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BUCKLING OF NON-UNIFORMLY HEATED DAMAGING ROD 
 

Abstract 
 

 On basis of modified relation of one dimensional thermoelasticity for damaging 
medium, the carrying capacity loss process at unchangeable loading of rod for linear 
changing by thickness of level of supernormal temperature is investigated. The system of 
integro-differential equations relative to the amplitude of deflection (for hingly supported 
rod) and heights of unloading and loading domains  of cross-section is obtained. The 
quantitative analysis is introduced. 
 
 The stability and buckling problem of rods as one of the most prevailing 
structural elements continues to remain in the center of attention of engineering 
investigations. Incentive to this phenomena is necessity of taking into account new factors 
and their mutual attention both themselves and previously accounted factors. 
 In the present paper the simultaneous influence of both damage accumulation 
process and temperature effects is discovered. 
 In paper [1] the determining equations for isotropic linear damaging visco-elastic 
body are given. For elastico-damaging body with regard to temperature stress the 
determining may be written by analogue with [1] in the form of 
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where ijэ  and ijs  are deviators, and ε and σ  are sphere parts of deformation and stress 

tensors respectively. Besides *M  is a shear damaging operator, *L  and *P  are operators 
of solid damaging of mechanical and temperature character. From (1) for uniaxial stress 
state we obtain 
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We accept that the solid damaging is connected mainly with thermostresses, i.e. 0* =L . 
 Then using the designations 
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Hence for thermoelastic stress subject to damaging we have 
                                                                 TE χεσ ~~

−= ,                                                  (6) 
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where the operator χ~  is  

                                                              E~~~ αχ = .                                                             (7) 
For simplicity later on we take that const== χχ~ . Then for stress we obtain 
                                                           TE χεσ −=

~ .                                                        (8) 
At monotonically changing stress state, the damaging operator behaves as the ordinary 
operator of hereditary elasticity 
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and for cases at determination of stress-deformation state of damaging body the 
application of Wolterr-Rabotnov’s correspondence principle is possible. Besides the 
inversion 
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holds. The strength criteria according to (1) has the form:  
                                                            ( ) 0

*1 σσ =+ M ,                                                (11) 
where 0σ  is ultimate strength of zero-defect material on compression. 
 As an example we consider the buckling of non-uniformly heated damaging rod 
at constant compressive load. The rod on end-walls is hingedly fastened. The temperature 
plane is assumed constant by length of rod and linear changing by height of section in the 
direction of buckling 
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 Here the axis 0x  coincides with the axis of rod, 0y  and 0z  are principal 
centroidal axis of section, 1T  and 2T  are temperatures in edge fibers, counted put from 
some initial temperature 0T ; h2  is height of section, b  is width of cross-section. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 
 

 Assume that at some value of centroidal posed axial compressed force, the 
buckling occurs at which the load remains constant. Then the fibers lying on concave side 
will be in continued load state, lying on convex side will be in unload state testing the 
lengthening. In this case cross-section of rod will consist of two parts: one of that the 
convex side is elastically deformed, on the other concave side the damage accumulation 
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process described by the homogeneous equation (2) or (4) occurs. In fig. 2 1Ω  is a 
loading domain with the current height ( )th1 ; 2Ω  is a unloading domain with the current 
height ( )th1 . The axis oz  composes current neutral axis. Assuming that the cross sections 
of rod in bending is plane and the buckling occurs in the direction of opposite y  for 
complementary deformations we have 
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               is radius of curvature. 
            Here the distance y  is counted from            
               neutral axis. The stresses in loading and  
               unloading bands will be  
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                             Fig. 2 
                                   
 Since the considered buckling is at unchangeable load, then resultant   additional 
effects must be equal to zero 
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or subject to the formulas (13), (14): 
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 Equating the sum of interior forces with respect to neutral axis to exterior time: 
Mydyd =⋅∆+⋅∆ ∫∫

ΩΩ 21

21 ωσωσ  

or subject to the relations (14) 
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where kJ  are inertia moments of the square kΩ  with respect to neutral axis 
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Moment to exterior forces- is the moment of compressive forces 
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                                                           ( )txPM ,ϑ⋅−= .                                                  (19) 
Thus we have the following system of differential integral equations with respect to three 
functions ( ) ( ) ( )txthth ,,, 21 ϑ : 
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Let the rod by end-walls be hingedly supported, then we can represent deflection in the 
form of 
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l
xtftx πϑ sin, = .                                               (21) 

Moving for the representation (21) in a system of the equations (2) we obtain 
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 Rod loading capacity of the bar will be determined prevailing from the parallel 
operating buckling and damaging processes. The question here is very important” what 
happens earlier: stability loss or distraction because of accumulation of critical volume of 
damages? We analyze the case when carrying capacity loss in consequence of 
catastrophic increasing defection will be prevalent.. For this from the system of equation 
(22) it follows to determine the amplitude of the deflection ( )zf . For qualitative analysis 
we use the approximate estimate 
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Then the system of the equation (22) has the form 
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We can find stability loss moment without determination of the function ( )tf . For this 
it’s necessary to give stability loss condition as inversion condition of amplitude of the 
deflection ( )tf  at infinity. Tending to zero the coefficients at the function ( )tf  at the 
first two equation of the system (24): 
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corresponds to this. 
 Solving this system we find the value of critical force for arbitrary moment of 
time t  
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when the height 1h , 2h   of loading and unloading domains will be 
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where  
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At the given unchangeable compassion force P  the relation (26) allows to determine the 
corresponding time of carrying capacity loss 
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If as kernel we take the exponential ( ) ( )ttN µλ −= exp , then we obtain 
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From the positivity condition of logarithm we obtain the constrains to the quantity of 
compression force  for which the stability loss occurs after the lapse of some time kptt = : 
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Thus framed of the given statement of problem the existence of non-homogeneous 
temperature field doesn’t influence to critical parameters, but only for the given 
compressed loading it influences to the deflection critical quantity, that unlike failing the 
homogeneous temperature field it maybe concretely determined. 
 On fig. 3 the graphs of independence the critical time of compressed loading for 

values of the parameters 1;1,0 ==
λ
µ

l
h  are introduced, where curve 1 corresponds the 

value 1,0
1

2 =
E
E , and the curve 2 – significantly 01,0
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Fig. 3 
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