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Wave flow of viscous fluid in elastic tube
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Abstract. Although the main idea and principles of fluid flow in de-
formed pipes are known, it is theoretically actual the study of the more
general law of the wave propagation processes in fluid flows through
deformed tube. The results of investigations contain the base of wave
process in shell-fluid systems. The mathematical model of the using sys-
tem is described by the main equation of hydrodynamic. Solution of the
problem is bringing to the singular problem for Sturm-Liouville equa-
tion.
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1 Introduction.

The research of multiphase system dynamics covers a wide area of science, technology,
living organisms and other fundamental problems.Although the main idea and principles
of fluid flow in deformed pipes are known, the multiphase of fluid and the effect of various
factors on the characteristic of fluid motion has not well-studied.Therefore, it is theoretically
actual the study of the more general law of the wave propagation processes in fluid flows
through deformed tube. The results of such investigations contain the base of the qualitative
considerations of these or other facts characterize wave process in shell-fluid systems.

The mathematical model of the using system is described by the equation of incom-
pressible viscous-elastic fluid motion, continuity equation and dynamic equation for linear-
viscous elastic tube with changeable cross-section. Solution of the problem is bringing to
the singular problem for Sturm-Liouville equation.
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2 Statement of the problem.

Incompressible viscous fluid flows in the semi-infinite tube with thickness h where the
cross-section changes by law R = R(x). Here R(z) is monotone decreasing function for
all x € [0,00), z is the coordinate has orientation along the tube axis. It consists of one-
dimensional system of continuous hydro elastic equations [1 - 4]:
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And the motion equation of tube for the linear-viscous elasticity:
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When writing the last equation, it was considered that the tube was thin-walled and rigidly
fixed to the environment. At the result the tube doesn’t move along the axis. The classic
description of viscous and ideal Newton fluid hydrodynamic is unacceptable while describ-
ing the full ambient flow with long molecular combinations. This fact posseses first degree
importance for most technology processes that colloid substances, suspensions, emulsions
and etc. include here.

To connect equations shown above, we write the rheology relations of fluid and accept
it as linear viscous elastic.
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In inequalities (2.1)-(2.4) u(z, t)— is velocity of flow, w(x, t)— radial displacement of
tube walls, p(z,t)— hydrodynamic pressure, o(x,t)- tension, p and p,- density of fluid
and tube material, e(x,t)— velocity of deformation, S = mR2- area of cross-section,
L = 27R(x)- circular length of tube, 1 - dynamic viscous coefficient of fluid. A\; and
6; determine relaxation and retardation. Ln (2.3) E¥- is inherited type operator [5].

l
EV=FEQ-I"),I"w(z,t) = / I'(t —nw(z,7)dr

here E— is the elasticity module, I'* - is relaxation operator, I'(t — 7) - is nuclear of
relaxation. (2.3) is written openly as

l
E w(z,t) — /F(tT)w(x,T)dT . (2.5)
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Take into account equality e = Ju/dx in (2.4):
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Then the function R(x) is written in the form R(x) = Rsg(x), the function g(x) is
second-order differentiable. Here

lim g(x) = 1. (2.7)
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Simultaneously,
lim ¢'(x) = 0, lim ¢"(z) = 0. (2.8)
T—00 T—00
Stokes show the differentiation with respect to x coordinate. This function can be shown as
follows
g(z) =1+¢eP (3 >0). (2.9)

Expression (2.9) shows the narrowing of tube in the cone form according to the its
length. Then taking into account the equations (2.5) and (2.6), we get the following closed
system of equations:
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Note that in wave processes the linearity of hydro-elastlclty equations is true in the case that
inequality ‘u . c*1| << 1is hold:
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c - is the complex propagation speed(for all times). The linearity of equations of theory of
viscous elasticity is obtained from the kinematic impermeability.

3 Differential equation for velocity amplitude.

Let’s convert the system of partial differential equations (2.10)-(2.13) to the system of Or-
dinary differential equations. Lets search solution in this form:

u = up(x) exp(i(jut),
w = wi(x) exp(zwt),
p = p1(x) exp(iwt),
o = o1(z) exp(iwt).

3.1

Here uy, w1, p1, 01- are complex functions of coordinates. The solution of correspond-
ing problem is reduced to the solution of Storm-Louivelle problem by making some math-
ematical transformations. In conclusion, the following system of equations is obtained:
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Here, the following substitutions and signes are used:
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Damping factor &, 10°
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Fig.1. Dependence of damping factor from \.
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Fig.2. Dependence of damping factor from & ,(A = 5)
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4 Numerical report.

Let’s show the dependence of reviewed fluids by experimenting them for define non-Newton
properties. Following parameters are given:

E=4. 106dN/cm2, p=1gr/em?, p. = 1gr/em?, R = 1,2 cm, h=0,2cm,
Qo = 120 em?3/ sec, w = 27 sec™ !, x=10cm, n = 5gr/cm - sec, n = 14
Calculations show that, the propagation of wave speed for accepted model almost doesn’t

depend on \ and ¢ , and equals to 577cm / sec.

In Fig. 1 and 2 the dependence of damping factor from A and £ is given.
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