
Transactions of NAS Azerbaijan_____________________________ 
 

21 

AMIROV R.Kh. 
 

DIRECT AND INVERSE PROBLEMS FOR DIFFERENTIAL OPERATORS 
WITH SINGULARITY AND DISCONTINUITY CONDITIONS INSIDE THE 

INTERVAL 
 

Abstract 
 

 In this paper some aspect of direct and inverse problems for differential 
operators with singularity and discontinuity conditions inside the interval are 
investigated. The completeness of the system of eigen and adjoint functions of the given 
operator is proved. 
 
 1. Introduction. Consider the differential operator with non-integrable 
singularity 
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on a finite interval. Here ( )xq  is a complex-valued function, 0ν  is a complex number. Let 

4
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0 −=νν  and for definiteness N∉> νν ,0Re . We’ll assume, that 

( ) ( ) ( )TLxxq ,0Re21,0min ∈⋅ − ν . 
 The not self-adjoint boundary value problem L  of the form 
                                                       ,0, Txyyl <<= λ                                              (1) 
                                                      ( ) ( ) ,0,21 →= + xxOxy ν                                            (2) 
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is considered with discontinuity conditions (4) in interval points piax i ,0, ==  of the 
interval ( )T,0 , where Taa p == +10 ,0 . Here ( )i

jka  are complex numbers, 

piAi ,1,0det =≠ . 
 The aim of the work is the investigation of direct and inverse spectral analysis 
problems for the boundary problem L . Boundary value problems with singularities and 
discontinuity conditions appear in different branches of mathematics, mechanics, radio 
electronics, geophysics and other spheres of natural sciences and techniques. For 
example, discontinuity conditions inside the interval are connected with discontinuous 
and non-smooth properties of medium [1,2]. Such type inverse problems are also 
connected with investigation of discontinuous solutions of some non-linear equations of 
mathematical physics. 
 For classical Sturm-Liouville operators, Shrödinger equation and hyperbolic 
equations, direct and inverse problems are sufficiently completely studied (see [3-6] and 
references). Existence of singularity and discontinuity conditions inside the interval 
introduces qualitative changes in investigation. 
 Some aspects of direct and inverse problems for differential operators with 
discontinuity conditions were studied in [7-9]. In paper [18] some aspects of the operator 
L  were studied when in solution there is only one discontinuity point inside the interval. 
As distinct from [18] in this paper the operator L  is studied when in solution there are 
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any finite number 2≥p  of discontinuity points inside the interval and the uniqueness 
theorem of solutions of the inverse problem by two spectrums is proved. Inverse 
problems for equations with singularity without discontinuity conditions  were considered 
in [10, 11] and etc. In the given paper properties of eigen and adjoint functions of the 
problem are studied and inverse problem of restoration of L  by the data its spectral 
characteristics is investigated.  

For definiteness we restrict ourselves with the most important particular case 
( ) pia i ,1,012 == . The general case is considered analogously. 

 Remark 1. If 
2
1Re ≥ν , then condition (2) is equivalent to condition ( ) 00 =y . 

 Remark 2. Problem (1)-(4) will be self-adjoint iff ( ) ( )i
jkaxq ,,ν  are real and 

1det =iA . 
 
 2. Fundamental systems of solutions. 2.1. At first consider differential equation 

                                                        yy
x

yyl =+′′−= 2
0

0 : ν                                                 (5) 

in a complex x -plane. Denote by −Π  the x -plane with the cut 0≤x . Let numbers 
2,1,0 =jc j  be such that  

ν2
1

1020 =⋅ cc . 
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are solutions of equation (5). Here and later on ( )( ),arglnexp xixx += µµ  
( ]ππ ,arg −∈x . Functions ( )xC j  are regular in −Π  and 

                                                            ( )( )[ ] 1det
2,

1 ≡
=

−
mj

m
j xc .                                            (7) 

Denote ( ) ik
k ⋅−= −11ε . Equation (5) has solutions ( ) ( ) 0Im1,2,1, 1 ≥−= − xkxe k

k , 
satisfying the integral equations 

( ) ( ) ( )( ) ( )( )( ) ( )dtte
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(here xtxt >= ,argarg ). 
 Using fundamental system of solutions ( ){ }

2,1=jj xC  we can write  

                                                          ( ) ( )∑
=

=
2

1

0

j
jkjk xCxe β .                                                (8) 

In particular, it gives the analytical extension for function ( )xek  in −Π . Denote 
[ ]{ } [ ]{ } 0,,arg:,,arg: ,2,1 >−−∈=Ω+−∈=Ω δδπππδπ δδ xxxx . We can show 

(see[12-14], that 
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uniformly in δ,kΩ  at each fixed 0>δ . Since according to Ostrogradsky-Liouville 

theorem Wronskian ( ) ( )[ ] 2,1,
1det =
−

mk
m

k xe  doesn’t depend on v, then using (9) we find 

                                                ( ) ( )[ ] ixe mk
m

k 2det 2,1,
1 −≡=
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 Lemma 1. The following equalities take place 
                                           ( ) 2,1,exp0

1
0
2 == ji jjj µπββ ,                                         (11) 
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 Proof. From construction it follows, that 
                                             ( ) ( ) 0Im,21 >−= xxexe .                                            (13) 
Since at ( ) ( )πµµµ ixxx −=−> exp0Im , then by virtue of (6) and (8) we have 

                                      ( ) ( ) ( )xCixe j
j

jj∑
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Substituting (8) and (14) into (13) and equating coefficients at ( )xC j , we obtain (11). 

 Further, according to (7), (8) and (10) [ ] i
jkkj 2det

2,1,
0 −=

=
β . From here and from 

(11) follows (12). 
 2.2. Consider now the differential equation 
                                                     0,0 >= xyyl λ .                                                         (15) 

Let 2ρλ = . Obviously if ( )xy  is the solution of equation (5), then ( )xy ρ  
satisfies (15). Functions 
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are integer by λ  solutions of equation (15), where 
( ) ( )[ ] 1,det

2,1,
1 ≡

=
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*
1 0
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each sector 
0kS  roots of the equation 012 =+R  can be enumerated such that 

( ) ( )
0

,ReRe 21 kSRR ∈< ρρρ . It’s clear, that kkR ε=  for 0S  and 1S  and kkR −= 3ε  for 

1−S  and 2S . For definiteness let 0Re ≥ρ , i.e. 10 −∈ SS Uρ . 
 Using the results of p.2.1 we obtain that in each sector 

0kS  equation (15) has a 
fundamental system of solutions ( ){ } 2,1, =kk xy ρ  such, that 

( ) ( )xyxy kk ρρ =, , 
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where 00
jkkjb β=  for *

1+S  and 0
,3

0
jkkjb −= β  for *

1−S . Note that ( ) ( )xexy kk ρρ =,  for *
1+S  

and ( ) ( )xexy kk ρρ −= 3,  for *
1−S . 

 2.3. Now we pass to the investigation of equation (1) and construct for it 
corresponding systems of solutions by the perturbation method. 
 At ( )Tx ,0∈  equation (1) has integer by λ  solutions ( ) 2,1,, =jxS j λ , satisfying 
the integral equations 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )dttStqxCtCxCtCxCxS j

x
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1221∫ −+= , 

where 
( ) ( ) ( ) ( ) ( )( ) ( ) 0,,,,, 2 →=−= −− xxoxxCxSxOxS jj
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uniformly by λ  on compacts. Besides, 
                                                ( ) ( )[ ] 1,det
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1 ≡
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                                           ( ) ( ) 1,, ≤≤ − xxcxS mm
j

j ρλ µ .                                           (17) 

 Here and later on by the same symbol C  we’ll denote different positive constants 
in estimations, independent on λ,x . 
 In [15] the fundamental system of solutions of equation (1) 

( ){ } ( ]
0

,,0,, 2,1 kkk STxxY ∈∈= ρρ  was constructed, which has the following properties: 

1) for each ( ]Tx ,0∈  functions ( ) ( ) 1,0,, =mxY m
k ρ  are regular at ∗≥∈ ρρρ ,

0kS  and 

continuous at *,
0

ρρρ ≥∈ kS ; 
2) functions ( )ρ,xYk  satisfy the integral equations  
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      where 0=jkε , at Tkj =≤ 21, ε ; 
3) the following correlations hold: 
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 Note, that later on the asymptotic (21) of Stock’s multipliers ( )ρkjb  is of great 
importance. 
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 Using (18)-(21), we’ll study the asymptotic of solutions ( )λ,xS j . Denote 

idid 2,2 0
11

0
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0
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0
1 ββ −== . Then 

νπsin4
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1 i

dd −= . 

 Lemma 2. At ( ] 1,0,2,1,,0,1, ==∈≥∞→ mjTxxρρ  the following 
asymptotic formula holds: 
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Here and later on the following denotation is used 
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(i.e. equality [ ]( )01, =ρxf  notes that ( ) 1,1, ≥≤− x
x

Cxf ρ
ρ

ρ ). 

 Proof. Solving (20) with respect to ( )λ,xS j  we obtain 
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Let for definiteness 0S∈ρ  (for other ρ  calculations are analogous). We have 
00, kjkjkk bR βε ==  and, consequently, using (11), we find 
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 Substituting (24), (25) into (23) and taking into account (26) we obtain (21). 
  
 3. Properties of spectrum. Consider functions 
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where the first approximation is defined by the formula: 
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 By the construction of function ( ) 2,1,, =ϕ jxj λ  they are solutions of equation 

(1) at 1,1,1 +=<<− piaxa ii  and satisfy the conditions: 
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According to (16) and (28) we have 
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Denote 
( ) ( )( )ii

i aab 22112
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and suppose that 0≠+
ib . We’ll call conditions pibi ,1,0 =≠+  the conditions of sewing 

regularity (SR) at the points piai ,1, = . Below in p.5 the contrary instance is given, 
showing the essentiality of SR condition during the investigation of the boundary value 
problem 1. 
 Lemma 3. At ( ] 1,0;2,1,,0,1 ==∈≥ mjTxxρ  the following asymptotic 
formulas hold: 
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Here { } Nkks ,1=  is permutation of numbers N,...,1 , numbers { } Nlkks ,1+=  are complement of 
{ } lkks ,1=  to the numbers N,...,1 . 
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 Proof. Formula (30) follows from (22), therefore we’ll prove only formula (31). 
We expand ( )λ,xjϕ  by the fundamental system of solutions ( ){ } 2,1, =kk xY ρ  at 
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 By virtue of (23) and (27) 
                                                        ( ) ( )ρρ jkjk dA =0 .                                                   (33) 
 In order to calculate ( )ρjkiA  we’ll use the sewing conditions (28). At first we’ll 
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Consequently, 
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 Let for definiteness 0S∈ρ . Then kkR ε= . Using (35) and (28), we find 
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 Substituting now (36) into (34) and using (32), (34) and (26) we obtain 
( ) ( ) ( )( )[ ]
( ) ( ) ( )( )[ ],12expexp

,12expexp

111
0

21

111
0

11

+−−

−+−

+−=

−+−=

baiibdA

aibibdA

jjj

jjj

j

j

ρπµρρ

ρπµρρ
µ

µ

 

which with (32) and (25) gives (31). 
 In the case 2=N  analogously we obtain, that 

( )
( )

( )( ) ( )( )
( )( ) ( )( )

( )
( )⎥⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
ρ
ρ

ρηρη
ρηρη

ρ
ρ

21

11
2

22
2

21

2
12

2
11

22

12

j

j

j

j

A
A

A
A

. 

Then for 2,1,2 =kAjk  we obtain the following formulas: 

( ) ( ) ( ){
( ) ( )( ) ( )}[ ],12exp2expexp

2expexp

2211221

12121
0

12

aibbaaiibb

aibbibbdA

j

jjj
j

ρρπµ

ρπµρρ µ

−+−−−+

+−+−=
−+−−

+−++−

 

( ) ( ) ( ){
( ) ( ) ( )( )}[ ].12exp2expexp

2expexp

1221221

12121
0

22

aaibbaiibb

iaibbbbdA

j

jjj
j

−−+−−+

+−+=
−−−+

+−++−

ρρπµ

πµρρ µ

 

By the similar way any pN ≤  for 2,1,, =kiAjkN  we obtain the following formulas: 
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( ) ( ) ( ) ( )
⎢
⎢
⎣

⎡
⎜⎜
⎝

⎛
−−+−= ∑ ∑ ∑

= ≤<<<≤ =

+−−
N

l Nsss

l

k
s

kl
NljN

m
jNj

l
k

j aiBiBidA
1 ...1 1

10
1

21

21expexp ρπµρρρ µ  

) ( )[ ]01exp xii
ksj ρδπµ ⎥

⎦

⎤
⎟⎟
⎠

⎞
− , 

( ) ( ) ( )
⎢
⎢
⎣

⎡
⎜⎜
⎝

⎛
−−+−= ∑ ∑ ∑

= ≤<<<≤ =

−−
N

l Nsss

l

k
s

kl
NlN

m
jNj

l
k

j aiBBidA
1 ...1 1

0
2

21

21exp ρρρρ µ  

( )) ( )[ ]01exp1 xii
ksj ρδπµ −⎥

⎦

⎤
⎟⎟
⎠

⎞
−− , 

which with (32) and (25) gives (31). 
 Denote ( ) ( )λλ ,2 Tϕ=∆ . Function ( )λ∆  is integer analytical by λ  function and 
its zeros { } 1≥nnλ  coincide with the eigen values of the boundary value problem (1)-(4). At 
that if nλ  is zero multiplicity nχ , then functions 

( ) ( ) 1,0,,2 −=ϕ
∂
∂

=ϕ
=

ns

s

ns sxx
n

χλ
λ λλ

 

form the chain of eigen and adjoint functions for the eigen value nλ . Function ( )λ∆  is 
called a characteristic function of the problem L . By virtue of (31) the following 
asymptotic formula hold: 

                                        ( ) ( ) ∞→⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∆=∆ ρ

ρ
ρλ ,110 O ,                                    (37) 

where  

( ) ( ) ( )( )

( )[ ] ( ) ( )( ) ( )[ ]
⎪⎭

⎪
⎬
⎫

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−++×

×
⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+−=∆

∑ ∑∑

∑ ∑∑

= =

−

≤<<<≤

= =

+−

≤<<<≤

−

0
1 1

2
...1

0

1 1
2

1

...1
2

0
20

1exp121exp1exp

21expexp

21

21

2

TiiaiBBTi

iaiBiBd

p

l

l

k
ss

kl

psss
plp

p

l

l

k
ss

kl

psss
plp

kk
l

kk
l

ρδπµρρ

δπµρπµρρ µ

 Consider the case when 0Im ≥ρ . Then taking out the multiplier ( )Tiρ−exp  
from the expressions for ( )ρ0∆ , we obtain 
                                           ( ) ( )( )ρρρ ρµ

1
0
20 12 ℵ+⋅=∆ −−

p
Ti Bed ,                                  (38) 

where  

( ) ( ) ( ) ( )( ) ×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−′++−=ℵ ∑ ∑∑

= =

+−

≤<≤

p

l

l

k
ss

kl

Nss
jNl kk

l

iaissBTii
1 1

2
1

...1
121 21exp,...,2exp

1

δπµρρπµρ  

( ) ( ) ( ) ( )( )∑ ∑∑
= =

−

≤<<≤
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−′+×

p

l

l

k
ss

kl

Nsss
jNl kk

l

iaissBTi
1 1

2
...1

1 121exp,...,2exp
21

δπµρρ , 

where pNlNl BBB =′ . 
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 Since included in expression ( )ρ1ℵ  terms ( )( )∑
=

+− +−
l

k
s

kl Ta
k

1

11  and ( )∑
=

−−
l

k
s

kl
k

a
1

1  

are positive, then there exists such constant C , that ( ) C≤ℵ ρ1 . Analogously, in the case 
0Im ≤ρ  we obtain, that 

( ) ( )( )ρρρ ρµ
2

0
20 12 ℵ+⋅=∆ −

p
Ti Bed , 

where  

( ) ( ) ( ) ( )( ) ×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−′+−=ℵ ∑ ∑∑

= =

+−

≤<≤

p

l

l

k
ss

kl

Nss
jpl kk

l

iaissBi
1 1

2
1

...1
122 21exp,...,exp

1

δπµρπµρ  

( ) ( ) ( )( ) ( )TiiaissB
p

l

l

k
ss

kl
jpl kk

ρδπµρ 2exp121exp,...,
1 1

21 −⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−′+ ∑ ∑∑

= =

− . 

 Since included in the expression ( )ρ2ℵ  terms ( )∑
=

+−−
l

k
s

kl
k

a
1

11  and 

( ) ( )∑
=

− −−
l

k
s

kl Ta
k

1
1  are negative, then there exists such constant C , that ( ) C<ℵ ρ2 . 

 By virtue of the SR condition 0≠NB . Then using known methods (see, for 
example, [16]) it can be stated, that characteristic function and its zeros have the 
following properties: 
1) at ∞→ρ  

( ) ( )( )TO ρρλ ν Imexp21Re −−=∆ ; 
2) there exist 0>h  and 0>hC  such, that  

( ) ( )TCh ρρλ ν Imexp21Re −−≥∆  

      at h≥ρIm ; consequently, all the eigen values 2
nn ρλ =  of the boundary value 

      problem L  lie in the strip h<ρIm ; 
3) number ξN  of zeros ( )λ∆  in the rectangular [ ]{ }1,Re,Im: +∈<=Π ξξρρξ h  is 

bounded on ξ ; 
4) denote { }nG n ∀≥−= ,: δρρρδ , then  

                                   ( ) ( ) δ
ν

δ ρρρλ GTG ∈⋅≥∆ −− ,Imexp21Re ;                               (39) 
5) there exist numbers ∞→NR  such that at sufficiently small 0>δ  circles NR=ρ  lie 

in δG  at all N ; 
6) let { }0

nρ  be zeros of the function ( )ρ0∆  of the form (38), then at ∞→n  
( )100 += nn ρρ . 

 
 4. Weyl solution. Weyl function. Let function ( )λ,xΦ  be the solution of 
equation (1) and satisfy the conditions ( ) ( ) 0,,0,~, 1

10 =Φ→⋅Φ λλ µ Txxcx  and also 
sewing conditions (4). We’ll call the function ( )λ,xΦ  the Weyl solution for the boundary 
value problem L  (by analogy with the Weyl solution for the classical Sturm-Liouville 
problem). Denote 
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                                                          ( ) ( )
( )λ
λδλ

∆
−=M ,                                                    (40) 

where ( ) ( )λλδ ,: 1 Tϕ= . It’s clear, that 
                                        ( ) ( ) ( ) ( )λλλλ ,,, 21 xMxx ϕ+ϕ=Φ .                                         (41) 
 We’ll call the function ( )λM  Weyl function for L . Weyl solution and Weyl 
function all meromorphic by λ  functions with poles on spectrum of the problem L . 
From (40) and (41) it follows that 

                                                        ( ) ( )
( )λ
λλ

∆
Ψ

−=Φ
,, xx ,                                                (42) 

where  
                                 ( ) ( ) ( ) ( ) ( )λλλλλ ,,,,, 1221 xTxTx ϕϕ−ϕϕ=Ψ .                               (43) 
 Function ( )λ,xΨ  is integer by λ  solution of equation (1), satisfying the 
conditions ( ) ( ) NATT det,,0, =Ψ′=Ψ λλ  and also splice conditions (4). Note, that by 
virtue of (29), (41) and (42) 

                           ( ) ( )
⎪
⎩

⎪
⎨

⎧

+=<<

<
>≡ϕΦ<

−

−

=
∏ ,1,2,,det

,1
,,,

1

1

1

1

2 pNaxaA

ax
xx

NN

N

k
k

λλ   

                  ( ) ( ) ( )
⎪
⎩

⎪
⎨

⎧

+=<<

<
⋅∆>≡Ψϕ<

−
=
∏ ,1,2,,det

,1
,,,

1
1

1

2 pNaxaA

ax
xx

NN

N

k
k

λλλ           (44) 

where zyzyzy ′−′=>< :, . 
 Lemma 4. At ( ) ( ) 1,0,2,1,,0,,0,1, ==∈∈≥∞→ mjTjTxxρρ  the following 
asymptotic formulas hold:  

                ( )( ) ( )( )[ ] ( )( )[ ]( ) p
Nm axxTixTi

i
Ax >−−−−=Ψ ,1exp1exp

2
det, 00 ρρ

ρ
ρ ,         (45) 

( )( ) ( )( )[ ] ( )( )[ ]( ) +−−−−=Ψ

∏
−

=

001

1

1exp1exp
2det

1, xTixTi
i

B

A
x N

N

k
k

m ρρ
ρ

ρ   

( ) ( ) [ ]∑ ∑∑
∏ = =

−

≤<<<≤
−

=

⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−−⋅+

N

l

l

k
s

kl

Nsss
NlN

k
k

xiaTB
iA

k
l1

0
1...1

1

1

121exp
2
1

det

1

21

ρ
ρ

 

                              ( ) ( ) [ ] 10
1

,121exp +
=

− <<⎥
⎦

⎤
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−−− ∑ NNs

l

k

kl axaxiTa
k

ρ .                (46) 

 Proof. We’ll expand ( )λ,xΨ  by the fundamental system ( ){ } 2,1, =kk xY ρ  
separately at Taaxa pNN =<< +− 11 ,  

                           ( ) ( ) ( ) 11

2

1
1 ,,, +−

=
− <<=Ψ ∑ NNk

k
kN axaxYAx ρρρ .                          (47) 

Using initial conditions ( ) ( ) NATT det,,0, =Ψ′=Ψ λλ , we calculate kNA : 



Transactions of NAS Azerbaijan_____________________________ 
                                                    [Direct and inverse problems for differential operators] 
 

31 

( ) ( ) ( ) ( ) ( ) ( ) ,,det,,det
1221 ρ

ρ
ρρ

ρ
ρ TY

w
AATY

w
AA N

N
N

N −=−=  

                                                ( ) ( )( )[ ] 2,1,
1 ,det =
−= mk

m
k TYw ρρ .                                         (48) 

Further, using sewing condition (4), as in the proof of lemma 3, we obtain 

                                        
( )
( )

( )( ) ( )( )
( )( ) ( )( ) ⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

−

−

22

11

2221

1211

2

1

N

N
NN

NN

N

N

A
A

A
A

ρηρη
ρηρη

ρ
ρ

,                              (49) 

where functions ( ) ( )ρη N
ks,  are calculated by formula (35). Since ( ) ( )[ ] ≡= 2,1,det ks

N
sk ρη  

NAdet≡  then from (49) it follows 

                               
( )
( )

( )( ) ( )( )
( )( ) ( )( )

( )
( )⎥⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

−
−

=⎥
⎦

⎤
⎢
⎣

⎡

−

−

ρ
ρ

ρηρη
ρηρη

ρ
ρ

N

N
NN

NN

NN

N

A
A

AA
A

2

1

1121

1222

12

11

det
1 .                 (50) 

Let for definiteness 0S∈ρ . Then kkR ε= . Substituting asymptotic formulas (25) and 
(36) into (48) and (50), we obtain 

( ) ( )[ ] ( ) ( )[ ]1exp
2

det,1exp
2

det
21 Ti

i
AATi

i
AA N

N
N

N ρ
ρ

ρρ
ρ

ρ −−=−= , 

( ) ( ) ( )( )( )[ ]12expexp
2
1

11 NNNN aTibTib
i

A −+−= −+
− ρρ

ρ
ρ , 

( ) ( )( ) ( )( )[ ]1exp2exp
2
1

12 TibTaib
i

A NNNN ρρ
ρ

ρ +−
− +−−−= . 

In the case 12 −− << NN axa  for 2,1,2, =− kA Nk  analogously we obtain that 

( ) ( ) ( )( ){
( )( ) ( )( )}[ ] ,12exp22exp

2expexp
2
1

det
1

1111

11
1

21

−
−
−

+
−

−
−

−

+
−

−+
−

+

−
−

−+−−−+

+−+−⋅=

NNNNNNN

NNNNN
N

N

aTibbTaaibb

aTibbTibb
iA

A

ρρ

ρρ
ρ

ρ
 

( ) ( ) ( )( ){
( )( ) ( )( )}[ ] .12exp22exp

2expexp
2
1

det
1

1111

11
1

22

TaibbTaaibb

TaibbTibb
iA

A

NNNNNNN

NNNNN
N

N

−+−−−+

+−+−⋅
−

=

−
−
−

+
−

−
−

−

+
−

−+
−

+

−
−

ρρ

ρρ
ρ

ρ
 

Using the mathematical induction method we obtain that 

( ) ( ) ( ) ( ) [ ]121expexp
2
1

det

1
1 ...1 1

1

1

11
21 ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+−⋅= ∑ ∑ ∑

∏ = ≤<<<≤ =

−
−

=

N

l Nsss

l

k
s

kl
NlNN

k
k

l
k

TaBTiB
iA

A ρ
ρ

ρ  

( ) ( ) ( ) ( ) [ ]121expexp
2
1

det

1
1 ...1 1

1

1

21
21 ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+−⋅

−
= ∑ ∑ ∑
∏ = ≤<<<≤ =

−
−

=

N

l Nsss

l

k
s

kl
NlNN

k
k

l
k

aTBTiB
iA

A ρ
ρ

ρ  

which together with (47) reduces to (45) and (46). 
 Corollary 1. At δρ G∈  the estimations 

                         ( )( ) ( ) 1,1,0,Imexp, 21Re ≥=−≤Φ −+ xmxCx mm ρρρλ ν
δ ,              (51) 

                                                           ( ) ν
δ ρλ 2⋅≤CM                                                 (52) 

hold. 
 Really, estimation (51) follows from (42), (39) and lemma 4, but estimation (52)- 
from (40), (39) and lemma 3. 
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 5. Completion theorem. Let α  be real number and ∞<≤ ρ1 . Consider Banach 

spaces ( ) ( ) ( ){ }TLxxfxf pp ,0:, ∈=Φ −α
α  with norm ( )

pp xxff α
α

−⋅=, , where ⋅  is a 

norm in space ( )TLp ,0 . By *
, pαΦ  we denote the conjugate space. It’s clear, that 

( )1,111
,

*
, >=+Φ=Φ −−

− pqpqp αα . We’ll show, that 

                                11
,, ,1, −− −<−∞<≤≤Φ⊆Φ pspssp αββα                      (53) 

(symbol ⊆  denotes the dense inclusion [17]). Really, at ps ≤≥ ,βα  we have 

pp ,, βα Φ⊆Φ , sp ,, ββ Φ⊆Φ , and (53) is evident. Suppose now, that ps << ,βα . 

Consider function ( ) pxf ,αΦ∈ . Assume ( )spprspr −=′= , . Then ( ) 111 =′+ −− rr . 

Since 11 −− −<− psαβ , then ( ) 1−>′− rsβα . Using Hölder inequality, we obtain 

( ) ( )
rssrs

xxxfxxf
′

−−− ⋅≤ βααβ  

and, consequently, ps fcf ,, αβ
⋅≤ . Since p,αΦ  is dense in s,βΦ , then we obtain (53). 

From (53), in particular, it follows that 
11

, ,1, −− −>∞<≤≤⊆Φ sppsLsp αα . 

 Denote 
2
1Re += νω . The following completion theorem is valid. 

 Theorem 1. System of eigen and adjoint functions of the boundary value problem 

L  is complete in spaces s,βΦ  at 
s

s 1,1 +<∞<≤ ωβ . 

 Proof. For brevity we confine ourselves to the case of simple spectrum, i.e. the 
case, when characteristic function ( )λ∆  has only simple roots. The general case is 
considered analogously. Since eigen values { } 1≥nnλ  of the problem L  are zeros of the 
characteristic function ( )λ∆ , then by virtue of (44) and sewing conditions (4) we have 
                                           ( ) ( ) 0,,, 2 ≠ϕ=Ψ nnnn xx βλβλ .                                    (54) 
Functions ( )nx λ,2ϕ  and ( )nx λ,Ψ  are eigen functions of the problem L  for eigen values 

nλ . 
 Let function ( ) ( )Txxf ,0, ∈  be such that 

                               ( ) ( ) ( ) ( ) 1,0,,,0
0

2 ≥=ϕ∈ ∫ ndxxfxTLxxf
T

nλ
ω .                            (55) 

Consider the function 

               ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ψϕ+ϕΨ

∆
= ∫∫

T

x

x

dttftxdttftxxY λλλλ
λ

λ ,,,,1, *
2

0
2

* ,               (56) 

where  

          ( ) ( )
( ) ( ) ( )

( ) ( )
⎪
⎩

⎪
⎨

⎧

<<

<
=

ϕ
=ϕ

Ψ
=Ψ

+
=
∏ .,det

;,1
,,,,,,

1
1

1
2*

2
*

NN

N

k
k axaA

ax
x

x
xx

x
xx η

η
λλ

η
λλ        (57) 

 Since by virtue of (44) 
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( ) ( ) ( ) ( ) ( )λλλλλ ∆≡Ψ
′

ϕ−
′

Ψϕ ,,,, *
2

*
2 xxxx , 

then by direct calculation we are convinced, that function ( )λ,xY  satisfies the differential 
equation 
                                               ( ) ( ) ( )xfxYxlY =− λλλ ,,                                                (58) 
separately at 1ax <  and at each nNaxa NN ,2,1 =<<− . Using (54)-(57), we calculate 
the residue of function ( )λ,xY  at the points of spectrum nλλ = : 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ψϕ+ϕΨ

∆
= ∫∫

=

T

x
nn

x

nn
n

dttftxdttftxxY
n

λλλλ
λ

λ
λλ

,,,,1,seR *
2

0
2

*
&

 

( ) ( ) ( ) ( )dttftx
T

nn
n

n ∫ϕϕ
∆

=
0

2
*
2 ,, λλ

λ
β
&

, 

where ( ) ( )λ
λ

λ ∆=∆
d
d& . According to (55) we  have 

( ) 0,seR =
=

λ
λλ

xY
n

. 

So, at each fixed ( )Tx ,0∈  function ( )λ,xY  is an integer analytical by λ . 
 On the other hand, using results of p.3, 4, we estimate function ( )λ,xY  in domain 

δG . We fix ( )Tx ,0∈ . Then 1≥xρ  at sufficiently large ρ . By virtue of (30), (31) and 
(45), (46) we have 

( ) ( ) ( ) 1,Imexp,2 ≥≤ϕ − xxCx mm ρρρλ ω  , 

                                 ( )( ) ( )( ) 1,Imexp, 1 ≥−≤Ψ − xxTCx mm ρρρλ .                  (59) 

Consequently, subject to (39) and (57) we obtain the estimate 

( ) ( ) ( ) ( )⎜⎜
⎝

⎛
+ϕ−≤ ∫

−
x

dttftxCxY
0

2
1 ,Imexp, λρρλ ω

δ  

                                        ( )( ) ( ) ( ) ⎟⎟
⎠

⎞
Ψ−−+ ∫

T

x

dttftxT λρ ,Imexp .                                  (60) 

Further, by virtue (17) and (27) 

                                                   ( )
ρ

λ ω 1,,2 ≤≤ϕ ttCt ,                                          (61) 

and consequently, 

( ) ( ) ( )∫∫ ≤ϕ
ρ
ω

ρ

λ
1

0

1

0
2 , dttftCdttft . 

Using (59), we have 

( ) ( ) ( )( ) ≤≤ϕ ∫∫
−

xx

dttfCtft
ρ

ω

ρ

ρρλ
11

2 Imexp,  

( ) ( ) ( ) ( )( )∫∫ ≤≤ −
xx

dttftxCdttfxC
ρ

ω

ρ

ω ρρρ
11

ImexpImexp , 

and also  
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( ) ( ) ( )( ) ( ) ≤−≤Ψ ∫∫
−

T

x

T

x

dttftTCtft ρρλ Imexp, 1  

( )( ) ( )∫
−−≤

T

x

dttftxTC ωωρρ 1Imexp . 

 Substituting into (60), we get estimation 
( ) δ

ω
δ ρρλ GCxY ∈≤ − ,, 1 . 

Since at fixed x  function ( )λ,xY  is an integer by λ , then from the last estimation it 
follows, that ( )λ,xY  is a polynomial by λ , which together with (58) gives ( ) 0, ≡λxY  
and ( ) 0=xf  a.e. on ( )T,0 . 
 So, we proved that at each ( )∞<≤ pp 1  system of functions ( ){ } 12 , ≥ϕ nnx λ  is 
complete in p,ωΦ . Since by condition s1<−ωβ , then ps 11 −<−ωβ  at sufficiently 
large p , and according to (53) sp ,, βω Φ⊆Φ . Consequently, system of functions 

( ){ } 12 , ≥ϕ nnx λ  is complete in s,βΦ . Theorem 1 is proved. 
 Corollary 2. System of eigen and adjoint functions of the problem L  is complete 
in ( )TLs ,0  at ∞<≤ s1 . 
 We’ll give the contrary instance showing the essentiality of the SR condition 

0≠+b . Consider the boundary value L  at ( ) 43,,0,0 10 ππν ==≡= aTxq  (in case 
1=n ), 0,1 21122211 ===−= aaaa , i.e. consider the problem 

( ) ( ) ,00
,0,

==
<<=′′−

π
πλ

yy
xyy

 

                            ( )( ) ( ) ( )( ) .
4
3,1,0,010 1 π==−−=+ amayay mmm                       (62) 

For this problem 0=+b , i.e. SR condition is violated. Characteristic function of the 
problem (62) has the form 

( ) ( )
ρ

πρλ −
=∆

a2sin . 

 Eigen values 2
nn ρλ =  are 1,2 ≥= nnnρ , and eigen functions have the form 

( )
( )⎪
⎪
⎩

⎪⎪
⎨

⎧

≥−

≤
=

− .
4
3,2sin1

;
4

3,2sin

1 π

π

xnx

xnx
xy

n
n  

 System of functions ( ){ } 1≥nn xy  is incomplete in s,βΦ  at 
s

s 11,1 +<∞<≤ β . 

 
 6. Inverse problem. In this point we study the inverse problem of restoration of 
the boundary value problem of the form (1)-(4) by the data of its spectral characteristics. 
We’ll consider three statements of the inverse problems of the boundary value problem L  
by Weyl function and discrete spectral data. These inverse problems are generalization of 
the known inverse problems for Sturm-Liouville operator (see [3,4]). 
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 Let’s formulate the uniqueness theorem of solution of the inverse problem by 
Weyl function. For this along with L  consider the boundary value problem L~  of the 
same form, but with other potential ( )xqx ~~ 2

0 +ν . We’ll stipulate, that if some symbol α  
denotes the object related to the problem L , then α~  will denote the object, related to the 
problem L~ . 
 Theorem 2. If ( ) ( )λλ MM ~

= , then LL ~
= . So, representation of Weyl function 

uniquely defines the boundary problem L . 
 Proof. Consider functions  
                       ( ) ( ) ( )( ) ( ) ( )( ) 1,0,,~,,~,, 22 =Φϕ−ϕΦ= mxxxxxP mm

m λλλλλ .                   (63) 
At each fixed ( ]Tx ,0∈  functions ( )λ,xPm are memorphic by λ  with poles at points 

nλλ =  and nλλ ~
= . We’ll fix ( ]Tx ,0∈ . Then 1≥xρ  at sufficiently large ρ . Denote 

δδδ GGG ~0 I= . By virtue of (51) and (59) we have 

                                ( ) ( ) δδ
δ ρλ
ρ

λ GCxPCxP ∈≤≤ ,,,, 10 .                                 (64) 

Substituting (41) into (63), we calculate  
   ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )λλλλλλλλλ ,~,~,~,,~,, 221221 xxMMxxxxxP mmm

m ϕϕ−+ϕϕ−ϕϕ= . (65) 
Since by condition ( ) ( )λλ MM ~

= , then from (65) it follows, that at each fixed ( ]Tx ,0∈  
functions ( )λ,xPm  are integer analytical by λ . Together with (64) it gives 

( ) ( ) ( )xPxPxP ≡≡ λλ ,,0, 10 . 
But then 

( ) ( ) ( ) ( )λλλλ ,~,,~, 22 xxxx Φϕ=ϕΦ , 
( ) ( ) ( ) ( ) ( ) ( )( ) ( ) =ϕΦ′ϕ−ϕ′Φ=ϕ λλλλλλ ,~,~,,~,,~

2222 xxxxxxxP  
( ) ( ) ( ) ( )( ) ( ) ( ) ( )ληλλλλλ ,~,,~,~,~,~

2222 xxxxxxx ϕ=ϕΦ′ϕ−ϕ′Φ= . 
Analogously 

( ) ( ) ( ) ( )ληλ ,~,~ xxxxP Φ=Φ . 
So,  

                                                   ( )
( )

( )
( )

( )
( )x
xP

x
x

x
x

ηλ
λ

λ
λ

~,~
,

,~
,

2

2 =
Φ
Φ

=
ϕ
ϕ .                                          (66) 

Further from (30), (31) it follows that at [ ] 0,,arg, >−∈∞→ εεπερρ , 

                      ( ) ( )[ ] pNaxaxiBdx NNN ,1,,1exp, 1
0
22 =<<−=ϕ +

− ρρλ ω .            (67) 
Analogously, using (42), (45), (46) and (37), (38) we obtain that at ,∞→ρ  

[ ] 0,,arg >−∈ εεπερ  

                  ( ) ( )[ ] pNaxaxi
Bid

A
x NN

N

N

k
k

,0,,1exp
2

det
, 10

2

1

1

=<<
⋅

=Φ +
=

−∏
ρ

ρ
λ

ω

.           (68) 

Substituting now (67) and (68) separately on each interval ( )1, +NN aa  into (66), we obtain 
ωω ~= , 

( ) constP
A
xP

N
N

=≡ *~det
, 
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i.e.  
( ) ( ) ( ) ( ) 1*2*2 ,,~,,,~, +<<Φ≡Φϕ≡ϕ NNNN axaxPxxPx λλλλ . 

 Consequently, ( ) ( )xqxq ~=  a.e. at each ( )1, +∈ NN aax , i.e. a.e. at ( )T,0 . Theorem 
2 is proved. 
 Consider now the inverse problem of restoration of L  by discrete spectral 
characteristics. For brevity we confine ourselves to the case of simple spectrum. Denote 

( ) ( )dxxx n

T

nn λλα ,, *
2

0
2 ϕϕ= ∫ . 

We’ll call set of numbers { } 1, ≥nnn αλ  the spectral data of the boundary problem L . 
Inverse problem is stated in the following form: by given spectral data to construct the 
problem L . We’ll prove the uniqueness theorem of restoration of L  by the spectral data. 
 Theorem 3. If nnnn ααλλ ~,~

==  at all 1≥n , then LL ~
= . So, representation of 

spectral data uniquely defines the problem L . 
 Proof. We’ll show that the following correlation is valid 

                                                             ( )
n

n
n β

λα ∆
=
&

,                                                       (69)       

where numbers nβ  are defined from correlation (54). Really, from correlations 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )nnn xxxq
x

x

xxxq
x

x

λλλνλ

λλλνλ

,,,

,,,,

*
2

*
22

0*
2

222
0

2

ϕ=ϕ⎟
⎠
⎞

⎜
⎝
⎛ ++

″
ϕ−

ϕ=ϕ⎟
⎠
⎞

⎜
⎝
⎛ ++ϕ′′−

 

we have 

( ) ( ) ( ) ( ) ( )nnn xxxx
dx
d λλλλλλ ,,,,, *

22
*
22 ϕϕ−>=ϕϕ<  

separately on each interval, NN axa <<−1 . Consequently, 

( ) ( ) ( ) ( ) ( )∫ ∑
=

+>ϕϕ<=ϕϕ−
T n

k

a
annn

k

k
xxdxxx

0 0

*
22

*
22

1,,,,, λλλλλλ , 

where 00 =a , 1+na . 
 Using (61) and conditions (4), we obtain 

( ) ( ) ( ) ( ) ( )∫
′

ϕϕ=ϕϕ−
T

nnn TTdxxx
0

*
22

*
22 ,,,,, λλλλλλ  

and, consequently, 

                                          ( ) ( ) ( ) ( )∫
′

ϕ∆=ϕϕ
T

nnn Tdxxx
0

*
2

*
22 ,,, λλλλ & .                               (70) 

 According to (54) and (57) ( ) ( )nnn TT λβλ ,, *
2

* ′
ϕ=

′
Ψ , i.e. ( )

n
nT

β
λ 1,*

2 =
′

ϕ  which 

together with (70) gives (69). 
 Further, by virtue (40) 

( ) ( )
( )

( )
( )n

n

n

n TM
λ
λ

λ
λδλ

λλ ∆
ϕ

−=
∆

−=
&&

,Res 1
- n

. 
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According to (43) ( ) ( ) ( )nnn xTx λλλ ,,, 21 ϕϕ=Ψ . Comparing with (54), we obtain 
( )nn T λβ ,1ϕ=  and consequently, 

                                                  ( ) ( ) nn

nM
αλ

βλ
λλ

1Res
n-

−=
∆

−=
&

.                                        (71) 

 Now let nn ααλλ ~,~
==  at all 1≥n . We define functions ( )λ,xPm  by the 

formula (63). By virtue of (65) and (71) and functions ( )λ,xPm  are integer by λ  at each 
fixed ( ]Tx ,0∈ . Repeating now reasoning given at the proof of theorem 2, we obtain 

LL ~
= . 

 Theorem 4. If 2211
~,~

nnnn λλλλ ==  at all 0≥n , then LL ~
= . So, the problem L  

is uniquely defined by given two spectrums. 
Proof. Since ( )λ∆  and ( )λ∆

~  are integer analytical functions of half order, then 
accurate to constant multipliers they are defined by their zeros. Consequently, 

( ) ( ) ∏∏
∞

=

∞

=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=∆⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=∆

0
1

0
1 ,~1~~,1

1 k kk k
CC

λ
λλ

λ
λλ  

where 11
~, CC  are constant values. 

 From condition 11
~

nn λλ =  it follows that ( ) ( )λλ ∆⋅≡∆
~c . On the other hand, from 

formula (37) for ( )λ∆  we obtain that 

( )
( )

∞→≥≡⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅

⋅
⋅

=
∆
∆ −

−

−

ρρ
ρ

ρ
ρρ

ρ
λ
λ µµ

µ

µ

,0Im,11~
11~~ 22

2

2 ~

0
2

0
2

~0
2

0
2 CO

d
dO

d
d . 

From here we drive, that 22
~µµ = . 

 By analogous reasonings, using expression ( )λδ  we obtain, that 11
~µµ = . Since  

νµµµµν ~2
1

~~
11

2
1

1212
2010 =

−
=

−
==⋅ cc , 

and one of numbers 2010 , cc  can be arbitrarily chosen, then we obtain that one of numbers 
0
kjβ  can be arbitrarily chosen. Without losing of generality assume 1~0

11
0

11 == ββ . Then  

( ) ( ) 0
211

0
111

0
11

0
21

~~exp~exp βµπβπµββ === ii , 

0
120

11
0

11

0
12

~
~sin~

1
sin

1 β
νπβνπβ

β =⋅=⋅=
ii , 

( ) ( ) 0
222

0
122

0
12

0
22

~~exp~exp βµπβπµββ === ii . 
 On the other hand  

( )
( )

( ) ( ) ( )
( )λ
λδ

β
β

β
βρ

λ
λδ µµπµµπµµ

∆
=⋅=⋅=⋅=

∆
−−−−−

~
~

~
~

121212
~~

0
21

0
22

0
21

0
22

0
2

0
1 ii ee

d
d , 

i.e. ( ) ( )λλ MM ~
= . Then from theorem 2 we obtain that LL ~

= . Consequently 
( ) ( )xqxq ~= , a.e. at ( )T,0 .  
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