хябярляри

ALIYEV B.A., JABRAILOVA E.M.

THE ASYMPTOTIC BEHAVIOR OF EIGENVALUES OF ONE BOUNDARY VALUE PROBLEM FOR A DIFFERENTIAL-OPERATOR EQUATION OF THE SECOND ORDER WITH DISCONTINUOUS COEFFICIENT

Abstract

At the paper the asymptotic formulas are got for eigenvalues of one boundary value problem for differential-operator equation of the second order with discontinuous coefficient.

Let *H* be a separable Hilbert space. Let's consider in *H* the equation
$$-a(x)u''(x) - Au(x) - \lambda u(x) = 0, \quad x \in \Omega = [0,b) \cup (b,1]$$
 (1)

with the boundary conditions

$$L_1 u = \alpha_1 u(0) + \alpha_2 u'(0) = 0,$$

$$L_2 u = \beta_1 u(1) + \beta_2 u'(1) = 0,$$
(2)

where A is a self-adjoint positive definite operator in $H(A = A^* \ge C^2 I)$ with the determination domain D(A), λ is a spectral parameter

$$a(x) = \begin{cases} a_1 > 0, & x \in [0,b), b \in (0,1), \\ a_2 > 0, & x \in (b,1], a_1 \neq a_2, \end{cases}$$

 α_i , β_i (i = 1,2) are real numbers, moreover α_2 , $\beta_1 \neq 0$. Let's superpose at the point x = b the additional condition (conjugation condition) on the function u(x)

$$L_3 u \equiv \delta_1 u (b - 0) + \delta_2 u (b + 0) = 0,$$

$$L_4 u \equiv \gamma_1 u' (b - 0) + \gamma_2 u' (b + 0) = 0,$$
(3)

where u(b-0) and u(b+0) are left and right limit values u(x) at the point x=b, δ_i , γ_i (i=1,2) are real numbers δ_1 , $\gamma_2 \neq 0$.

Let's denote by $L_2((0,1);H)$ a set of all vector-functions $x \to u(x):(0,1) \to H$ strongly measurable and such that $\int\limits_0^1 \|u(x)\|_H^2 dx < \infty$. As known $L_2((0,1);H)$ is Hilbert space with respect to scalar product

$$(u, \mathcal{G})_{L_2((0,1);H)} = \int_0^1 (u(x), \mathcal{G}(x))_H dx$$
.

Let
$$A = A^2 \ge C^2 I$$
 in H . Since A^{-1} is bounded in H , then $H(A) = \left\{ u : u \in D(A), \left\| u \right\|_{H(A)} = \left\| Au \right\|_{H} \right\}$

is a Hilbert space whose norm is equivalent to the norm of the graph of the operator A.

Let's associate to (1)-(3) the operator L defined by the equalities

$$D(L) = W_2^2(\Omega; H(A), H, L_\nu u = 0, \nu = 1 \div 4) = \{u(x): \text{ of almost all } x \in \Omega \ u(x) \in D(A), Au(x), u''(x) \in L_2(\Omega; H) \text{ and satisfies the conditions (2) and (3)} \},$$

$$L u = -a(x)u''(x) + Au(x).$$

[The asymptotic behavior of eigen-values]

Let's agree to write in the form $\{u_1, u_2\}$ every function $u \in L_2(\Omega; H)$ whose contraction which on the $L_2((0,b); H)$ and $L_2((b,1); H)$ coincides with $u_1(x)$ and $u_2(x)$ respectively.

Then the equation (1) splits to the system of differential-operator equations of the second order at the direct sum $H = L_2((0,b);H) \oplus L_2((b,1);H)$

$$-a_1 u_1''(x) + A u_1(x) = \lambda u_1(x) , \quad x \in [0,b),$$

$$-a_2 u_2''(x) + A u_2 = \lambda u_2 , \quad x \in [b,1]$$
(4)

and the boundary conditions (2) and (3) correspondingly take the following form:

$$L_1 u \equiv \alpha_1 u_1(0) + \alpha_2 u_1'(0) = 0 ,$$

$$L_2 u \equiv \beta_1 u_2(1) + \beta_2 u_2'(1) = 0 ,$$
(5)

$$L_3 u = \delta_1 u_1(b) + \delta_2 u_2(b) = 0 ,$$

$$L_4 u = \gamma_1 u'(b) + \gamma_2 u'(b) = 0 .$$
(6)

It is known that the direct sum $H = L_2((0,b);H) \oplus L_2((b,1);H)$ is a Hilbert space with the second scalar product

$$\left(\left\{u_{1},\mathcal{G}_{1}\right\},\left\{u_{2},\mathcal{G}_{2}\right\}\right)_{\mathsf{H}}=\left(u_{1},u_{2}\right)_{L_{2}\left(\left(0,b\right);H\right)}+\left(\mathcal{G}_{1},\mathcal{G}_{2}\right)_{L_{2}\left(\left(b,1\right);H\right)}.$$

The aim of the given paper is to study the asymptotic distribution of eigen-values of the operator L knowing the asymptotic distribution of eigen-numbers of the operator A. In case when $a(x) \equiv 1$ an asymptotics of eigen-values of some boundary value problems for the Stourm-Luiville equation on a finite segment was studied in the papers V.I. Gorbachuk, M.I. Gorbachuk [1], V.I. Gorbachuk [2], V.A. Mikhaylec [3], V.I. Gorbachuk, M.A. Ribak [4] and others.

In the paper by O.Sh. Mukhtarov's [5] the asymptotic behavior of eigen-values of the conjugation problem was investigated for ordinary-differential equation of the second order.

Theorem. Let

- 1. $A = A^* \ge C^2 I$ in H and A^{-1} be completely continuous in H;
- 2. $\alpha_i, \beta_i, \delta_i, \gamma_i \ (i = 1, 2)$ be real numbers, moreover $\alpha_2, \beta_1, \delta_1, \gamma_2 \neq 0$, $\alpha_1, \gamma_2, \delta_2 = \alpha_2 \delta_1 \gamma_1$;
- 3. $\left| \sqrt{a_1} \delta_1 \gamma_2 + \sqrt{a_2} \delta_2 \gamma_1 \right| \neq 0$.

Then the eigen-numbers of the problem (1)-(3) form two infinite sequences $\lambda_{n,k}^1$, $\lambda_{n,k}^2$ (n,k=1,2,...) with the asymptotic

$$\lambda_{n,k}^1 = \mu_k + \gamma_n$$
, $\lambda_{n,k}^2 = \mu_k + \xi_n$,

where

$$\gamma_n \sim \frac{a_1}{b^2} \pi^2 n^2$$
, $\xi_n \sim \frac{a_2}{(1-b)^2} \pi^2 n^2$,

and $\mu_k = \mu_k(A)$ are eigen-values of the operator A.

Proof. Let's consider the equation $(L - \lambda I)u = 0$ in the space H. Since the equation $(L - \lambda I)u = 0$ is reduced to the boundary value problem (4)-(6), then it is evident that it is sufficient to find eigen-numbers of the spectral problem (4)-(6) for finding the eigen-numbers of the operator L.

Let's denote by φ_k the eigen-elements of the operator A corresponding to the eigen-values $\mu_k(A)$. It is known that the $\{\varphi_k\}$ forms the orthonormalized basis. Then

хябярляри

[Aliyev B.A., Jabrailova E.M.]

allowing for the spectral distribution for the coefficients $u_{1k} = (u_1, \varphi_k)$ and $u_{2k} = (u_2, \varphi_k)$ we'll get the following problem:

$$-u_{1k}''(x) + b_1(\mu_k - \lambda)u_{1k}(x) = 0, \quad x \in [0, b), \tag{7}$$

$$-u_{2k}''(x) + b_2(\mu_k - \lambda)u_{2k}(x) = 0, \ x \in (b,1], \tag{8}$$

$$\alpha_1 u_{1k}(0) + \alpha_2 u'_{1k}(0) = 0,$$

$$\beta_1 u_{2k}(1) + \beta_2 u'_{2k}(1) = 0,$$
(9)

$$\delta_1 u_{1k}(b) + \delta_2 u_{2k}(b) = 0,$$

$$\gamma_1 u'_{1k}(b) + \gamma_2 u'_{2k}(b) = 0,$$
(10)

where $b_i = \frac{1}{a_i} (i = 1, 2)$.

The general solution of the ordinary differential equations (7)-(8) correspondingly has the following form:

$$u_{1k}(x) = c_1 e^{-x\sqrt{b_1}\sqrt{\mu_k - \lambda}} + c_2 e^{-(b-x)\sqrt{b_1}\sqrt{\mu_k - \lambda}},$$
(11)

$$u_{2k}(x) = c_3 e^{-(x-b)\sqrt{b_2}\sqrt{\mu_k - \lambda}} + c_4 e^{-(1-x)\sqrt{b_2}\sqrt{\mu_k - \lambda}},$$
(12)

where c_i ($i = 1 \div 4$) is an arbitrary constant.

Substituting (11) and (12) in (9) and (10), we'll get the system with respect to the c_i ($i = 1 \div 4$) whose determinants has the form

$$K(\lambda) = \begin{vmatrix} a_{11} & a_{12} & 0 & 0 \\ 0 & 0 & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix},$$

where
$$a_{11} = \alpha_1 - \alpha_2 \sqrt{b_1(\mu_k - \lambda)}$$
, $a_{12} = (\alpha_1 + \alpha_2 \sqrt{b_1(\mu_k - \lambda)})e^{-b\sqrt{b_1(\mu_k - \lambda)}}$, $a_{23} = (\beta_1 - \beta_2 \sqrt{b_2(\mu_k - \lambda)})e^{-(1-b)\sqrt{b_2(\mu_k - \lambda)}}$, $a_{24} = \beta_2 \sqrt{b_2(\mu_k - \lambda)} + \beta_1$, $a_{31} = \delta_1 e^{-b\sqrt{b_1(\mu_k - \lambda)}}$, $a_{32} = \delta_1$, $a_{33} = \delta_2$, $a_{34} = \delta_2 e^{-(1-b)\sqrt{b_2(\mu_k - \lambda)}}$, $a_{41} = -\gamma_1 \sqrt{b_1(\mu_k - \lambda)}e^{-b\sqrt{b_1(\mu_k - \lambda)}}$, $a_{42} = \gamma_1 \sqrt{b_1(\mu_k - \lambda)}$, $a_{43} = -\gamma_2 \sqrt{b_2(\mu_k - \lambda)}$, $a_{44} = \gamma_2 \sqrt{b_2(\mu_k - \lambda)}e^{-(1-b)\sqrt{b_2}\sqrt{\mu_k - \lambda}}$.

Calculating $K(\lambda)$ we'll get

$$K(\lambda) = \left[(\alpha_1 - \alpha_2 \sqrt{b_1(\mu_k - \lambda)}) - (\alpha_1 + \alpha_2 \sqrt{b_1(\mu_k - \lambda)}) e^{-2b\sqrt{b_1(\mu_k - \lambda)}} \right] \times \\ \times \left\{ -2 \left(\beta_1 - \beta_2 \sqrt{b_2(\mu_k - \lambda)} \right) \beta_1 \gamma_2 \sqrt{b_2(\mu_k - \lambda)} e^{-2(1-b)\sqrt{b_2(\mu_k - \lambda)}} + \left[\left(\beta_1 + \beta_2 \sqrt{b_2(\mu_k - \lambda)} \right) - \left(\beta_1 - \beta_2 \sqrt{b_2(\mu_k - \lambda)} \right) e^{-2(1-b)\sqrt{b_2(\mu_k - \lambda)}} \right] \left(-\beta_1 \gamma_2 \sqrt{b_2} - \delta_2 \gamma_1 \sqrt{b_1} \right) \sqrt{\mu_k - \lambda} \right\} - \\ -2 \left[(\beta_1 + \beta_2 \sqrt{b_2(\mu_k - \lambda)}) - \left(\beta_1 - \beta_2 \sqrt{b_2(\mu_k - \lambda)} \right) e^{-2(1-b)\sqrt{b_2(\mu_k - \lambda)}} \right] \times \\ \times \left(\alpha_1 + \alpha_2 \sqrt{b_1(\mu_k - \lambda)} \right) \gamma_1 \delta_2 \sqrt{b_1(\mu_k - \lambda)} e^{-b\sqrt{b_1(\mu_k - \lambda)}}.$$

Then it is evident that the eigen-values of the problem (4)-(6) (of the operator L) there are zeros of the following equations

$$\left(\alpha_1 + \alpha_2 \sqrt{b_1(\mu_k - \lambda)}\right) - \left(\alpha_1 - \alpha_2 \sqrt{b_1(\mu_k - \lambda)}\right) e^{2b\sqrt{b_1(\mu_k - \lambda)}} = 0, \tag{13}$$

[The asymptotic behavior of eigen-values]

$$(\beta_1 - \beta_2 \sqrt{b_2(\mu_k - \lambda)}) - (\beta_1 + \beta_2 \sqrt{b_2(\mu_k - \lambda)}) e^{2(1-b)\sqrt{b_2(\mu_k - \lambda)}} = 0.$$
 (14)

Thus, the spectrum of the operator L consists of such real $\lambda \neq \mu_k$ which if only at one k satisfy the equations (13), (14). Let's search the eigenvalues of the operator L less μ_k . Let's denote by $\sqrt{\mu_k - \lambda} = y$. The equation (13) in this case is equivalent with the equation

$$\frac{k_1 + y}{k_1 - y} = e^{k_2 y} \quad , \quad 0 < y < \sqrt{\mu_k} \quad , \tag{15}$$

where $k_1 = \frac{\alpha_1}{\alpha_2 \sqrt{b_1}}$, $k_2 b \sqrt{b_1} > 0$.

Let's prove the absence of solutions of the equation (15) on the interval $(0,\sqrt{\mu_k})$ by the methods of analysis. Let's denote by f(y) the left hand side of the equation (15) and make its investigation: by $f(y) = \frac{k_1 + y}{k_1 - y}$, $y \neq k_1$, $f'(y) = \frac{2k_1}{\left(k_1 - y\right)^2}$, $sign f'(y) = sign(\alpha_1, \alpha_2)$, then f(y) increases when $\alpha_1 \cdot \alpha_2 > 0$ and decreases when $\alpha_1 \cdot \alpha_2 < 0$, f(0) = 1, $\lim_{y \to k_1 = 0} f(y) = sign k_1 \cdot (+\infty)$, $\lim_{y \to k_1 = 0} f(y) = sign k_1 \cdot (-\infty)$, $\lim_{y \to \infty} f(y) = -1$.

So, in case $0 < \lambda < \mu_k$ the equation (13) has the solution when $\alpha_1 \cdot \alpha_2 < 0$. When $\alpha_1 \cdot \alpha_2 > 0$ the equation (13) may have only one zero on $(0, k_1)$.

Denoting by y_0 this zero and substituting $y_1 = y - y_0$ we'll get the equivalent equation which will not have the zeros.

In the second case, i.e. when $\lambda > \mu_k$ the equation (13) is equivalent to the equation

$$ctg \ b\sqrt{b_1}z = \frac{\alpha_1}{\alpha_2\sqrt{b_1}z},$$

where $z = \sqrt{\lambda - \mu_k}$, $0 < z < \infty$.

Let's consider the function

$$\vartheta_k(z) = \operatorname{ctg} b\sqrt{b_1} z - \frac{\alpha_1}{\alpha_2\sqrt{b_1}z} = \frac{\varphi_k(z)}{\alpha_2\sqrt{b_1}z},$$

$$\varphi_k(z) = \alpha_2\sqrt{b_1}z\operatorname{ctg} b\sqrt{b_1}z - \alpha_1.$$

The zeros of the functions $\varphi_k(z)$ and $\mathcal{G}_k(z)$ coincide. The function $\varphi_k(z)$ is determined on $(0,+\infty)$ except the points $b\sqrt{b_1}\ z=n\pi\ (n=1,2,...)$, i.e. $z\neq\frac{n\pi}{b\sqrt{b_1}}$. Since at

every interval $\left(\frac{n\pi}{b\sqrt{b_1}}, \frac{(n+1)\pi}{b\sqrt{b_1}}\right) \varphi_k(n)$ run from $-\infty$ to $+\infty$ and it's derivative

$$\varphi_k'(z) = \frac{\alpha_2 \sqrt{b_1} \left(\sin 2b \sqrt{b_1} z - 2b \sqrt{b_1} z \right)}{\sin^2 b \sqrt{b_1} z}$$

is positive when $\alpha_2 < 0$ (negative when $\alpha_2 > 0$) then on it the $\varphi_k(z)$ has only one zero $z_{n,k}$:

хябярляри

[Aliyev B.A., Jabrailova E.M.]

$$\frac{n\pi}{b\sqrt{b_1}} < z_{n,k} < \frac{(n+1)\pi}{b\sqrt{b_1}} \qquad (n=1,2,\dots).$$

Consequently, the first series of eigen0values we can represent in the following form:

$$\lambda_{n.k}^1 = \mu_k + \gamma_n \ ,$$

where
$$\gamma_n \sim \frac{a_1}{h^2} \pi^2 n^2$$
.

Zeros of the equation (14), which corresponds to the second series of eigenvalues are investigated, analogously.

References

- [1]. Gorbachuk V.I., Gorbachuk M.L. *On some classes of boundary problems for Sturm-Luiville equation with operator potential.* Ukr.mat.jour., 1972, v.24, №3, p.291-305. (in Russian)
- [2]. Gorbachuk V.I. On asymptotic of eigenvalues of boundary problems for differential equations at the space of vector-functions. Ukr.mat.jour., 1975, v.27, №5, p.657-664. (in Russian)
- [3]. Mikhaylec V.A. Distribution of eigenvalues of operator equation Stourm-Luiville. Izv. AN SSSR, ser.mathem., 1977, v.41, №3, p.607-619. (in Russian)
- [4]. Gorbachuk V.I., Ribak M.A. On boundary problems for operator equation Stourm-Luiville with spectral parameter in the equation and the boundary condition. "Direct and inverse problem of scattering theory", Kiev, 1981, p.3-16. (in Russian)
- [5]. Mukhtarov O.Sh. Asymptotic behavior of eigenvalues problem on conjugation. Izv.AN AzSSR, ser.phyz.-tech. and math. sci., 1988, №3. (in Russian)

Bakhram A. Aliyev, Elmira M. Jabrailova

Azerbaijan State Pedagogical University.

34, U.Hajibeyov str., 370000, Baku, Azerbaijan.

Tel.: 68-64-62(apt).

Received January 8, 2001; Revised September 24, 2001. Translated by Mamedova V.I.