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THE FIRST BOUNDARY VALUE PROBLEM FOR NON-DIVERGENT LINEAR
SECOND ORDER ELLIPTIC EQUATIONS OF CORDES TYPE

Abstract

In the paper the Dirichlet problem for non-divergent linear second order elliptic
equations with, generally speaking, discontinuous coefficients, satisfying the Cordes
condition is considered. The unique strong (almost everywhere) solvability of this

- - 2 - -
problem is proved in the space W (D), where p belongs to some segment containing
point 2 .

Introduction. Let E, be an Euclidian space of points X =(X,...,X,),n>2,

DcE,be a bounded domain with the boundary 6D €C*. Consider in D the first
boundary value problem
Lu=zn:ai-(x)ﬂ+zn:b-(x)a—u+c( u="f(x);xeD, (1)
i,j=1 ! aXian i=1 8X
u|aD - @)
under the assumption that “aij (X)ﬂ is a symmetric matrix. Moreover, for all xe D and
& e E, the following condition is satisfied

e’ < Za., X)EE <y

i,j=1

? ;Y € (O,l]-const 3)

Besides this we assume that all the coefficients of the operator L are real and
measurable in D functions.

The aim of the present paper is finding the conditions on the coefficients of the
equation (1), at fulfillment of which the first boundary value problem (1)-(2) is uniquely

strongly (almost everywhere) solvable in space W,)Z(D) for any f(x)eL,(D) ,
pe[pl, pz], P, 6(1,2), p, 6(2,00). Note that if equation (1) doesn’t contain minor
terms,

n n 1

> a;(x)=1; esssup > aj(x)<—, 4)

i=l xeD i, j=I n-1
and boundary 0D represents the surface of mean non-positive curvature, then analogous
result at p=2 was established in [1]. If a; eC( ) i, j=1,..,n; then solvability of the
problem (1)-(2) holds for any p e (1,00) (see [2-3]). We point also to the works [4-8], in
which at p =2 under conditions of the type (4) the corresponding result was obtained for
non-divergent second order parabolic equations. As was shown in [9], only condition (3)
doesn’t provide the solvability of the first boundary value problem in space W;(D) for
any p e(l,oo). In connection with the questions of solvability of the boundary value
problems for non-divergent elliptic equations we note papers [10-11].
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1. Some auxiliary statements. At first we shall agree on some denotations and
2

OX: OX

P77

definitions. By U; and uij we shall denote derivatives u and respectively;

Xi
i,j=L..,n ; by BR(XO) and SR(XO) - the ball {X:‘X—XO‘< R} and the sphere
{X ‘ ‘ } respectively; R>0, x" €E, . Let sz(D),W;(D) be Banach spaces of

functions u(x) given on D with finite norms

b ([ - S o

1
n n p
ol o {J[W DIIES) \uu\"}dx}
D i=1 i,j=1

respectively; p e (1,00). Denote by W lp(D) the subspace of W;(D)containing as a dense

and

set all infinitely differentiable functions from C;’(D), and let W; (D)=Wp2 (D)mV(\)/ lp(D).

Function u(x)eW,f(D) is called the strong solution of the first boundary value
problem (1)-(2), if it satisfies equation (1) almost everywhere in D .

Everywhere below the notation C(..) means that the positive constant C
depends only on contents of brackets. Denote by B =By (XO) the ball such that B e D.

Lemma 1. If u(x)eCy(B), then

IZuzdxj u) dx.

Bi,j=1
Proof. We have

IAu ) dx = qu"u”dx_ Zju,u”,dx IZuzdx

Bi.j=l i.j=IB Bi.j=l
and the lemma is proved.

Lemma 2. If u(x)eC; (B )and pe(l,00) then

[ Z‘u”‘ dx <C,(p.n)f|Au|dx.
B

Bi,j=l

1

na)n(Z— n)’

Proof. We’ll consider only the case n>3. Let G |t| =

where @, is the volume of n- dimensional unit ball. We have
u(x)=b[G(x—y)au(y)dy =b[G(y - x)F(y)dy =b [G($)F (3+ x)d 2,
B B

En

where F(y)=Au(y). So, for i, j=1, N
bjG F(9+x)d$,



152 Asspbaiixkan MEA-HbIH
xs10splspu
[Mamedov I.T., Agayeva R.A.]

bjG ((9+x)dg= bij y)F; (y)dy =

n

=blim jG x—y)F;(y)dy ==blim J; (o), (5)
p0 p—0
where Bp=8\§p( X).
On the other hand,
Ji( fG y-x)F(y)dy+ [G;(x-y)R (y)cos(ﬁ,yj)dsy =
Sp(x)
=kl (p)+k(p); i,i=1,..n; (6)

where N is a unit vector of internal normal line to OB p(x)z S p(x) (i.e. external with
respect to 0B, (x)).
Further,
= _[F cos(ﬁ,yj)dSy, i,j=1..,n.

Taking into account that for i =1,...,n |Fi y} <M <, we obtain
‘kj(p)‘ <Mp”"mesS ,(x)=Mnaw,p; i, j=1...n.
Thus, from (6) we conclude, that for i, j=1,...,n
limJ; =lim ku( ) (7

p—0 i p—0
Analogously we derive for i, j=1,...,n

kilo)= ]Gy (x—y)F(yHy = [G;(y—x)F(y)eos(.y ), =kjlp)+ ki), (®)

Sp(x)
and further
bk _[ y)cos(m, y, )(yj — X, )dSy _
na) p s, (X
=— no " sp'[xl):(y)COS(ﬁ, Yi )cos(ﬁ, Y )dsy _
- F(X) r Jeos(n.y; )cos(, Y, )dS
N, P"" 5,1
no pn T “F (x)]cos(m, ;) cos(n Yj )dS —k.j +ki?(p). ©)

It’s easy to see that 1f i# j,then kij (p)=0. Besides,

F(x F(x) .
‘kﬁ(pjz—ﬁmessp(x)=—¥; | =1,...,n 5
and by virtue of continuity of the function F (y)
lin%kij-’(p)zo; i,j=1,.,n. (10)
P>

Now from (5) and (7)-(9) it follows, that for i, j=1,...,n
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O .
u; (x):—ﬁF(x)+ KixF,

where &;; is Cronecker symbol, K"« F is a singular integral with the kernel in Gy -
By Calderon-Zygmund theorem [12] for p e (l,oo), i,j=1..,n
“Ku % F“Lp(en) <Cy(p.n)Fl, e, = Ci(Pn)F - (11)
The validity of the statement of the lemma from (10)-(11) follows.
Denote now by w 2;(B)and v i(B) the closures of C;(B) by norms

1
n p
Jul (8) ~ (j_Z‘Uu“de]
Bi,j=1

and

1
YL
Jul 2(8) :U Aul dXJ
B
respectively, p e (l,oo). According to Friedrichs inequality [13] and lemma 2 functionals

defined above are really norms. Denote by T(p) an operator mapping each

function u(x)eV %(B) to the function itself as an element of the space W f,(B)

According to lemma 2 operator T(p)is bounded. Denote by K(p) its norm. By lemma 1
K(2)=1. Let p,be arbitrary fixed number from the interval (1,2). By Riesz-Thorin
theorem on convexity [14] for any p e [p0,2 ]

K(p)=(K(po )™ (K(2))" = (K(py )™

where 6 =

2
We’ll fix p, =§and denote a = max g, K 3 .
2 2 2

Since for p e [2,2} Po (2 — p) < 2-p = 2(2 - p) , then, finally, we obtain
2 p(2 - po) 2-1p,

K(p)<a®™.
Thus, we proved the following statement.

Lemma 3. If u(x)eV§/ °(B), then for any DEB’Z} the following inequality
holds

Jull () = a’ " |ul; ()"

Note that here constant a>1 depends only on n.
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p-1
3 n L)
Denote for pe{E,Z} sup Z‘aij (X)—ﬁij‘P—l by &, (for brevity we write
o | &

i,j=1

. 1—92
sup instead of ess sup), and let 5, =0, h= max{ /4 , 1}
4

Lemma 4. Foranype BZ} the following estimation holds

2-p  2(p-1)

5,<hPg °P

Proof. From condition (3) it follows that for i =1,...,n
y—l1<a;(x)-1<p7" -1,

and since y —1>1—y"", then

|aii(x)—1|g1_77. (12)
If i # j,then
2y <ay(x)+a;(x)+2ay(x)< 2y
Therefore,
lay (x) < -7 (13)
From (12)-(13) we conclude, that for i, j =1,...,n ’
‘aij (x)- 5ij‘£ h.

On the other hand, subject to (14)

5y < Sgp[ > (2 (-5, F

i,j=1

and the lemma is proved.

Lemma 5. Let 5<1. Then there exists pl(y,é,n)eB,zj, such that for all

pe[pl’z]

1
a’Ps, <53,
Proof. According to the previous lemma
2-p 2(p-1)
a’Ps,<a*”h P s P

-1 > 1 . Therefore,

o
W

2

a>Ps, <(ah, )53, (14)
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1
In— 1
Let now p, =max %, 2_Wj’ll) . Then for pe[pl,Z] (ahl)z_p <6 *, and the

statement of the lemma follows from (14) .

2. Interior a priori estimation. Consider the operator

L, = Zn: a;; (x) o

i,j=1 OX;OX

Lemma 6. If with respect to coefficients of the operator L,condition (3) be

fulfilled and & <1 ,then for all pe[p,,2] and any function u(x)eW >(B)the following
estimation is valid
Jully = s < C, (7.6, ”)"'-OUHLP(B)'
Proof. According to lemma 3

"u"vil +(B) = a2—p||Au"Lp(B) < a2—p||L0u||Lp(B) + az_p”(LO - A)u"Lp(B) <

L
Sa2||LOu||Lp(B)+a2_p||(L0 _A)u”Lp(B) ’ (15)

But on the other hand,

n P p-1 p
Ij_l‘aij(x)—5ij‘p"lJ dx S5p||“||v°v§,(s)~

(L, _A)u”Lp(B) = iigl‘“ij‘p[

Therefore, from (15) and lemma 5 we conclude
1 1

1 ! 1
[l 36y <@Lt @) + @7 P Fpllully 36y <@ (Lot o) + &> [u

||v°v 2(B) ||w 2(B) "w 2(B)”
and statement of the lemma is proved.

Everywhere later on without separately mentioning it we shall assume that radius
R of the ball B doesn’t exceed 1.

Lemma 7. If conditions of the previous lemma are fulfilled, then for all
p €[p,,2] and any function u(x)e C;"(B) the following inequality is valid

Ul s < Cs(r.9. n)”'-oU"Lp(B)'

Proof. For proving it is sufficient to apply the Friedrichs inequality and lemma 6.
We’ll impose the following Cordes conditions on the leading coefficients of the operator
L.

o =sup—J < : (16)

At that we’ll assume that condition (16) is fulfilled accurate up to equivalence and
nonsingular linear transformation, i.e. equation (1) can be replaced by the equivalent to it
equation L,u= f,(X), and domain D can be covered by a finite number of subdomains

D,,...,D,,, such that in each D, there exists nonsingular linear transformation A, under
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which image of the operator L, satisfies condition (16) in the image of subdomain D;,
i=1..m.

Lemma 8. Condition & <1 accurate up to equivalence and nonsingular linear
transformation coincides with condition (16).

Proof. It’s easy to see that equation (1) can be replaced by equivalent to it
equation, whose matrix of principle part has a unit trace. Therefore, without loss of

n
generality, it can be assumed that Zaii (X)= 1. We’ll make the following transformation
i=1
!

y; =kx;;i=L...,n; where k =(sup Zn:aﬁ(x)Jz . Then if “Aij (yj‘ is the matrix of main

D i, j=1
part of image of the operator L, then A; (y)z kzaij (%) i, j=1,...,n. Condition 6 <1 in
new variables will take the form
n
sup > A;(y)-2k* +n<l, (17)

D i,j=1
where D is the image of domain D. It’s clear that (17) is equivalent to condition
n
sup Zaﬁ(x)<L :
D i,j=1 n-1
We’ll impose now the following conditions on the minor coefficients of the operator L .
For pe [pl,Z]

n, if p<2,n>2andp=2,n>2
bI(X)ELr(D)ylzl,,n, r = I_ p< p > (18)
2+v;if p=n=2,

ni .
max< p,—p if p<2,n>2and p=2,n=4
clx)e Ly (D), m= {p 2} i P (19)
2+v,; if p=2,n=4,
where V,,V, are some positive constants.

Lemma 9. Let with respect to coefficients of the operator L conditions (3), (16),
(18) and (19) be fulfilled. Then there exist constants C,(y,o,n)and R,(y,o,n,B,c), such

that if radius R of the ball B doesn’t exceed R, , then for any function u(x)eC; (B) and
any p €[p,,2]the following estimation is valid

[ullz ey < CallLull, o)

"sz(B)
Here B = (b, (x)....,b, (x)).

Proof. We restrict ourselves with the case n>4 . We’ll use the following
imbedding theorem ([15]): let qe(l,n); then for any function u(x)eV:/ ;(B) the
following inequality holds

u

n
Lo (B) SCs(q,n)izzll"“i"Lq(B) : (20)

n-q
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According to lemma 7

n
u SC3||Lu||Lp(B) +C321:||bi (x)u +C3||c(x)u||Lp(B). (21)

”wpz(s) i " L,(B)

We’ll fix arbitrary i,1<i<n and assume = p in (20) and instead of function u(x) - the
function U, (X) We obtain

n
"biui ”Lp(B) < ”bi " Ln(B)"ui ”LE(B) < C5||bi " Ln(B)i’jz:l “uij “'-p(B)

So,
n
2 o], @) <C Z||b I o)l gy = Co (IT (RN - 22)
where I, (R)—> 0 as R— 0 by virtue of condition (18) and C, = s[up ]Cs(p,n).
pelp;,2

Analogously we have
leull, o) <lell, @l , - (23)

3 E(B)

We put = _pg S in (20). Then

Jull, (pon ZIIu o o

n2p

Denoting by C, = sup C,(p, ), we conclude
pelp;.2]

Jull, o(p.n ZIIu ||

pn

n2p

Again using (20) from (23) we obtain
n
”Cu"Lp(B) <CyCs(p, ”]|C||LE(B) i%Huii HLP(B) < GGl (R)"“”wg(s)’ 24)

-c

where T',(R)— 0 as R— 0 by virtue of condition (19).

Taking into account (22) and (24) in (21) we arrive at the estimation
"u”sz(B) SC3||Lu|||_p(i3) +C3C6( +C F )”“”w

Now it is sufficient to choose R, so small that

1

2C,C,

I (Ro ) +Csl, (Ro ) <

b

and lemma is proved.

Remark. Note, that number R, doesn’t depend on choice of point x° - the center
of the ball B . It follows from absolute continuity of Lebesgue integral.

Everywhere later on not mentioning this especially we’ll assume that R<R, .
Denote for R, <R Bg (XO) by B,.

Lemma 10. Let with respect to coefficients of the operator L conditions (3),
(16), (18) and (19) be fulfilled. Then there exists a constant C,(y,o,n,B) such that for

any function u(x)eC*(B) and any pe[p,.2] the following estimation holds.
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Ju SC4||'-u||L,,(B) +

”w;(Bl)

Proof. Let the function 77(x)e C{"(Bg) be such that 7(x)=1inB,, 0<75(x)<1,
moreover,

Cp Co ...
|77| )| R_ R_ i (X)‘S R_R ) ;i j=1..,n, (25)
where C,, =C,, (n) Applying lemma 9 to the function U7 , we obtain
Uz e, < C4||L(UT7]|Lp(B)' (26)

But on the other hand,

IL(un)< |Lu|+|u|(

and further subject to (25)

2y (x| + Z 18y

i'lj|» (27)

zau( )77” Cll(%nz ’

= (R—Rl)
>0 (00| < S ).
RAOWAEE port ()][z (X)ﬂm,—); szy—l(iusf(i nsf .

i,j=l1 »j=1

2n7 'C

<2y 1ZIU IZIU.I—

So, from (27) we conclude

[Ln)l,, <Ll +

=1
Now we’ll use the following imbedding theorem [15]: let q e( , ), then for any

10 ||
o2

1

" S I, e

function u(x) qul (B) the following inequality holds
"u”Lﬂ(B) < C13 (q’n)"u”wa(s)' (29)

n-q

Putting q=p in (29), we have
n
ud b
i=1

where C 5 = sup C13(p,n). Taking into account (30) in (28) and remembering that
pelp;.2]

R <1, we conclude

L) S n|ju

<nC,, (B)<:13||u||qu () <NCuCis (n)||u||qu @) G0)

Lo (B
m (B)4=
n—q

(CulenBlyy
RoR,) b

Now the statement of the lemma follows from (26). Denote By ) by B,.

(CE) N L
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Lemma 11. Let with respect to coefficients of the operator L conditions of the
previous lemma be fulfilled. Then there exists constant C,,(y,o,n,B) such that for any

function u(x)eW7(B), any e>0and p < [p,,2] the following estimation holds

C
s =€l o)+ el * 7l

”wg(Bz)
Proof. We’ll use the following interpolation inequality ([12]): let p € (l,oo); then
for any function u(x) esz (B) forany &> 0 the following estimation holds.

Cislp,n
s < ooy + S22, o

”WPZ(B) ”WPZ(B)

It’s evident that it suffices to prove lemma for functions u(x)e C* (§) We’ll fix arbitrary
£>0 and let &, >0 be a number, which will be chosen later. According to lemma 10

and inequality (31)

4C 4C,¢
"u"sz(Bz)SC4||LU||LP(B)+ R29 Ju e

AR
L

[ullz o

||wp2(s) SC4||'—“||Lp(s)

where C,y = sup Cls(p,n)
pelp;.2
R 2
Then it’s sufficient to choose &, = c’ and the lemma is proved.
9

Denote for any p>0 set {X : X e D,dist(x,0D) >p} by D,.
Lemma 12. Let conditions (3), (16), (18) and (19) be satisfied with respect to the
coefficients of the operator L . Then for any u(x)eW;(B), any £>0, p>0 and
p €[p,2] the following estimation holds
C21(}/,0,n,p,B,D)
&

Ju <Cy(7,0.n,p,B,D)|Lu, s + &l

"WDZ(D ) ”w (D) " "L p(D)°

Proof. We restrict ourselves with the case u(x)eC” ( ) Besides this, without loss

of generality, we’ll assume, that p <R,. We’ll fix arbitrary £>0 andlet &, >0 be a

number, which will be chosen later. We’ll cover 5p by the system of balls {B . (x, )}
2

and choose from this cover a finite subcover B',...,B" . It’s evident that number N

depends only on p,n and diam D . Applying for each i= 1, .,N lemma 11, we obtain

T =T ) S

Summing inequalities (32) over | from 1to N, we conclude

_ o
M43 N CEILUE o o2+~ bl |

2

. . £ .
Now it’s sufficient to choose &, = IN and the lemma is proved.
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3.The basic coercive estimation. The statement of lemma 12 is true without any
requirements respective to the boundary oD . All following statements of the present

paper holds under condition 6D € C*, which we’ll always assume to be satisfied.
Lemma 13. Let with respect to the coefficients of the operator L conditions (3),

(16), (18) and (19) be fulfilled. Then there exist positive constants p,,C,, and C,;,
depending only on y,o,n, B,c and domain D such that for any u(x)eW (D), any
£>0 and pe[p,,2] the following estimation holds

C
+ =2 u

&

SC22”Lu”Lp(D) +‘9”U "LP(D)'

”u”W,f(D/Dp) ”WPZ(D)
Proof. It’s sufficient to prove lemma for functions u(x)e Cw(B) : u|6D =0.
Besides this, without loss of generality, we’ll assume that coefficients of the operator L

are infinitely differentiable in D . We’ll fix arbitrary & >0 and point x° €dD. Let’s
make the orthogonal coordinate transformation X — y such that tangent hyperplane to

oD at the point y° be perpendicular to Oy, axis. Here D and y" are images of domain
D and point x° at such transformation, respectively. Denote by the T(y) image of the
function u(x). For simplicity we’ll assume that equation of oD in intersection of oD
with some neighborhood O, of the point y° is given by equation Yy, =¢(yl,...,yn71)
with twice continuously differentiable function ¢ , and a part of D adjacent to

85(\Oh belongs to the set {y:yn > (Y, seer Yo s )} Let A(X)zHaij (X)“ be the matrix of
leading coefficients of the operator L , ﬂ(y)zuﬁ}j (y)ﬂ, where & (y) are leading

coefficients of image L of the operator L at our transformation , i, j=1,....n. We’ll

show now that eigenvalues of matrices A and A coincide. Really, we’ll fix arbitrary

point xeD ,and let A be an arbitrary eigenvalue of the matrix A, and x”* is
corresponding eigenvector. By virtue of orthogonality of our transformation there exists a

non-degenerated matrix T such that A=T'AT . Denote T 'x* by y*. We have
Ay* =T 'Ax* = AT 'x* = ay*.
On the other hand, condition (16) can be written in the following form

where 4, (x) are eigenvalues of the matrix A(x); i=1,...,n. So, condition (16) is satisfied

also for the operator L with the same constant o . Analogously we can show that for the
operator L conditions (3) (with the same constant ¥ ) and also (18)-(19) are satisfied.
Let’s make one more transformation z; = y;;i=1,..,n=1; 2, =y, = (Y, Yo ). Let

L’,D’ and z° be images of the operator L , domain D and point y° at our
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transformation, respectively, and aj (Z) be leading coefficients of the operator

L ;i,j=1..,n.
It’s easy to see that
n oz, ©
aj(z)= Y a,(y)——1;i,j=L..,n
u( ) P ki (Y)ayk &,
Therefore,
a;j(z):alj(y); 1f1£'9 J Sn_l,
nle 0 . )
ay, (Z)=—k ay (y) 22 + ay;(y);if1<j<n-1;
=1 K
' Sx (0P 0P s P~
nn( ) & kl( )8yk ay, & nk(y) . nn(y)

o+——
h<h, in intersection D' N Bh(zo) condition (16) with the constant J':Tn_l is

fulfilled. Besides this, for the operator L' in the stated intersection conditions (3) (with
constant %), and also (18)-(19) be fulfilled. At that, if bi'(X); i=1..n;and C'(X) are the

coefficients at first derivatives of solution and at solution itself of the operator L', then

n
the value Z"bi’ L(D8 (20))+||C, L (08, (20)) is bounded from above by a constant,
i=1 n hy n hy

2

and function ¢@ .  Suppose

dependent only on Zn:”bi L(D)+||C
i=1 "

L,(D)

r= r(zo):min{hl,Ro}, and let u'(z) be an image of the function T(y) under such a
transformation. It’s clear that in variables z the intersection D' Br(zo) a semiball
B, = {Z :‘Z - ZO‘ <r,z, >0}. We continue the functionu’(z) to get an odd function and
coefficients of the operator L -to get an even function through the hyperplane z, =0
in Br(zo)\ B, and denote the obtained function and operator again by u’(z) and L
respectively. Since U '(Z) esz (BIr (ZO )), then according to lemma 11

Cl7
gyr?

||U’||W;[B,(Zo)]SC4||L’U'||LD(B,(20))+8||U’||W;(B,(zo))+ (TN AP I €

2

where ¢; >0 will be chosen later. But on the other hand, each of norms in the right hand
1

side of (33) is a corresponding norm taken by the semiball B, and multiplied by 2;.
Therefore, from (33) we conclude
’ Nt ! C 4
Ju IIW;[B;] <CyfLuy o)+ el huaer) + 510 ) (34)

4
&3l

2
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We’ll cover oD’ by the system of balls {Br(zv)(zv )} and choose from this cover a finite

2
subcover B! yeens BM) At that number M is defined only by values y,o,n, functions
b; (X);i =1,...,n;c(x) and domain D . Coping out inequalities of the type (34) for each
semiball B:<Z,,); v =1,...,M ; raising the both parts of the obtained inequalities to a power

p and summing by v from 1 to M, we obtain

’ — "ot ’ C b '
Ju IIJJ;(B) <3° IM(Cf"'- u ||Ep(o/) + &P |y o + 5o U "LP(D’)]’

efrl?
M
where B=|J B@ and r, = min{r‘(z1 ),, r(ZM )} . Returning to the variables X and
v=1 5

noting that image B contains the set D\ D » with some p, =(7,0,n,B,C, D), we

conclude that

C
"u"sz(D\Dm) <Cy Lu”Lp(D) +Cosés ||U||wg(o) + 8_26||u||Lp(D) ’
3

where constants C,,,C,; and C,; depend only on y,0,n,B,c and domain D. Now it’s

. £ .
sufficient to choose &; =——, and the lemma is proved.
25

Later on the notation C(L,n,D) means that positive constant C depends on

abovementioned parameters.
From lemmas 12 and 13 follows
Theorem 1. Let with respect to coefficients of the operator L conditions (3),

(16), (18) and (19) be fulfilled. Then for any function u(x)eW (D), any pe[p,,2] the
following estimation holds

Ul 0) = Cor (L DY L, o)+l o) ):
We’ll prove now the coercive estimation for the operator L in small measure domains.
Theorem 2. If conditions of the theorem 1 are satisfied, then there exists a
constant d(L,n, D)such that when mesD <d for any function u(x)eW >(D)and for

any p e[p,,2] the following estimation holds
||U||wg(o) < CZS”"“”LP(D)’ (35)
where C,; =2C,,.
Proof. Let constant C, have the same meaning as in lemma 9. We’ll use
inequality (20) at q= p . We have

1

1 Iy 1
”u”Lp(D> = (mes D)H||u| <Cqd? ZI:”ui "Lp(D) <Cqd" ||u
B

L g (D) ”WPZ(D)'

n-q



Transactions of NAS Azerbaijan 163
[The first boundary value problem]

1
. . . .1 .
Now it’s sufficient to choose d from condition C,C,,d" =7 and the required

estimation (35) follows from theorem 1. The theorem is proved.
Theorem 3. If conditions of the theorem 1 are satisfied, then there exists

constant ,(L,n,D) such that for any function u(x)eW 3(D), any x>y, and
p [p,.2] the following estimation holds
"“”wg(o) <Cy(L,n,D)Lu- '““”LP(D)-
Proof. In (n+1)- dimensional Euclidean space E,,, of points (x,t) consider a
2
cylindrical domain Q =D x (0,T,) and in it the operator L, = L +§t—2. We’ll choose
number T, from condition mes,,; Q; =d . At that the constant d of the previous

theorem corresponds to the operator L,, the dimension of space n+1 and domain Qy .
r? r?
Denote by by u,, and let for p>pu, number T <T, be such that Tz =pu. If
0
. . .t -
u(x)eW %(D), then function  9(x,t)= u(x)smﬁ? is an element of the space sz( ).

According to theorem 2
||‘9||wg(QT) <Cy "Lllg"Lp(QT)’
where constant C,, coincides with constant C,; taken for the operator L,, dimension of
. .t
space N+1 and domain Qy . But L, 9= smﬂ?(Lu — qu). Therefore,

].sin”—t

P n n
dtj'£|u|p + > |ui|” + Z‘uij‘pjdxscz"g}
0 T D i=l i,j=1 0

and statement of the theorem is proved.

_ xt|f
sm?‘ dt£|Lu—,uu|pdx,

4.Case p>2.Let pe {2,%} , and K(p) have the same meaning as in lemma 3.

2

oo {3 5]

2
where 6 =M. Denoting max{%,[K(ED } by a,(n), we obtain

By Riesz-Thorin theorem for any p e [2, é}

2

K(p)<a/™.
Thus, the following analogue of lemma 3 is valid.

Lemma 14. If u(x)eW ?(B).thenforany pe [2%}
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Jull, () < al”*[ul; 2(B)"

The analogues of lemma 4 and 5 are proved quite similarly.
Lemma 15. Forany pe [2%} the following estimation holds

b2
P

o, <n"? 6.

p

Lemma 16. Let §<1. Then there exists p2(7,5,n)e(2,ﬂ such that for all

pel2,p,]

1
a5, <67,
We’ll impose the following restrictions on the minor coefficients of the operator
L for pe[2,p,]

. n; if p#n
bi(x)eLq(D);.:1,...,n;qz{ZW_if'”p_n_2 (36)
3 - — 4
max{p E} if p;«r&E
c(x)eL,(D),1= 2 2 (37)
24v,; if p=2,n=4,

where v; and v, are some positive constants.
Using the scheme developed in lemmas 6-13 and taking into account lemmas 14-
16 we make sure in validity of theorems 1-3 for pe [2, pz] and u(x)eV\'/pz(D) if with

respect to coefficients of the operator L conditions (3), (16), (36) and (37) are fulfilled.
We’ll combine conditions (18) and (36), assuming that pe[pl, pz]or, namely, we’ll

assume that minor coefficients b, (x) of the operator L satisfy the condition

bi(x)E Lg(D);iZI,...,n; 9:{

Theorem 4. Let with respect to coefficients of the operator L conditions (3),
(16), (37) and (38) be fulfilled .Then  there exist constants
d,(L,n,D), #,(L,n,D) , Cy(L,n,D) and C,,(L,n,D) such that for any function

u(x)eW, (D) and for any pe[p,, p,] the following estimations are valid

"“”w;(o) = C30||Lu||Lp(D)'

max{p,n}; if p=n

38
24vy;if p=n=2 38)

if mesD <d,, and
[ully o) < Carlltu = sad] ),
(| 7= 7A
5. Solvability of the first boundary value problem. Consider now the first

boundary value problem (1)-(2) and also the problem
Lu—u=f(x); xeD, (39)
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ul, =0, (40)
assuming that x>, .

Theorem 5. Let in domain D the coefficients of the operator L be given,
satisfying the conditions (3), (16), (37) and (38). Then if mesD <d, (x> g, ), then first
boundary value problem (1)-(2) ((39)-(40)) is uniquely strongly solvable in the space
W (D) for any f(x)eL,(D), pe[p,.p,]. At that for solution u(x) the following
estimation is valid

[ullyz ) < Cso (C )t I, o) (41)

Proof. We’ll prove the theorem by the method of continuation by parameter,
restricting ourselves with the case of the boundary value problem (1)-(2). We introduce
for t[0,1] the family of operators L, =tL +(1—t)A. It’s easy to see that conditions (3)

and (16) are fulfilled for the operators L, with constants y and o respectively. We’ll
show this on example of condition (16). According to lemma 6 the last is equivalent to
condition & <1. Let aitj (X) be leading coefficients of the operator L,; i, j=1,...,n, and

1

s = sup( Zn:[aitj (x)— O ]ZJZ . We have
o |4

i,j=1

N | =

1
=tsup( n [aij(x)—sij]zj2 =t5<5.
D i,j=1

' = SUP( Zn:[taij () + (1= t)5; - ]zj

D \i,j=l

Besides this, if b} (X) and Ct(X)(i, j=L...,n) are minor coefficients of the operator L,,

n
then the value le“b,t ©) + ”Ct HLI ©) is estimated from above by constant dependent only
i=

L9
. Hence, it follows that the statement of theorem 4 is valid for

on Zn: Hbi
i1

the operator L, with the constant C,, independent on t. Denote by A a set of all points

L,(D) * “C HLl(D)

of the segment [0,1], for which the problem
Lu=f(x} xeD,ueW;(D) (42)

has a solution. At once note that by virtue of theorem 4 this solution is unique. We’ll
show now that the set A is non-empty and open and closed simultaneously with respect

to [0, 1]. Then A coincides with the segment [0,1], and , in particular, problem (42) is
uniquely solvable at t =1, when L, =L . At that estimation (41) follows from theorem 4.
Nonemptiness of the set A follows from the fact, that problem (42) is solvable at t=0,
when L, = A (see [2]). We’ll prove that set A is open with respect to [0,1] Lett’eA ,
te[0,1] be such that ‘t - to‘ <a , where a>0 will be chosen later. We’ll represent
problem (42) in the following form
Lou=f(x)+(Lo - L s xe D, ueW?(D). (43)

It’s easy to see that L, — L = (to — tXL - A). Consider auxiliary problem

Lou=f(x)+(t° —t(L- A)% xe D, uew?(D), (44)
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where %(x) eV\'/p2 (D). Proceeding similarly as in lemma 9, it can be shown that

J(L- A)‘9||Lp(D) <Cy(L.n, B’Cmg”wg(o) :

Thus, the operator Y mapping each function S(X)eV\'/pz(D) to the solution u(x) of

problem (44) (i.e. U= Y.9) is defined.
We’ll show that in corresponding way chosen & mapping Y is contraction. Let

u' =Y9', u? = Y$*. We have
Lo (0" —u?)=(t" —tfL- AY9' - 8*); u' —u? eW (D).

Then according to theorem 4

1 2 _ 1_ g2
Hu u w2 (D) =CaCsy “‘9 4 w2(p)’
. : 1 .
and it’s sufficient to choose « =—C. Then operator Y has a fixed point U= Yu.
3032

But for u=9 problem (44) coincides with problem (43), i.e. with (42). Openness of the

set A is proved. We’ll prove now it’s closeness. Let t™ € A ; m=12,...:t" =lim t™.
m—oo

We’ll show that t° € A . Denote by u™(x) a solution of boundary value problem
L.u™=f(x} xeD,u™ eW; (D).
Then according to theorem 4

m

u

W) Cso f "LP(D) '
Thus, sequence {um(x)} is bounded by the norm of W;(D). Hence, it follows that it is

weakly compact, i.e. there exist sequence m, > as k—>oo and the function

u(x)eW;(D) such that u(x)is a weak limit of the sequence {u M (X)} as kK > oo. From

here, in particular, it follows that for any function go(x) eC” (5)
<Lt0urnk ,¢>—><Lt0u,q)> (k > o),
where (u, 3> = ju&dx . But
D

(Lou™. @) =((Ly = Ly W™ 0)+(Lou™ . ) =i, +is.
We have

|i1| S‘to —t™ C33((0, p)C32 u™

w; (D)

<(L-A)umk,(p>‘s‘t0 ™

<Cy ConCislt” ~t™

11, o)
Thus, i, >0 as k—>o . On the other hand, i, = ( f ,(p> . Thus, for any function
v(x)ec”(D)
<Lt0u,¢)>=<f,(p>.
This means that L ,u= f(x) ae.in D,i.e. t” € A . The theorem is proved.
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