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Parametric investigation of the forced vibration of a “plate +
compressible viscous fluid + rigid wall” hydroelastic system
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Abstract. The paper attempts to investigate the forced vibration of a
hydro-elastic system consisting of an elastic plate, compressible vis-
cous fluid and rigid wall with the use of the parametrical presentation
of the mechanical constants of the plate material through the mechani-
cal constants of the fluid. It is introduced two parameters one of which
is equal to the ratio of the density of the plate material to that of the fluid
and the other one is equal to the ratio of the shear wave velocity to the
sound speed in the fluid. The numerical results on the influence of these
parameters on the frequency response of the interface pressure and nor-
mal velocity are presented and discussed. In particular, it is established
that an increase in the plate material density causes to decrease in the
absolute values of the interface pressure.
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1 Introduction

The detail review of the investigations related to the forced vibration of the “plate + com-
pressible viscous fluid + rigid wall” hydro-elastic systems has been made in the paper by
Akbarov (2018). It follows from this review paper that in all the investigations carried out
in this field concrete numerical results are obtained for the concrete selected materials of
the constituencies of the mentioned hydro-elastic system. Consequently, according to these
results it is impossible to say how the increase or decrease of the ratio of the densities of
the fluid and plate materials, as well as how the increase or decrease of the ratio of the
sound speeds in the fluid and plate materials, influences on the interface pressure and inter-
face velocity under vibration of this system. Namely these questions are the subject of the
present paper and for this purpose after selection of the fluid in the foregoing system it is
introduced the parameters which characterize the ratio of the plate material’s density to the
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fluid density and the ratio of the sound speed to the shear wave propagation speed in the
plate material. Through the change of these two parameters, it is determined the change of
the values of the mechanical constants of the plate material and by this way it is studied the
mentioned above questions. Under investigations, as in the paper by Akbarov and Ismailov
(2017) and other ones listed papers in the review paper by Akbarov, the motion of the plate
is described by the exact equations of elastodynamics in the plane strain state and the flow
of the fluid is described within the scope of the linearized Navier - Stokes equations. It is
assumed that the fluid is barotropic and Newtonian one.

2 Formulation of the problem

As in the paper by Akbarov and Ismailov (2017), we consider a system consisting of the
pre-stressed plate-layer, barotropic compressible Newtonian viscous fluid and rigid wall
(Fig.1) and associate the Cartesian coordinate system Ox1x2x3 with the upper face plane
of the plate and the position of the points of the constituents we determine in this coordinate
system. In the introducing coordinate system the plate and the fluid occupy the regions
{|x1| < ∞,−h < x 2 < 0, |x3| <∞} and {|x1| < ∞,−hd< x 2 < −h, |x3| <∞},
respectively. The material of the plate we assume as isotropic and homogeneous and within
the scope of this and foregoing assumptions, we investigate the forced vibration of the
hydro-elastic system which appear as a result of the action lineal-located time-harmonic
forces acting on the free face plane of the plate.

Fig. 1. The sketch of the hydro-elastic system under consideration

For the investigation, we write full system of equations, boundary, compatibility and im-
permeability conditions, and, according to the geometry and the corresponding geometrical
symmetry of the system and external forces acting on this system, we consider plane strain
state for the plate and plane-parallel flow for the fluid in the Ox1x2 plane.

Thus, we write the full system of equations of motion of the plate:

∂σ11
∂x1

+
∂σ12
∂x2

= ρ
∂2u1
∂t2

,
∂σ12
∂x1

+
∂σ22
∂x2

= ρ
∂2u2
∂t2

.

σ11 = (λ+ 2µ)ε11 + λε22, σ22 = λε11 + (λ+ 2µ)ε22, σ12 = 2µε12,

ε11 =
∂u1
∂x1

, ε22 =
∂u2
∂x2

, ε12 =
1

2

(
∂u1
∂x2

+
∂u2
∂x1

)
. (2.1)

In (2.1) the conventional notation is used.
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According to Guz (2009), now we write the linearized Navier-Stokes and other field
equations for the Newtonian compressible viscous fluid and in these equations the density,
viscosity constants and pressure of the fluid we denote by the upper index (2.1).

ρ
(1)
0

∂vi
∂t

− µ(1)
∂vi

∂xj∂xj
+
∂p(1)

∂xi
− (λ(1) + µ(1))

∂2vj
∂xj∂xi

= 0,
∂ρ(1)

∂t
+ ρ

(1)
0

∂vj
∂xj

= 0,

Tij =
(
−p(1) + λ(1)θ

)
δij + 2µ(1)eij , θ =

∂v1
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+
∂v2
∂x2

,

eij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
.a20 =

∂p(1)

∂ρ(1)
.

(2.2)

where ρ(2.1)
0 is the fluid density before perturbation. The other notation used in Eq. (2.2) is

conventional.
Note that the solution of the system equations in Eq. (2.2) for the 2D plane problems is

reduced (see Guz (2009)) to finding the two potentials φ and ψ which are determined from
the following equations:[(

1 +
λ(1) + 2µ(1)

a20ρ
(1)
0

∂

∂t

)
∆− 1

a20

∂2

∂t

]
φ = 0,(

ν(1)∆− ∂

∂t

)
ψ = 0,∆ =

∂2

∂x21
+

∂2

∂x22
,

(2.3)

where ν(1) is the kinematic viscosity of the fluid, i.e. ν(1) = µ(1)
/
ρ
(1)
0 and the velocities

v1, v2 and the pressure p(1) are expressed by the potentials φ and ψ as in the follows.

v1 =
∂φ

∂x1
+
∂ψ

∂x2
, v2 =

∂φ

∂x2
− ∂ψ

∂x1
, p(1) = ρ

(1)
0

(
λ(1) + 2µ(1)

ρ
(1)
0

∆− ∂

∂t

)
φ. (2.4)

Assuming that
p(1) = −(T11 + T22 + T33)/3, (2.5)

we obtain:
λ(1) = −2

3
µ(1). (2.6)

We recall that λ(1) in the equations (2.2) – (2.4) is the second coefficient of the fluid viscos-
ity and namely through this coefficient the compressibility of that, is expressed. Through
the assumption (2.5) the second coefficient of the fluid compressibility is expressed the the
ordinary (the first) coefficient of the fluid viscosity.

Besides all of these, it is assumed the following boundary

σ21|x2=0 = 0, σ22|x2=0 = −P0e
iωt, (2.7)

compatibility
∂u1
∂t

∣∣∣∣
x2=−h

= v1|x2=−h ,
∂u2
∂t

∣∣∣∣
x2=−h

= v2|x2=−h , (2.8)

σ21|x2=−h = T21|x2=−h , σ22|x2=−h = T22|x2=−h , (2.9)
and impermeability

v1|x2=−h−hd
= 0, v2|x2=−h−hd

= 0 (2.10)

conditions.
This completes the formulation of the problem.
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3 Method of solution

We use the same method which is developed and employed in the paper by Akbarov and
Ismailov (2017). According to this method, the sought values are presented as g(x1, x2, t) =
ḡ(x1, x2)e

iωt and substituting this expression into the foregoing equations and relations, and
replacing the derivatives ∂(·)/∂t and ∂2(·)

/
∂t2 with constants iω(̄·) and −ω2(̄·), respec-

tively, it is obtained the corresponding equations and boundary and contact conditions for
the amplitudes of the sought values. For the solution to these equations, it is employed the
exponential Fourier transformation with respect to the x1 coordinate

fF (s, x2) =

∫ +∞

−∞
f(x1, x2)e

−isx1dx1 (3.1)

to these equations. Taking the problem symmetry into account, with respect to the plane
x1 = 0, the originals of the sought values can be represented as follows:

{σ11 ;σ22;u2;φ;T11;T22; v2} =

=
1

π

∫ ∞

0
{σ11F ;σ22F ;u2F ;φF ;T11F ;T22V ; v2} (s, x2) cos(sx1)ds,

{σ12 ;u1;ψ;T12; v1} =
1

π

∫ ∞

0
{σ12F ;u1F ;ψF ;T12F ; v1F } (s, x2) sin(sx1)ds. (3.2)

Thus, using the presentions in (3.2) and doing some mathematical manipulations described
in the paper by Akbarov and Ismailov (2017) it is obtained the following expressions for
the Fourier transforms of the displacements of the plate.

u2F = Z1e
k1x2 + Z2e

−k1x2 + Z3e
k2x2 + Z4e

−k2x2 ,

u1F = Z1a1e
k1x2 + Z2a2e

−k1x2 + Z3a3e
k2x2 + Z4a4e

−k2x2 , (3.3)

where

k1 =

√
−A0

2
+

√
A2

0

4
−B0, k2 =

√
−A0

2
−
√
A2

0

4
−B0,

A0 =
AG+B2 +D

G
,B0 =

BD

G
,

A = X2 − s2(λ/µ+ 2), B = s(λ/µ+ 1), a1 =
−D −Gk21

Bk21
,

a2 = −a1, a3 =
−D −Gk22

Bk22
,

a4 = −a3D = X2 − s2, G = λ/µ+ 2, X2 = ω2h2
/
c22, c2 =

√
µ/ρ. (3.4)

It is also determined the following expressions for the Fourier transforms of the values
related to the fluid motion.

φF = ωh2φ̃F , ψF = ωh2ψ̃F , φ̃F = Z5e
δ1x2 + Z7e

−δ1x2 , ψ̃F = Z6e
γ1x2 + Z8e

−γ1x2 ,

v1F = ω h[−Z5se
δ1x2 − Z7se

−δ1x2 + Z6e
γ1x2 + Z8e

−γ1x2 ],

v2F = ω h[Z5δ1e
δ1x2 − Z7δ1e

−δ1x2 − Z6se
γ1x2 − Z8se

−γ1x2 ], (3.5)
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where

δ1 =

√
s2 − Ω2

1

1 + i4Ω2
1

/
(3N2

w)
, γ1 =

√
s2 + iN2

w, Ω1 =
ωh

a0
, N2

w =
ωh2

ν(1)
. (3.6)

Thus, using the expressions in (3.3) and (3.5), and constitutive relations in (2.1) and (2.2)
we determine also the expressions of the Fourier transforms of the stresses acting in the
plate and in the fluid. The unknown constant Z1, . . ., Z8 which enter into these expressions
are determined from the conditions (2.7) – (2.10) and finally, the originals of the sought
values are determined from the expressions in (3.2). However, this determination is made
numerically by employing the corresponding algorithm and PC programs composed by the
author the validity of which is confirmed with the comparison of the corresponding results
obtained in the paper by Akbarov and Ismailov (2017).

4 Numerical results and discussions

First of all, we note that under calculation the infinite intervals [0,∞] in the improper inte-
grals in (3.2) is replaced with the finite intervals [0, S∗

1 ] which is divided into the N number
shorter intervals. In each of these shorter intervals the integrals are calculated by the useof
the Gauss integration algorithmwith ten nodes. The values of the S∗

1 and N are determined
from the convergence requirement. In the present investigation it is established that for ob-
taining the numerical results with the 10−5 accuracy it is sufficient to take S∗

1 = 9 and
N = 2000. Consequently, the numerical result which will be discussed below are obtained
within the scope of the foregoing assumptions.

In the numerical investigation we assume that the material of the fluid is Glycerin with
viscosity coefficient µ(1) = 1, 393kg/(m · s), density ρ(1)0 = 1260kg

/
m3 and sound speed

a0 = 1927m/s (Guz (2009)). We also introduce the notation c2 =
√
µ/ρ which is the

shear wave propagation velocity in the layer material. After selection of the fluid’s material
constants we determine the plate material constants as follows:

ρ
/
ρ
(1)
0 = k1, c2/a0 = k2, µ = (c2)

2ρ (4.1)

So that, selecting the values for the k1 and k2 it is determined the mechanical constant of
the plate material through the mechanical constants of thefluid material. In this cases an
increase (a decrease) in the values of the k1 means an increase (a decrease) in the density of
the plate material with respect to the density of the fluid. As well as, an increase (a decrease)
in the values of the k2 means an increase (a decrease) shear wave propagation velocity of the
plate material with respect to the sound speed in the fluid. The aim of the present numerical
investigation is the determination how the change of the k1 and k2 effect on the values of
the interface pressure (i.e. at x2 = −h) T22 and velocity v2.

Thus, we consider numerical results which are obtained in the case where hd/h = 2.
These results are given in Figs. 2, 3 and 4.

Thus, it follows from these figures that an increase in the values of the plate material
density (i.e. an increase in the values of k1 (Figs. 2)) causes to decrease of the absolute
values of the interface pressure T22, however the mentioned increase causes (Fig. 3) causes
to increase the absolute values of the interface normal velocity. At the same time, it follow
from Fig. 4 that an increase in the shear modulus of the plate material (i.e. an increase in
the values of the k2) also causes to decrease of the values T22, however the values of the
dimensionless velocity v2µh/(P0c2) do not depend on the parameter k2. Nevertheless, it
follows from the expressions in (4.1) that the dimensional values of the this velocity v2
increase with the k2.
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5 Conclusions

Thus, in the present paper it is attempt to make a parametrical study the forced vibration
of the hydro-elastic system consisting of elastic plate, compressible viscous fluid and rigid
wall through introducing the parameters which estimate the ratio of the densities of the fluid
and plate materials and the ratio of the sound speeds in the fluid and plate materials.
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The investigations are made within the scope of the exact equations of elastodynamics
in the plane – strain state for the plate and within the scope of the linearized Navier-Stokes
equations for the barotropic compressible viscous fluid. Numerical results on the frequency
response of the interface pressure and of the normal velocity are presented for various val-
ues of these parameters. According to these results, it is formulated the following concrete
conclusions:

- An increase in the values of the plate material density with respect to the fluid density
the absolute values of the interface pressure decrease, however the absolute values of the
normal velocity increase;

- The foregoing conclusion occurs also with respect of the increase in the values of the
values of the shear wave propagation velocity with respect to the sound speed in the fluid.

According to the foregoing results, it can be also concluded that for obtaining the fore-
going type results gives certain orient for selection of the materials of the considered type
hydro-elastic system with respect to decrease of the interface pressure or interface normal
velocity. Therefore, in the author’s view, in future, it is necessary to develop investigations
started in the present paper.
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