хябярІяри

JABBARZADEH M.R., SHAHBAZOV A.I.

WEIGHTED COMPOSITION OPERATORS ON $C_0(X,E)$

Abstract

We characterize the mapping inducing the weighted composition operators on $C_0(X,E)$ - the space of E-valued continuous functions on a locally compact space X that vanish at infinity and equipped with the supremum norm. A few properties of the multiplication and weighted composition operators are discussed and some examples of them are presented to illustrate the theory.

AMS Subject Classification: Primary 47B38, Secondary 46E40 Keywords and phases: Weighted composition operator, Multiplication operator

1. Introduction and Preliminaries.

Let X be a locally compact Hausdorff space and E a real or complex Banach space. The space of continuous E-valued function on X will be denoted by C(X,E). We will consider a subspace $C_0(X,E)$ of C(X,E) which is the set of all continuous Evalued functions on X that "vanish at infinity", i.e. $C_0(X.E)$ denote the space of all continuous functions $f: X \to E$ such that for all $\varepsilon > 0$, $\{x \in X : ||f(x)||_{E} \ge \varepsilon\}$ is compact denote the norm of E) equipped with the sup-norm $||f|| = \sup \{||f(x)||_E : x \in X\}$. In case $E \in \{R,C\}$, we shall omit E from our notation and write $C_0(X)$ in place of $C_0(X,E)$. We recall that a weighted composition transformation $T = wC_{\phi}$ on $C_0(X, E)$ induced by some selfmap ϕ of X and some map w from X into B(E)-the space of bounded linear operators on E is $Tf(x) = wC_{\omega}f(x) = w(x)f(\varphi(x)), f \in C_0(X, E)$. In case wC_{ω} is a bounded linear operator with range in $C_0(X,E)$ we call it a weighted composition operator. In the sequel, we write T in place of wC_{o} . For a weighted composition operator T on $C_0(X,E)$, we have that $\sup \|w(x)\| : x \in X < +\infty$, and the map $w: X \to B(E)$ is continuous in the strong operator topology but not necessarily continuous in the uniform operator topology (see [5]).

If w(x)=I the identity transformation on E for every $x\in X$, and φ is some selfmap of X, then we write $T=wC_{\varphi}$ as C_{φ} and call it the composition operator on $C_0(X,E)$ induced by φ . In case $\varphi(x)=x$ for every $x\in X$ and w is some map from X into B(E), then we write $T=wC_{\varphi}$ as M_w and call it the multiplication operator on $C_0(X,E)$ induced by w, i.e. $M_w f(x)=w(x)f(x)$, $f\in C_0(X,E)$.

Weighted composition operators or composition operators on C(X,E) (or on its certain subspaces) were studied in [1], [3], [5], and the case of $E = \mathbb{C}$ was considered in [2], [4], [6], when X is a compact Hausdorff space. In this paper we have characterized $T = wC_{\phi}$ on $C_0(X,E)$ when X is a locally compact Hausdorff space and w is a

[Weighted composition operators on $C_0(X,E)$]

continuous B(E)- valued function on X, and some examples are given to illustrate the results.

2. Functions inducing weighted composition operators.

Let $f \in C_0(X, E)$, then for any $\varepsilon > 0$, $||f(x)|| < \varepsilon$ outside some compact subset K of X. Now if $\varphi^{-1}(K)$ is compact subset of X, where φ is continuous selfmap of X, then $||f(\varphi(x))|| < \varepsilon$ outside $\varphi^{-1}(K)$ indicates that $f \circ \varphi$ vanishes at infinity on X.

Definition 2.1. Let X be a locally compact Hausdorff space. A selfmap φ of X is said to be proper if $\varphi^{-1}(K)$ is compact subset of X for all compact $K \subseteq X$.

Theorem 2.2. Let X be a locally compact Hausdorff space, E a Banach space and the map $w: X \to B(E)$ be continuous.

- (a) If φ is continuous map from X into X, proper and there is a positive number M such that $\|w(x)\| \leq M$, $\forall x \in X$, then T is weighted composition operator.
- (b) If T is a weighted composition operator and there is a positive number m such that, for all $e \in E$, $m||e|| \le ||w(x)e||$, $\forall x \in X$, then φ is continuous and proper.

Proof. (a) We shall show that T is a bounded linear operator on $C_0(X,E)$. First of all, we show that T is an into map. Let $f \in C_0(X,E)$ than for any $\varepsilon > 0$, $||f(x)|| < \varepsilon/M$ outside some compact subset K of X. Since φ is proper, $\varphi^{-1}(K)$ is compact in X. Now the fact that

$$||w(x)f(\varphi(x))|| \le ||w(x)||||f(\varphi(x))|| \le M||f(\varphi(x))|| < \varepsilon$$

outside $\varphi^{-1}(K)$ indicates that $w(\cdot)f(\varphi) \in C_0(X,E)$. This implies that $Tf \in C_0(X,E)$. Clearly T is linear on $C_0(X,E)$, it is enough to show that T is continuous at the origin. For this, suppose $\{f_\alpha\}$ is a net in $C_0(X,E)$ such that $\|f_\alpha\| \to 0$ we have

$$||Tf_{\alpha}|| = \sup_{x \in X} ||Tf_{\alpha}(x)|| = \sup_{x \in X} ||w(x)f_{\alpha}(\varphi(x))|| \le$$

$$\le \sup_{x \in X} ||w(x)|| ||f_{\alpha}(\varphi(x))|| \le M \sup_{x \in X} ||f_{\alpha}(\varphi(x))|| \le M ||f_{\alpha}|| \to 0.$$

Hence T is continuous on $C_0(X,E)$.

(b) Suppose $x_{\alpha} \to x$ in X. We want to show that $\varphi(x_{\alpha}) \to \varphi(x)$ in X. Suppose not, by passing to a subnet if necessary, we can assume that $\varphi(x_{\alpha})$ either converges to some $y \neq \varphi(x)$ in X or ∞ . Then for all f in $C_0(X, E)$, we have

$$w(x)f(y) = \lim_{\alpha} w(x_{\alpha})f(\varphi(x_{\alpha})) = \lim_{\alpha} Tf(x_{\alpha}) = Tf(x) = w(x)f(\varphi(x)).$$

Hence $w(x)(f(y)-f(\varphi(x)))=0$, $\forall f \in C_0(X,E)$. As w(x) is one-to-one, $f(y)=f(\varphi(x))$ for all $f \in C_0(X,E)$. Therefore, we obtain a contradiction $\varphi(x)=y$. If $\varphi(x_\alpha)\to\infty$ then a similar argument gives

$$||w(x)f(\varphi(x))|| = ||T f(x)|| = \lim_{\alpha} ||w(x_{\alpha})f(\varphi(x_{\alpha}))|| \le$$

$$\le \lim_{\alpha} ||w(x_{\alpha})||||f(\varphi(x_{\alpha}))|| = ||w(x)|| \lim_{\alpha} ||f(\varphi(x_{\alpha}))|| = 0$$

хябярІяри

[Jabbarzadeh M.R., Shahbazov A.I.]

for all $f \in C_0(X,E)$. Hence $f(\varphi(x)) = 0$, $\forall f \in C_0(X,E)$ and therefore $\varphi(x) = \infty$, a contradiction with $\varphi: X \to X$. Finally, let K be a compact subset of X and we are going to see that $\varphi^{-1}(K)$ is compact in X, or equivalently, closed in X_{∞} , the one-point compactification of X.

To see this, suppose $x_{\alpha} \to x$ in X_{∞} and $x_{\alpha} \in \varphi^{-1}(K)$. Since K is compact, then without loss of generality, we can assume that $\varphi(x_{\alpha}) \to z$ for some $z \in K$. Now, by hypothesis of the theorem, we obtain

$$||Tf(x)|| = \lim_{\alpha} ||Tf(x_{\alpha})|| = \lim_{\alpha} ||w(x_{\alpha})f(\varphi(x_{\alpha}))|| \ge$$

$$\ge m \lim_{\alpha} ||f(\varphi(x_{\alpha}))|| = m||f(z)||, \quad f \in C_0(X, E).$$

This implies that $x \neq \infty$, and continuity of φ gives $z = \varphi(x)$. Hence $x \in \varphi^{-1}(K)$.

Corollary 2.3. Let u be a continuous scalar-valued function defined on X. Then:

- (a) Suppose that there are bounds M, m > 0 such that $m \le |u(x)| \le M$, $\forall x \in X$. Then the operator $uC_{\varphi}: C_0(X) \to C_0(X)$ is a weighted composition operator if and only if φ is continuous and proper.
- (b) If there is M > 0 such that $|u(x)| \le M$, $\forall x \in X$, then $M_u(f) = uf$ is a multiplication operator on $C_0(X)$.

Proof. Follows by taking w(x) = u(x)I and $\varphi(x) = x$ respectively in the proof of the theorem (2.2).

Example 2.4. Let $X = (0, +\infty)$, $E = \mathbb{R}$ and define $w(x) = \sin x + 2$ and $\varphi(x) = \begin{cases} \frac{1}{x}, & \text{if } x \in (0, 1), \\ 1, & \text{if } x \in [1, +\infty). \end{cases}$

Since $\varphi^{-1}(1) = [1,+\infty)$ is not compact, therefore φ is not proper and hence by corollary 2.3, T is not a weighted composition operator. In fact T is not even an into

map. For, take
$$f(x) = \begin{cases} x, & \text{if } x \in (0,1), \\ \frac{1}{x}, & \text{if } x \in [1,+\infty). \end{cases}$$

Then obviously $f \in C_0(X, E)$, but

$$Tf(x) = u(x)f(\varphi(x)) == (\sin x + 2) \cdot \begin{cases} \frac{1}{x}, & \text{if } x \in (0,1), \\ 1, & \text{if } x \in [1,+\infty) \end{cases}$$

and it is clear that $Tf \notin C_0(X, E)$.

Proposition 2.5. Let X be a locally compact Hausdorff space. If φ is a continuous map from X onto X, proper, and w a B(E)-valued function defined on X with bounds M, m > 0 such that $m\|e\| \le \|w(x)e\| \le M\|e\|$ for all $x \in X$ and $e \in E$, then T is weighted composition operator, one-to-one and has closed range.

[Weighted composition operators on $C_0(X, E)$]

Proof. By hypothesis of the theorem and theorem (2.2) it is enough to show that for every $f \in C_0(X, E)$, there exists c > 0 such that $||Tf|| \ge c||f||$. If $f \in C_0(X, E)$, then we have

$$||Tf|| = \sup_{x \in X} ||w(x)f(\varphi(x))|| \ge m \sup_{x \in X} ||f(\varphi(x))|| = m \sup_{x \in X} ||f(x)|| = m||f||.$$

This completes the proof of the theorem.

3. Functions inducing multiplication operators.

In this section we shall take X to be a completely regular Hausdorff space and give a characterization of multiplication operators on $C_0(X,E)$ induced by vector-valued (scalar-valued) functions.

Theorem 3.1. Let X be a completely regular Hausdorff space, E a Banach space and map $w: X \to B(E)$ is continuous. Then $M_w: C_0(X, E) \to C_0(X, E)$ is a multiplication operator if and only if there is a positive number M such that for every $e \in E$, $||w(x)e|| \le M||e||$, $\forall x \in X$.

Proof. The sufficiency follows easily from theorem (2.2). For the necessity, let U be the closed unit ball in $C_0(X,E)$. Since M_w is continuous at the origin, there exists r>0 such that $T(rU)\subseteq U$. Take $x_0\in X$, a nonzero $e_0\in E$ and N is an open neighborhood of x_0 such that \overline{N} is compact. Thus there exists $f\in C_0(X)$ such that $0\leq f\leq 1$, $f(x_0)=1$ and $f(X\setminus N)=0$.

Define $g(x)=f(x)e_0$ for every $x\in X$. Then $g\in C_0(X,E)$, $0\leq \|g\|\leq \|e_0\|$ and $\|g(x_0)\|=\|e_0\|$. If $h=r\|e_0\|^{-1}g$, then $h\in rU$ and hence $\|Th\|\leq 1$. From this it follows that $\|w(x)h(x)\|\leq 1$ for every $x\in X$. This implies that

$$||w(x)f(x)e_0|| \le r^{-1}||e_0||$$
, for every $x \in X$.

Thus $||w(x_0)e_0|| \le r^{-1}||e_0||$. This completes the proof of the theorem.

Corollary 3.2. Let E be a Banach algebra with unit e and let $w: X \to E$ be a continuous function. Then

$$M_w: C_0(X,E) \rightarrow C_0(X,E)$$

is a multiplication operator if and only if there exists M > 0 such that $||w(x)|| \le M$, for every $x \in X$.

Example 3.3. Let X = N be set of natural numbers with discrete topology and $E == l^2$. Define $w: N \to B(l^2)$ as $w(n) = C_{\phi}^n$, where $C_{\phi}: l^2 \to l^2$ is the composition operator induced by a map $\phi: N \to N$. Then it can be seen that $||w(n)f|| = ||C_{\phi}^n f|| = ||f \circ \phi^n|| \le ||f||$, for every $n \in N$ and $f \in l^2$, and hence by theorem (3.1), M_w is a multiplication operator on $C_0(N, l^2)$.

The authors would like to thank Yu.V. Turovskii for valuable remarks.

This work has been supported by the Research Institute for Fundamental Sciences, Tabriz, Iran.

хябярІяри

[Jabbarzadeh M.R., Shahbazov A.I.]

References

- [1]. Jamison J.E., Rajagopalan M. Weighted composition operator on C(X,E). J. Operator theory, v.19, 1988, p.307-317.
- [2]. Kamowitz H. Compact weighted endomorphisms of C(X). Proc.Amer.Math.Soc., v,83, 1981, p.517-521.
- [3]. Singh R.K., Summers W.H. Compact and weakly compact composition operators on spaces of vector valued continuous functions. Proc. Amer. Math. Soc., 99, 1987, p.667-670.
- [4]. Shahbazov A.I. On some compact operators in uniform spaces of continuous functions. Dokl. AN Azerb.SSR, v.36, №12, 1980, p.6-8. (in Russian)
- [5]. Takagi H. Compact weighted composition operators on certain subspaces of C(X,E). Tokyo, J.Math., v.14, No.1, 1991, p.121-127.
- [6]. Uhlig H. The eigen-functions of compact weighted endomorphisms of C(X,E). Proc.Amer.Math.Soc., v.98, 1986, p.89-93.

Mamed-Rza R. Jabbarzadeh

University of Tabriz, Department of Mathematics. Tabriz, Iran.

Aydin I. Shahbazov

Institute of Mathematics & Mechanics of NAS Azerbaijan. 9, F.Agayev str., 370141, Baku, Azerbaijan. Tel.:39-47-20(off.).

Received January 15, 2001; Revised June 24, 2001. Translated by authors.