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THE FIRST BOUNDARY VALUE PROBLEM FOR NON-DIVERGENT LINEAR 

SECOND ORDER ELLIPTIC EQUATIONS OF CORDES TYPE 
 

Abstract 
 

In the paper the Dirichlet problem for non-divergent linear second order elliptic 
equations with, generally speaking, discontinuous coefficients, satisfying the Cordes 
condition is considered. The unique strong (almost everywhere) solvability of this 
problem is proved in the space )(2 DWp , where p  belongs to some segment containing 
point 2   .  

 
Introduction. Let nE  be an Euclidian space of points 2),,...,( 1 ≥= nxxx n , 

nD E⊂ be a bounded domain with the boundary 2CD∈∂ . Consider in D  the first 
boundary value problem 
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under the assumption that ( )xaij  is a symmetric matrix. Moreover, for all  Dx∈    and 

nE∈ξ  the following condition is satisfied 
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 Besides this we assume that all the coefficients of the operator L  are real and 
measurable in D  functions.  

The aim of the present paper is finding the conditions on the coefficients of the 
equation (1), at fulfillment of which the first boundary value  problem (1)-(2) is uniquely 
strongly (almost everywhere) solvable in space )(2 DWp

& for any )()( DLxf p∈ , 
[ ]21, ppp∈ , ( )2,11 ∈p , ( )∞∈ ,22p . Note that if equation (1) doesn’t contain minor 

terms, 
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and boundary D∂  represents the surface of mean non-positive curvature, then analogous 
result at 2=p  was established in [1]. If ( )DCaij ∈ ; nji ,...,1, = ; then solvability of the 
problem (1)-(2) holds for any ( )∞∈ ,1p  (see [2-3]). We point also to the works [4-8], in 
which at 2=p  under conditions of the type (4) the corresponding result was obtained for 
non-divergent second order parabolic equations. As was shown in [9], only condition (3) 
doesn’t provide the solvability of the first boundary value problem in space )(2 DWp

& for 

any ( )∞∈ ,1p . In connection with the questions of solvability of the boundary value 
problems for non-divergent elliptic equations we note papers [10-11].   
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1. Some auxiliary statements. At first we shall agree on some denotations and 

definitions. By iu  and iju we shall denote derivatives 
ix

u
∂
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ji xx
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 respectively; 

nji ,...,1, = ; by ( )0xBR  and ( )0xSR  - the ball { }Rxxx <− 0:  and the sphere 

{ }Rxxx =− 0:  respectively; 0>R , nx E∈0 . Let ( ) ( )DWDW pp
12 ,  be Banach spaces of 

functions ( )xu  given on D  with finite norms 
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respectively; ( )∞∈ ,1p . Denote by  ( )DW p
1

o

 the subspace of ( )DWp
1 containing as a dense 

set all infinitely differentiable functions from ( )DC∞
0 , and let ( ) ( ) ( )DWDWDW ppp

122
o
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 Function ( ) )(2 DWxu p
&∈  is called the strong solution of the first boundary value 

problem (1)-(2), if it satisfies equation (1) almost everywhere in D . 
 Everywhere below the notation ( )...C  means that the positive constant C  
depends only on contents of brackets. Denote by ( )0xBB R=  the ball such that DB ∈ .  

Lemma 1. If   ( ) ( )BCxu ∞∈ 0 , then    
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and the lemma is proved. 
Lemma 2. If  ( ) ( )BCxu ∞∈ 0  and ( )∞∈ ,1p  then 
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Proof. We’ll consider only the case 3≥n . Let ( ) nttG −= 2 , ( )nn
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where nω is the volume of n - dimensional unit ball. We have 
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where n  is a unit vector of internal normal line to ( ) ( )xSxB ρρ =∂  (i.e. external with 
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It’s easy to see that if ji ≠ , then ( ) 05 =ρijk . Besides, 
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Now from (5) and (7)-(9) it follows, that for nji ,...,1, =  
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( ) ( ) FKxF
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where ijδ  is Cronecker  symbol, FK ij ∗  is a singular integral with the kernel in ijG .          

By Calderon-Zygmund theorem [12] for ( )∞∈ ,1p , nji ,...,1, =  
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The validity of the statement of the lemma from (10)-(11) follows. 
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respectively, ( )∞∈ ,1p . According to Friedrichs inequality [13] and lemma 2 functionals 
defined above are really norms. Denote by ( )pT an operator mapping each 

function ( ) ( )BVxu p
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According to lemma 2 operator ( )pT is bounded. Denote by ( )pK  its norm. By lemma 1 
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Note that here constant a>1 depends only on n. 
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2. Interior a priori estimation. Consider the operator 
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Lemma 6. If with respect to coefficients of the operator 0L condition (3) be 
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and statement of the lemma is proved. 
 Everywhere later on without separately mentioning it we shall assume that radius 
R  of the ball B  doesn’t exceed 1. 
 Lemma 7. If conditions of the previous lemma are fulfilled, then for all 

[ ]2,1pp∈  and any function ( ) ( )BCxu ∞∈ 0  the following inequality is valid 
                                                 ( ) ( ) ( )BLBW pp

unCu 03 ,,2 Lδγ≤ .                           

Proof.  For proving it is sufficient to apply the Friedrichs inequality and lemma 6. 
We’ll impose the following Cordes conditions on the leading coefficients of the operator 
L .  
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At that we’ll assume that condition (16) is fulfilled accurate up to equivalence and 
nonsingular linear transformation, i.e. equation (1) can be replaced by the equivalent to it 
equation )(11 xfu =L , and domain D  can be covered by a finite number of subdomains 

mDD ,...,1 , such that in each iD  there exists nonsingular linear transformation iA , under 
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which image of the operator 1L  satisfies condition (16) in the image of subdomain iD , 
mi ,...,1= . 

 Lemma 8. Condition 1<δ  accurate up to equivalence and nonsingular linear 
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We’ll impose now the following conditions on the minor coefficients of the operator L . 
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where 21 ,vv  are some positive constants. 
Lemma 9. Let with respect to coefficients of the operator L  conditions (3), (16), 

(18) and (19) be fulfilled. Then there exist constants ( )nC ,,4 σγ and ( )cnR ,,,,0 Bσγ , such 
that if radius R of the ball B doesn’t exceed 0R , then  for any function  ( ) ( )BCxu ∞∈ 0  and 
any [ ]2,1pp∈ the following estimation is valid 

( ) ( )BLBW pp
uCu L42 ≤ . 

Here ( ) ( )( )xbxb n,...,1=B . 
Proof. We restrict ourselves with the case 4>n . We’ll use the following 

imbedding theorem ([15]): let ( )nq ,1∈ ; then for any function ( ) ( )BWxu q
1

o

∈  the 
following inequality holds 

                                ( )∑
=

≤
−

n

i
BLiBL q

qn
nq

unqCu
1

)(5)( , .                                        (20) 



Transactions of NAS Azerbaijan____________________________ 
                                                                                 [The first boundary value problem] 
 

157  

According to lemma 7 
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Again using (20) from (23) we obtain 
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where ( ) 02 →Γ R  as 0→R  by virtue of condition (19). 
 Taking into account (22) and (24) in (21) we arrive at the estimation 
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Now it is sufficient to choose 0R  so small that  
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and lemma is proved. 
 Remark. Note, that number 0R  doesn’t depend on choice of point 0x - the center 
of the ball B  . It follows from absolute continuity of Lebesgue integral. 
 Everywhere later on not mentioning this especially we’ll assume that 0RR ≤ . 
Denote for RR <1  ( )0

1
xBR  by 1B . 

 Lemma 10. Let with respect to coefficients of the operator L  conditions (3), 
(16), (18) and (19) be fulfilled. Then there exists a constant ( )B,,,9 nC σγ  such that for 
any function ( ) ( )BCxu ∞∈  and  any [ ]2,1pp∈  the following estimation holds. 
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                   ( ) ( ) ( ) ( )∑∑∑
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⎜
⎝

⎛
++≤

n
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ijij uxaxbxauuu

1,11,
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and further subject to (25) 
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γ
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( ) ( ) ( ) ≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤ ∑∑∑∑∑

==

−

===

2
1

1

22
1

1

21
2
1

1,

2
1

1,1,
222

n

i
i

n

i
i

n

ji
jiij

n

ji
jiij

n

ji
jiij uxauuxauxa ηγηηη  

∑∑∑
=

−

==

−

−
≤≤

n

i
i

n

i
i

n

i
i u

RR
Cn

u
11

10
1

11

1 2
2

γ
ηγ . 

So, from (27) we conclude 

( )
( ) ( ) ( ) ( ) ( )

( )
( )BL

n

i
iL

n

i
iLLL
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== −

+
−

+
−

+≤
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2

1

11 ,γ
η LL .(28) 

Now we’ll use the following imbedding theorem [15]: let ( )nq ,1∈ ; then for any 
function ( ) ( )BWxu q

1∈  the following inequality holds 

                                                 ( ) ( )BWBL q
qn

nq
unqCu 1,13)( ≤

−

.                                         (29)    

Putting q=p in (29), we have  

         
( ) ( ) ( ) ( ) ( ) ( )BWBW

n

i
BLiBLL

n

i
i

qqn
qn

nqBp
unCnCuCnCbunbu 11 15141314

1
)(

1
≤≤≤ ∑∑

==
−

B ,  (30)    

where 
[ ]

( )npCC
pp

,sup 13
2,

15
1∈

= . Taking into account (30) in (28) and remembering that 

1≤R , we conclude 

( )
( ) ( )

( )
( ) ( )BWLL qBpBp

u
RR
nC

uu 12
1

16 ,,
−

+≤
Bγ

η LL . 

Now the statement of the lemma follows from (26). Denote ( )0

2
xRB  by 2B . 
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 Lemma 11. Let with respect to coefficients of the operator L  conditions of the 
previous lemma be fulfilled. Then there exists constant ( )B,,,17 nC σγ  such that for any 
function ( ) ( )BWxu p

2∈ ,  any 0>ε and [ ]2,1pp∈  the following estimation holds 

( ) ( ) ( ) ( )BLBWBLBW pppp
u

R
C

uuCu 4
17

4 2
2

2
ε

ε ++≤ L   . 

 Proof. We’ll use the following interpolation inequality ([12]): let ( )∞∈ ,1p ; then 
for any function ( ) ( )BWxu p

2∈  for any 0>ε  the following estimation holds. 

                                      ( ) ( )
( )

( )BLBWBW ppp
u

npC
uu

ε
ε

,18
22 +≤ .                                  (31) 

It’s evident that it suffices to prove lemma for functions ( ) ( )BCxu ∞∈ . We’ll fix arbitrary  

0>ε  and let 01 >ε  be a number, which will be chosen later. According to lemma 10 
and inequality (31) 

( ) ( ) ( ) ( ) ( ) ( )BLBWBLBWBLBW pppppp
u

R
CC

u
R
C

uCu
R
C

uCu 2
1

199
2

19
42

9
4

444
22

2
2

ε
ε

++≤+≤ LL , 

where 
[ ]

( )npCC
pp

,sup 18
2,

19
1∈

=  

 Then it’s sufficient to choose 
9

2

1 4C
Rεε = , and the lemma is proved. 

Denote for any 0>ρ  set{ }ρ>∂∈ ),(,: DxdistDxx  by ρD . 
Lemma 12. Let conditions (3), (16), (18) and (19) be satisfied with respect to the 

coefficients of the operator L . Then for any ( ) ( )BWxu p
2∈ , any 0>ε , 0>ρ and  

[ ]2,1pp∈  the following estimation holds 

( ) ( )
)(

21
)()(20)(

,,,,,
,,,,, 22 DLDWDLDW pppp

u
DnC

uuDnCu
ε
ρσγ

ερσγ
ρ

BB ++≤ L . 

 Proof. We restrict ourselves with the case ( ) ( )BCxu ∞∈ . Besides this, without loss 
of generality, we’ll assume, that 0R≤ρ . We’ll fix arbitrary  0>ε  and let 02 >ε  be a 

number, which will be chosen later. We’ll cover ρD  by the system of balls ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

νρ xB
2

 

and choose from this cover a finite subcover NBB ,...,1 . It’s evident that number N  
depends only on n,ρ  and  Ddiam . Applying for each ni ,...,1=  lemma 11, we obtain  

                  ( ) ( ) ( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
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p
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pp
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p
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C
uuCu 4

2
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24

1
22 3
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εL .                  (32) 

Summing inequalities (32) over i from 1 to N , we conclude 

( ) ( ) ( ) ( ) ⎟
⎟
⎠

⎞
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p
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ρ
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Now it’s sufficient to choose 
N32
εε = , and the lemma is proved. 
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3.The basic coercive estimation. The statement of lemma 12 is true without any 
requirements respective to the boundary D∂ . All following statements of the present 
paper holds under condition 2CD∈∂ , which we’ll always assume to be satisfied. 

Lemma 13.  Let with respect to the coefficients of the operator L  conditions (3), 
(16), (18) and (19) be fulfilled. Then there exist positive constants 221 ,Cρ  and 23C , 
depending only on cn ,,,, Bσγ  and domain D  such that for any ( ) ( )DWxu p

2&∈ , any 

0>ε  and  [ ]2,1pp∈  the following estimation holds 

 )(
23

)()(22)( 22 DLDWDLDDW pppp
u

C
uuCu

ε
ε

ρ
++≤ L . 

Proof. It’s sufficient to prove lemma for functions ( ) ( )DCxu ∞∈ , 0=
∂Du . 

Besides this, without loss of generality, we’ll assume that coefficients of the operator L  
are infinitely differentiable in D . We’ll fix arbitrary 0>ε  and point  Dx ∂∈0 . Let’s 
make the orthogonal coordinate transformation yx →  such that tangent hyperplane to 

D~∂  at the point 0y  be perpendicular to nOy axis. Here D~  and 0y  are images of domain 
D  and point 0x  at such transformation, respectively. Denote by the )(~ yu  image of  the 
function )(xu . For simplicity we’ll assume that equation of D~∂  in intersection of D~∂  
with some neighborhood hO  of the point 0y  is given by equation  ( )11,..., −= nn yyy ϕ  
with twice continuously differentiable function ϕ , and a part of D~  adjacent to 

hOD ∩∂
~ belongs to the set ( ){ }11 ,...,: −> nn yyyy ϕ . Let ( ) ( )xaxA ij=  be the matrix of 

leading coefficients of the operator L , ( ) ( )yayA ij
~~

= , where ( )yaij
~  are leading 

coefficients of image L~  of the operator L  at our transformation , nji ,...,1, = . We’ll 
show now that eigenvalues of matrices A  and A~ coincide. Really, we’ll fix arbitrary 
point Dx∈ ,and let λ  be an arbitrary eigenvalue of the matrix A , and λx  is 
corresponding eigenvector. By virtue of orthogonality of our transformation there exists a 
non-degenerated matrix T such that ATTA 1~ −= . Denote λxT 1−  by λy . We have  

λλλλ λλ yxTAxTyA === −− 11~ . 
On the other hand, condition (16) can be written in the following form 

( )

( )
1

1sup 2

1

1

2

−
<

⎥
⎦

⎤
⎢
⎣

⎡
=

∑

∑

=

=

n
x

x

n

i
i

n

i
i

D
λ

λ
σ , 

where ( )xiλ  are eigenvalues of the matrix ( )xA ; ni ,...,1= . So, condition (16) is satisfied 
also for the operator L~  with the same constant σ . Analogously we can show that for the 
operator L~  conditions (3) (with the same constant γ ) and also (18)-(19) are satisfied. 
Let’s make one more transformation 1,...,1; −== niyz ii ; ( )11 ,..., −−= nnn yyyz ϕ . Let 

D′′,L  and 0z  be images of the operator L , domain D~  and point 0y at our 
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transformation, respectively, and ( )zaij′  be leading coefficients of the operator 
L ′ ; nji ,...,1, = . 
 It’s easy to see that 

( ) ( )
l

jn

lk k

i
klij y

z
y
z

yaza
∂

∂

∂
∂

=′ ∑
=1,

~ ; nji ,...,1, = . 
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( ) ( )yaza ijij

~=′ ; if 1,1 −≤≤ nji ; 
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k
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1
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∂
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=
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k
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1

1

1,
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∂
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−
∂
∂

∂
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=′ ∑∑
−

=

−

=

ϕϕϕ . 

Since ( ) 00 =
∂
∂ y
yi

ϕ  for 1,...,1 −= ni , then there exists ( )ϕ,0
1 yh  such that for 

1hh ≤  in intersection ( )0zBD h∩′  condition (16) with the constant 
2

1
1
−

+
=′ n
σ

σ  is 

fulfilled. Besides this, for the operator L ′  in the stated intersection conditions (3) (with 

constant 
2
γ ), and also (18)-(19) be fulfilled. At that, if ( )xbi′ ; ni ,...,1= ; and ( )xc′  are the 

coefficients at first derivatives of solution and at solution itself of the operator L ′ , then 

the value ( )( ) ( )( )0∩′
=

0∩′
′+′∑ zBDL

n

i
zBDLi

hnhn
cb

1
2

11
 is bounded from above by a constant, 

dependent only on ( ) ( )DL

n

i
DLi

nn
cb

2
1

+∑
=

 and function ϕ . Suppose 

( ) { }01
0 ,min Rhzrr == , and let ( )zu′  be an image of the function ( )yu~  under such a 

transformation. It’s clear that in variables z  the intersection ( )0zBD r∩′  a semiball 

{ }0,: 0 ><−=+
nr zrzzzB . We continue the function )(zu′   to get an odd function and 

coefficients of the operator L~  -to get an even function through the hyperplane 0=nz  
in ( ) +

rr BzB \0  and denote the obtained function and operator again by )(zu′  and L~  
respectively. Since ( ) ( )( )02 zBWzu rp∈′ , then according to lemma 11 

     ( ) ( )( ) ( )( ) ( )( )00200

2

2 4
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17
4 zBLzBWzBLzBW rprprprp

u
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C
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ε
εL  ,          (33) 

where 03 >ε will be chosen later. But on the other hand, each of norms in the right hand 

side of (33) is a corresponding norm taken by the semiball +
rB  and multiplied by p

1

2 . 
Therefore, from (33) we conclude 
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We’ll cover D′∂  by the system of balls ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

ν
ν zB zr

2

 and choose from this cover a finite 

subcover ( ) ( )MBB ,...,1 . At that number M  is defined only by values n,,σγ , functions 
( ) ( )xcnixbi ;,...,1; = and domain D . Coping out inequalities of the type (34) for each 

semiball ( ) MB zr ,...,1; =+ νν ; raising the both parts of the obtained inequalities to a power 

p  and summing by ν  from 1 to M, we obtain 
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where ( )U
M

zrB
1 2=

+=
ν

νB  and ( ) ( ){ }Mzrzrr ,...,min 1
0 = . Returning to the variables x  and 

noting that image B  contains the set 
1

\ ρDD  with some ( )Dcn ,,,,,1 Bσγρ = , we 
conclude that  

( ) ( ) ( ) ( )DLDWDLDDW pppp
u

C
uCuCu

3

26
32524\ 2

1
2

ε
ε

ρ
++≤ L , 

where constants 2524 ,CC  and 26C  depend only on cn ,,,, Bσγ  and domain D . Now it’s 

sufficient to choose 
25

3 C
εε = , and the lemma is proved. 

 Later on the notation ( )DnC ,,L  means that positive constant C depends on 
abovementioned parameters. 
 From lemmas 12 and 13 follows 
 Theorem 1. Let with respect to coefficients of the operator L  conditions (3), 
(16), (18) and (19) be fulfilled. Then for any function ( ) ( )DWxu p

2&∈ , any [ ]2,1pp∈  the 
following estimation holds 

( ) ( ) ( ) ( ) ⎟⎠
⎞⎜

⎝
⎛ +≤ DLDLDW ppp

uuDnCu LL ,,272 . 

We’ll prove now the coercive estimation for the operator L  in small measure domains. 
   Theorem 2. If conditions of the theorem 1 are satisfied, then there exists a 
constant ( )Dnd ,,L such that when dDmes ≤  for any function ( ) ( )DWxu p

2&∈ and  for 
any [ ]2,1pp∈  the following estimation holds 
                                                      ( ) ( )DLDW pp

uCu L282 ≤ ,                                           (35) 

where 2728 2CC = . 
 Proof. Let constant 6C  have the same meaning as in lemma 9. We’ll use 
inequality (20) at pq = . We have 
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6
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6)(
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)( 2 DW
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DLnDL pp
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. 
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Now it’s sufficient to choose d  from condition 
2
11

276 =ndCC , and the required 

estimation (35) follows from theorem 1. The theorem is proved. 
 Theorem 3.  If conditions of the theorem 1 are satisfied, then there exists 
constant ( )Dn,,0 Lµ such that for any function ( ) ( )DWxu p

2&∈ , any 0µµ ≥ and 
[ ]2,1pp∈  the following estimation holds 

( ) ( ) ( )DLDW pp
uuDnCu µ−≤ LL ,,292 . 

 Proof. In ( )1+n - dimensional Euclidean space 1+nE  of points ( )tx,  consider a 

cylindrical domain ( )0,0
0

TDQT ×=  and in it the operator 2

2

1 t∂
∂

+= LL . We’ll choose 

number 0T  from condition dQmes Tn =+ 01 . At that the constant d of the previous 
theorem corresponds to the operator 1L , the dimension of space 1+n  and domain 

0TQ . 

Denote 2
0

2

T
π  by 0µ , and let for 0µµ ≥  number 0TT ≤  be such that µπ

=2

2

T
. If 

( ) ( )DWxu p
2&∈ , then function ( ) ( )

T
txutx π

ϑ sin, =  is an element of the space ( )Tp QW 2& . 

According to theorem 2 

( ) ( )TpTp QLQW C ϑϑ 1292 L≤ , 

where constant 29C  coincides with constant 28C  taken for the operator 1L , dimension of 

space 1+n  and domain 
0TQ . But ( )uu

T
t

µ
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ϑ −= LL sin1 . Therefore,  
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and statement of the theorem is proved. 
 

4. Case 2p > . Let ⎥⎦
⎤

⎢⎣
⎡∈

2
5,2p , and ( )pK  have the same meaning as in lemma 3. 

By Riesz-Thorin theorem for any ⎥⎦
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2
5,

2
5max K  by ( )na1 , we obtain 

( ) 2
1
−≤ papK . 

Thus, the following analogue of  lemma 3 is valid. 

Lemma 14. If  ( ) ( )BWxu p
2

o

∈ ,then for any  ⎥⎦
⎤

⎢⎣
⎡∈

2
5,2p   
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( ) ( )BV
p

BW pp
uau 22

2
1

oo
−≤ . 

The analogues of lemma 4 and 5 are proved quite similarly. 

Lemma 15.  For any ⎥⎦
⎤

⎢⎣
⎡∈

2
5,2p  the following estimation holds 

δδ p
p

p n
2−

≤ . 

Lemma 16. Let 1<δ . Then there exists ( ) ⎥⎦
⎤

⎜
⎝
⎛∈

2
5,2,,2 np δγ  such that for all 

[ ]2,2 pp∈  

3
1

2
1 δδ ≤−

p
pa . 

We’ll impose the following restrictions on the minor coefficients of the operator 
L  for [ ]2,2 pp∈  

                      ( ) ( )DLxb qi ∈ ; ni ,...,1= ; 
⎩
⎨
⎧

==+
≠

=
,2;2

;

3 npif
npifn

q
ν

                                 (36) 

                              ( ) ( )DLxc l∈ ,
⎪
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⎪
⎨

⎧

==+

≠
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⎬
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⎩
⎨
⎧

=
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2
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2
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4 npif

npifnp
l

ν
                              (37) 

where 3ν  and 4ν  are some positive constants. 
Using the scheme developed in lemmas 6-13 and taking into account lemmas 14-

16 we make sure in validity of theorems 1-3 for [ ]2,2 pp∈  and ( ) ( )DWxu p
2&∈  if with 

respect to coefficients of the operator L  conditions (3), (16), (36) and (37) are fulfilled. 
We’ll combine conditions (18) and (36), assuming that [ ]21 , ppp∈ or, namely, we’ll 
assume that minor coefficients ( )xbi  of the operator L  satisfy the condition 

                        ( ) ( )DLxbi θ∈ ; ni ,...,1= ; 
{ }

⎩
⎨
⎧

==+
≠

=
2;2

;,max

3 npif
npifnp

ν
θ                                (38)  

 Theorem 4. Let with respect to coefficients of the operator L  conditions (3), 
(16), (37) and (38) be fulfilled .Then there exist constants 

( ) ( )DnDnd ,,,,, 11 LL µ , ( )DnC ,,30 L  and ( )DnC ,,31 L such that for any function 
( ) ( )DWxu p

2&∈  and for any [ ]21 , ppp∈  the following estimations are valid 

( ) ( )DLDW pp
uCu L302 ≤ , 

if 1dmesD ≤ , and  

( ) ( )DLDW pp
uuCu µ−≤ L312 , 

if 1µµ ≥ . 
  

5. Solvability of the first boundary value problem. Consider now the first 
boundary value problem (1)-(2) and also the problem 
                                             ( ) Dxxfuu ∈=− ;µL ,                                                     (39) 
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                                                            0=
∂Du ,                                                              (40)    

assuming that 1µµ ≥ . 
 Theorem 5. Let in domain D  the coefficients of the operator L  be given, 
satisfying the conditions (3), (16), (37) and (38). Then if 1dmesD ≤ ( 1µµ ≥ ), then first 
boundary value problem (1)-(2) ((39)-(40)) is uniquely strongly solvable in the space 

( )DWp
2& for any ( ) ( )DLxf p∈ , [ ]21 , ppp∈ . At that for solution ( )xu  the following 

estimation is valid                                          
                                               ( ) ( ) ( )DLDW pp

fCCu 31302 ≤ .                                             (41) 

 Proof. We’ll prove the theorem by the method of continuation by parameter, 
restricting ourselves with the case of the boundary value problem (1)-(2). We introduce 
for [ ]1,0∈t  the family of operators ( )∆−+= ttt 1LL . It’s easy to see that conditions (3) 
and (16) are fulfilled for the operators tL  with constants γ  and σ  respectively. We’ll 
show this on example of condition (16). According to lemma 6 the last is equivalent to 
condition 1<δ . Let ( )xat

ij  be leading coefficients of the operator tL ; nji ,...,1, = , and 
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Besides this, if ( )xbt
i  and ( )xct ( nji ,...,1, = ) are minor coefficients of the operator tL , 

then the value 
( ) ( )DL

t
n

i DL
t
i

l
cb +∑

=1 θ

is estimated from above by constant dependent only 

on 
( ) ( )DL

n

i DLi
l

cb +∑
=1 θ

. Hence, it follows that the statement of theorem 4 is valid for 

the operator tL  with the constant 30C  independent on t . Denote by A  a set of all points 
of the segment [ ]1,0 , for which the problem  
                                                 ( ) ( )DWuDxxfu pt

2,; &∈∈=L                                       (42) 
has a solution. At once note that by virtue of theorem 4 this solution is unique. We’ll 
show now that the set A  is non-empty and open and closed simultaneously with respect 
to [ ]1,0 . Then A  coincides with the segment [ ]1,0 , and , in particular, problem (42) is 
uniquely solvable at 1=t , when LL =1 . At that estimation (41) follows from theorem 4. 
Nonemptiness of the set A  follows from the fact, that problem (42) is solvable at  0=t , 
when ∆=0L (see [2]). We’ll prove that set A is open with respect to [ ]1,0  . Let  A∈0t , 

[ ]1,0∈t  be such that α<− 0tt , where 0>α will be chosen later. We’ll represent 

problem (42) in the following form  
                                  ( ) ( ) ( )DWuDxuxfu pttt

2,;00
&∈∈−+= LLL .                            (43) 

It’s easy to see that ( )( )∆−=− -LLL tttt
0

0 . Consider auxiliary problem 

                              ( ) ( )( ) ( )DWuDxttxfu pt
20 ,;0

&∈∈∆−+= ϑ-LL ,                          (44) 
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where ( ) ( )DWx p
2&∈ϑ . Proceeding similarly as in lemma 9, it can be shown that 

( ) ( ) ( ) ( )DWDL pp
cnC 2,,,32 ϑϑ BL-L ≤∆ . 

Thus, the operator Y  mapping each function ( ) ( )DWx p
2&∈ϑ  to the solution ( )xu  of 

problem (44) (i.e. ϑY=u ) is defined.  
We’ll show that in corresponding way chosen α  mapping Y is contraction. Let 
11 ϑY=u , 22 ϑY=u . We have 

( ) ( )( )( ) ( )DWuuttuu pt
22121021 ;0
&∈−−∆−=− ϑϑ-LL . 

Then according to theorem 4  

( ) ( )DWDW pp

CCuu
22

21
3230

21 ϑϑα −=− , 

and it’s sufficient to choose 
32302

1
CC

=α . Then operator Y has a fixed point uu Y= . 

But  for ϑ=u  problem (44) coincides with problem (43), i.e. with (42). Openness of the 
set A  is proved. We’ll prove now it’s closeness. Let A∈mt ; m

m
ttm

∞→
== lim,...;2,1 0 . 

We’ll show that A∈0t . Denote by ( )xu m  a solution of boundary value problem 
( ) ( )DWuDxxfu p

mm
t m

2,; &∈∈=L . 
Then according to theorem 4 

( ) ( )DLDW
m

pp
fCu 302

≤ . 

Thus, sequence ( ){ }xu m  is bounded by the norm of ( )DWp
2& . Hence, it follows that it is 

weakly compact, i.e. there exist sequence ∞→km as ∞→k  and the function 
( ) ( )DWxu p

2&∈  such that ( )xu is a weak limit of the sequence ( ){ }xu km  as ∞→k . From 

here, in particular, it follows that for any function ( ) ( )DCx ∞∈ϕ  

ϕϕ ,, 00 uu t
m

t
k LL →  ( ∞→k ), 

where ∫=
D

dxuu ϑϑ, . But 

( ) 21,,, 000 iiuuu kk
km

k m
t

m
tt

m
t +=+−= ϕϕϕ LLLL . 

We have  
( ) ( )

( )
≤−≤∆−≤

DW

mmmm

p

kkkk uCpCttutti
23233

00
1 ,, ϕϕ-L  

( )DL
m

p

k fttCCC −≤ 0
333230 . 

Thus, 01 →i  as ∞→k . On the other hand, ϕ,2 fi = . Thus, for any function 

( ) ( )DCx ∞∈ϕ  
ϕϕ ,,0 fut =L . 

This means that ( )xfut =0L  a.e. in D , i.e. A∈0t . The theorem is proved. 
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