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Abstract 
 

 Results of theoretical investigation of the problem on loss of load-carrying 
capacity of multilayer non-linearly-elastic roads for different forms of attaching are 
given in the paper. Stated problem is solved by modified variational method of mixed type 
in combination with Rayleigh -Ritz method. Theoretically definition of critical force is 
reduced to solving Cauchy problem. As example we can consider two-layer rod. Influence 
of physico-mechanical, geometrical parameters of system and boundary conditions on the 
value of warping critical force is obtained. Particularly, for zero eccentricity Shenly 
critical forces are obtained for received attachings. 
 
 By describing the properties of composite materials the elasticity linear theory is 
often applied. However not all the structural heterogeneous materials can be described 
with position of linear elasticity theory. In various constructions the thin-shelled elements 
made of composite materials with piecewise non- homogeneity property on thickness are 
used as carried elements, and their behaviour is characterized by physical non-linearity. 
And what is more in the buckling problems it’s also necessary to consider the geometrical 
non-linearity. By virtue of mathematical complexity here the obtaining of effective 
analytical solutions is very difficult and it’s occasionally impossible. It’s associated with 
necessity of determination of solutions of non-linear boundary value problems with 
disconnected coefficients. Therefore the necessity in application of the approximated 
methods of solutions to such problems in particular variational, in combination with the 
Rayleigh-Ritz method) arises. The stability of non-homogeneous by thickness linearly 
elastic rods for different form of fastening is explicitly studied in [1]. In the suggested 
paper the generalization of these problems in the case of non-linear elasticity is given. 
The influence of geometrical and physical parameters to the quantity of critical force of 
buckling is numerically shown. 
 1. Introduce in consideration a rectangular with the length l  and the thickness 

h2  in plane of rod. Assume that it consists of S  different layers by thickness with the 
different elasticity modulus 1+kE  and the proportionality limits ( )[ ]1,...,2,1,00

1 −=+ Skkσ . 
In addition it’s assumed that the division of layers is parallel realized to its lateral bounds. 
We’ll assume that in every layer the elasticity modulus and the proportionality limit 
depend on the cross coordinate z , i.e. ( )zEE kk 11 ++ = , and ( )zkk 11 ++ =σσ . We denote the 

thickness of every layer by kδ . Thus ∑
=

=
S

k
k h

1
2δ . The considered here approach is based 

on the following assumptions: a) the contact condition between the layers of pile is in 
their rigid coupling from this the equality on their displacements, stresses and the absence 
of mutual pressure of layers follows;  b) by virtue of thin-shellness the normal stress σ  
by thickness of rod varies by a linear low. The accuracy estimation of this approximation 
is given in [2]. If the hypothesis of plane cross section is guided, then the assumptions a) 
are automatically satisfied. Taking the hypothesis b) we’ll have 
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where N  is force and M  is moment. By made assumptions the state equation for pile on 
the whole we write in the form of one equality 
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Here for brevity of notation we introduce the designation ( )00
0

=+−= ∑
=

δδ
k

j
jk ha . The 

state equation (1.2) is sufficiently good approximation of the non-linear elasticity law for 
a pile composed of reinforced plastic or some aluminum alloys and duralumins. Now 
consider the stability of chosen rod with the centrally compressed force T . For further 
solution of the stated problem we use the variational method of mixed type [3]. We 
introduce the Cartesian system of coordinates with origin at the point 0=z  and we direct 
the axis along the length of rod. In this case taking into account that one measure is unit 
and allowing only for non-linearity of deflection we can write the used function in the 
form of [1]: 
                                                            Hy RRR += ,                                                     (1.3) 
where yR  is its expression for linear elasticity 
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and HR  is its non-linear component which gets the form 
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In the expressions of yR  and yR  under the dot we understand the differentiation with 

respect to T , i.e. 1=T& . 
 2. At first we consider the stability of multi-layer rod when the both ends are 
rigidly fastened. Then according to the Rayleigh-Ritz method for monomial 
approximation [1] we write the deflection function w  and the moment M  in the form of  
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 The further operation of calculations is in that we substitute the relations (1.1), 
(2.1) and (2.2) to the expression of the functional (1.3) and after the integration we find it 
as the function ma ,  and the derivatives of these quantities with respect to T . Further if 
we equate  

0=∂∂ aR &  to 0=∂∂ mR &  
we obtain a system of two ordinary differential equations: 
                                                           ( ) 0=+− • maT & ,                                                 (2.3) 
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Here for brevity of notation the following designations are introduced 
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 It’s necessary to complete a system of the equations (2.3)-(2.4) by initial 
conditions which starting from physics of the phenomenons  are concluded in absence of 
moment for 0=T  and in the presence of initial imperfection that we can write in the 
following form 
                                                        ( ) ( ) 00;00 wwm == ,                                            (2.6) 
where 0w  is prescribed amplitude of initial imperfection. Using the first condition of 
(2.6) and introducing the pure quantities 
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by means of substitution of the system (2.3)-(2.4) after the series of transformations we 
lead to the equation 
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where we can write the Euler force 0T  as 
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At zero eccentricity the critical force of stability is determined from the solution of the 
cubic equation (the vanishing condition of the numerator of equation (2.8)) 
                                         063,056,05,0 3

4
1

2
22 =−− − τχξτξχπξπ .                            (2.9) 

It’s the Shenli critical force. 
 Now let the case of combined fastening be realized. Without losing generality we 
assume that when lx =  the rod is rigidly fastened, and when 0=x  the hinge support is 
realized. In this case we give the bending and moment forms by the follows formulas [1] 
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As a result of procedure fulfilled analogously to previous one we obtain solving equation 
in the form of 
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whence the Shenli force is determined from the cubic equation 
                                         002,337,025,0 31

42
22 =−− − τξχξτχπξπ .                        (2.12) 

The corresponding equation for hinge support has the from [4] 
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Here the Shenli force is determined from the solution of the equation 
                                         084,075,05,0 31
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 3. Let’s assume that every layer is homogeneous constEk =+1  and constk =+
0

1σ . 
As an example we consider the case of two-layer rod with the thickness 21 , δδ  the 
elasticity modulus 21 , EE  and the proportionality limits 0

2
0
1 , σσ . Allowing for the said 

on the basis of formulas (2.5) and (2.7) it’s easy to count the values ( )6,1=jjχ . They 
have the forms 
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where in addition the following pure quantities are introduced 
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                                                                                                                         Table 1 

4;25,0 == βµ  
 

α  0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75 
ж
crτ  0.182 0.171 0.164 0.158 0.152 0.147 0.142 0.137 
k
crτ  0.177 0.161 0.150 0.134 0.125 0.119 0.114 0.111 
ш
crτ  0.180 0.167 0.157 0.146 0.139 0.133 0.128 0.124 

 
 
                                                                                                                          Table 2 

4;25,0 == βα  
 

µ  0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75 
ж
crτ  0.182 0.162 0.137 0.115 0.101 0.092 0.085 0.079 
k
crτ  0.177 0.148 0.126 0.109 0.094 0.081 0.070 0.062 
ш
crτ  0.180 0.155 0.131 0.112 0.097 0.086 0.078 0.071 
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                                                                                                                          Table 3 

25,0== µα  
 

β  0.5 1 1.5 2 2.5 3 
ж
crτ  0.163 0.167 0.169 0.172 0.174 0.176 
k
crτ  0.143 0.157 0.164 0.169 0.174 0.173 
ш
crτ  0.153 0.162 0.167 0.170 0.172 0.174 

 
 Assuming 21 103,10 ⋅== − νξ  the Cauchy problem for the equations (2.8), 
(2.11) and (2.13) under the initial condition ( ) 1100 −=c  is numerically solved by the 
Runger-Kuth method. In tables 1,2 and 3 the dependencies of the critical force crτ  on the 
quantities µα ,  and β  are mentioned. The values of critical forces are determined from 
the equality 0=dcdτ . By homogeneity ( )1=== βαµ  we have 

085,0,069,0,101,0 === ш
cr

k
cr

ж
cr τττ . 

Taking 25,0== βα  and 4=β   we cite the numerical values of the Shenli critical forces 

202,0,193,0,224,0 === ш
cr

k
cr

ж
cr τττ . 

The corresponding values from the homogeneous case will be the following 
113,0,092,0,132,0 === ш

cr
k
cr

ж
cr τττ . 

 The variant of linear elasticity is automatically obtained when ( )6,30 == jjχ . 
 Thus by chosen values of parameters we can conclude the followings: 
- as it follows to expect, accounting the physical non-linearity the value of critical 

forces decreases in comparison with linear elasticity; 
- the buckling critical force in rigid fastening is more than in combined and hinge 

fastening, and in turn in combined fastening the critical force is less than in hinge 
support; 

- at the fixed β  the increase of α  leads to decrease of crτ , that is completely 
explained by the fixing property of 1E  because the decrease of α  is associated with 
the decrease 2E  the elasticity modulus of the second layer, which leads to decrease of 
the general rigidity of a rod; 

- the variation of the values µ  doesn’t change the quality picture of critical state at 
given β ; 

- from the data of table 3 it follows that the substitution of the last rigid material in the 
pile to the more rigid, leads to increase of critical force. 

In conclusion it’s necessary to note that by constructing the non-homogeneity we 
can increase (decrease) the bucking critical force and by the same token in specific sense 
to optimize the construction.   
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