and according to (53) ®,, <P, . Consequently, system of functions
{0,(x, 4, )}na is complete in @ 4 ;. Theorem 1 is proved.

Corollary 2. System of eigen and adjoint functions of the problem L is complete
in L,(0,T) at I<s<oo.

We’ll give the contrary instance showing the essentiality of the SR condition
b" #0. Consider the boundary value L at v,=0, q(X)EO, T=rx,a =37/4 (in case
n=1), a, =-a, =1, a,, =a,, =0, i.e. consider the problem

—y'=1y,0<x<x,
y(0)=y(z)=0,
y™@+0)=(-1)"y™(@-0), m=01, a =%;z. (62)

For this problem b* =0, i.e. SR condition is violated. Characteristic function of the
problem (62) has the form

AA)= sin p(2a - 7) .
P
Eigen values A, = p_ are p, =2n, n>1, and eigen functions have the form

sin 2nx, XS%{;
Ya(X)=

(-1)""sin2nx, x> %7[.

System of functions {y, (x)}n>1 is incomplete in @, at I<Ss<o0, f<1+ 1 .
N ’ S

6. Inverse problem. In this point we study the inverse problem of restoration of
the boundary value problem of the form (1)-(4) by the data of its spectral characteristics.
We’ll consider three statements of the inverse problems of the boundary value problem L
by Weyl function and discrete spectral data. These inverse problems are generalization of
the known inverse problems for Sturm-Liouville operator (see [3,4]).
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Let’s formulate the uniqueness theorem of solution of the inverse problem by
Weyl function. For this along with L consider the boundary value problem L of the
same form, but with other potential v, / x* +§(x). We’ll stipulate, that if some symbol «
denotes the object related to the problem L, then & will denote the object, related to the
problem L.

Theorem 2. If M(1)=M(2), then L=L . So, representation of Weyl function

uniquely defines the boundary problem L.
Proof. Consider functions

P (%,4)=®(x )™M (x,2)— ¢, (x, A)D™(x,2), m=0,1. (63)

At each fixed Xe(O,T] functions P, (X,/l)are memorphic by A with poles at points
A=A, and A =/Tn. We’ll fix XE(O,T]. Then |p|x21 at sufficiently large p. Denote
G2 =G, NG, . By virtue of (51) and (59) we have
Cs
o
Substituting (41) into (63), we calculate

P (%,2) =0, (%, 267 (6,2) = 93 (6, )6 (x,2) + (M (2) — M (1)}, (x, 20657 (1. 2).. (65)
Since by condition M (1)= I\W(ﬂ,), then from (65) it follows, that at each fixed X e (O,T]

functions P, (X,/”t) are integer analytical by 4. Together with (64) it gives
P, (x,2)=0, P(x,4)=P(x).

P(x,A) <2, |P(xA)<Cs, peG,. (64)

But then
D(x, )5, (x,2)= 9, (x,2)(x. 2),
(x5 (x,2) = (@(x, 255 (. 2)— 02 (%, 2)B (x, 2)), (%, 2) =
= (@06 285 (6.2) ~ 5, (0 2B (1, 2) )2 (%, 2) = 7(X)p (%, 2).
Analogously
P(x)b(x,2)=7(x)(x, 2).
So,

0:(62)_0(x2)_ PR )
0.(x.4) ®(x.2) 7(x)
Further from (30), (31) it follows that at |p| —> o0, argp e [8,72' - 8], >0,
0,(x,2)=d]p By exp(-ipll],  ay <x<ay,, N=1p. (67)
Analogously, using (42), (45), (46) and (37), (38) we obtain that at | p| — 0,
argpe[g,ﬂ—e], >0

N
HdetAk X p(ufl
D(x,1) =+

2|dOB eXp(lp X)[l]’ aN <X< a'N+1 2 N = 09 p . (68)
2=N

Substituting now (67) and (68) separately on each interval (aN ,aNH) into (66), we obtain

P(x)

~— = Py. =const,
det A

w=a,
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ie.
0,(%,4)= Py, (x,2), ®(x,2)=Py.®(x,4), ay <x<ay, .
Consequently, q(x)=(x) a.e. at each xe(ay,ay,,), i.c. a.e. at (0,T). Theorem

2 is proved.
Consider now the inverse problem of restoration of L by discrete spectral
characteristics. For brevity we confine ourselves to the case of simple spectrum. Denote

T
o, = _[(Pz (X’/q“n )p; (Xﬂﬂ’n )dX :
0

We’ll call set of numbers {ﬂn,an }nZl the spectral data of the boundary problem L.

Inverse problem is stated in the following form: by given spectral data to construct the
problem L. We’ll prove the uniqueness theorem of restoration of L by the spectral data.

Theorem 3. If 1, =4, ,a,=a, atall n>1, then L=L . So, representation of

spectral data uniquely defines the problem L.
Proof. We’ll show that the following correlation is valid

A(4,)
==/ 69
a, 5 (69)

where numbers /3, are defined from correlation (54). Really, from correlations
" V
- 3(02)+ 24+ a0 o (1.2)= 20,(x.),

”

-0 (02)+ 24 000032y ) = 2y 032
we have
d * *
Ol Ahi02,)>= (1 A, o 6 23 02,
separately on each interval, ay_, <X <a, . Consequently,
T n
(ﬂ‘ — 4 )I(PZ (Xafl)‘Pz (X’/ln )dX = kz< ¢, (X’ﬂ)a ¢, (Xa Ay )>
0 =0

where a,=0, a,,,.
Using (61) and conditions (4), we obtain

(4 20 ) 020, AXo (5.2, Yo = 5 (T 2 )05 (T 2,)

A1
ay 4

and, consequently,

T '
T 2)o3 (0,2 e = (2, o (T.4,). 10)
0

According to (54) and (57) ¥~ (T, 4,)= 8,0, (T,4,), i.e. ¢, (T,;tn)zﬂi which
n
together with (70) gives (69).
Further, by virtue (40)

_ o) o1 4)
ResM(1)=- 30 =—"50
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According to (43) ‘P( ) ( )(p ( ) Comparing with (54), we obtain
B, =,(T,4,) and consequently,
ResM(4)=— I (71)
Ay A(/ln ) a,

Now let A= /Tn ,a=a, at all n>1. We define functions P,(x,4) by the
formula (63). By virtue of (65) and (71) and functions P, (X,/l) are integer by A at each
fixed Xe(O,T]. Repeating now reasoning given at the proof of theorem 2, we obtain
L=L.

Theorem 4. If A, =7, , A, =4, atall n>0, then L=L . So, the problem L
is uniquely defined by given two spectrums.

Proof. Since A(ﬁ) and Z(/i) are integer analytical functions of half order, then
accurate to constant multipliers they are defined by their zeros. Consequently,

sar-ofifi- -], sw-cfi -]

where C,, C, are constant values.

From condition A, =4, it follows that A(2)=c-A(4). On the other hand, from
formula (37) for A(4) we obtain that

0 - 0 ~
é(ﬂ):(iz 'DN . 1+Oi 2(1_2.10/‘2‘”2 1+Oi =C, Im
Aa) d2 p p)) dy P

From here we drive, that z, = 1, .

—> 0,

By analogous reasonings, using expression o (ﬂ,) we obtain, that g, =z, . Since
11 1 1

v Mo =iy =y 2V ’

and one of numbers ¢, C,, can be arbitrarily chosen, then we obtain that one of numbers

Cip"Cy =

,B,g can be arbitrarily chosen. Without losing of generality assume £ = ,5101 =1. Then
B = ﬂlol exp(i;ryl ) =B exp(i G ) =B
i 1
B = =0 ﬂlz >

ﬂn sinzv ﬁ” sinzv

ﬂgz = ﬂlz exp(l T, ) = ﬁloz exp(i 7L, ) = 15202 .

On the other hand
M do iy _ ,322 el _ :322 g V() :M
) ﬁZl ﬂZl Z(/7’)
ie. M(1)= M( ). Then from theorem 2 we obtain that L= L. Consequently

q( )=G(x), a.e.at (0,T).
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