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Abstract. In this paper we study the inverse boundary value problem
for the equation of transverse vibrations of the beam with an additional
integral condition. The original problem is first reduced to an equivalent
problem. For it the question of uniqueness of the solution is studied and
the theorem of uniqueness of the solution is proved.
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1 Introduction

In instrument-making, machine-building it is necessary to regulate vibration processes in
one-dimensional distributed systems and the relevance of these problems with increasing
the speed of mechanisms and increasing the size of the structure increases. For such prob-
lems, mathematical models of transverse oscillations are based on the refined theory [6].
Restoration of unknown parameters in the corresponding problem and other practical prob-
lems lead to the problems of determining the coefficients or the right side of the differential
equation according to some known data of its solution [1,9]. Such problems are called in-
verse problems of mathematical physics, which in many works [2,4,5,7,8] were studied for
partial differential equations. In inverse problems with initial and boundary conditions typ-
ical for a particular direct problem, additional information is given. The need for additional
information is due to the presence of unknown coefficients or the right side of the equations.

In this paper we investigate the inverse boundary value problem with additional integral
conditions for the equation of transverse vibrations of the beam in the case of rigid fixing
of the ends.
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Formulation of the problem and its reduction to an equivalent problem

1. Consider the area DT = {(x.t) : 0 ≤ x ≤ 1, 0 ≤ t ≤ T}. The equation of vibrations of
the beam

utt(x, t) + uxxxx(x, t) = a(t)u(x, t) + b(t)ut(x, t) + f(x, t) (1.1)

and we substitute for it the following inverse boundary value problem: find the triple
{u(x, t), a(t), b(t)} of functions u(x, t), a(t), b(t) satisfying equation (1.1) with initial con-
ditions

u(x, 0) = φ(x), ut(x, 0) = ψ(x)(0 ≤ x ≤ 1), (1.2)

with boundary conditions

u(0, t) = ux(1, t) = uxx(0, t) = uxxx(1, t) = 0(0 ≤ t ≤ T ), (1.3)

and additional conditions ∫ 1

0
u(x, t)dx = h1(t)(0 ≤ t ≤ T ), (1.4)

u(1, t) = h2(t)(0 ≤ t ≤ T ), (1.5)

where f(x, t), φ(x), ψ(x), hi(t) (i = 1, 2) are given functions.

Definition 1.1 The classical solution of the inverse boundary value problem (1.1)-(1.5) is a
triple {u(x, t), a(t), b(t)} of functions u(x, t), a(t), b(t) satisfying the following conditions:

1 the function u(x, t) and its derivatives ut(x, t), utt(x, t), ux(x, t), uxx(x, t), Uxxx(x, t),
uxxxx(x, t) are continuous in DT :

2 functions a(t) and b(t) are continuous on [0;T ] :
3 equation (1.1) and conditions (1.2)-(1.5) are satisfied in the usual sense.

The following theorem is true.

Theorem 1.1 If φ(x) ∈ C [0, 1], ψ(x) ∈ C [0, 1], hi(t) ∈ C2 [0, T ] (i = 1, 2), h1(t) ≡
h1 (t)h

′
2(t) − h2(t)h

′
1(t) ̸= 0 (0 ≤ t ≤ T ), f(x, t) ∈ C(DT ) and the condition approval

is fulfilled

1∫
0

φ(x)dx = h1(0),

1∫
0

ψ(x)dx = h′1(0),

φ(1) = h2(0), ψ(1) = h′2(0).

Then the problem of finding the classical solution of the problem (1.1) - (1.5) is equiv-
alent to the problem of determining functions u(x, t), a(t) and b(t), and having properties
1) and 2) determining the classical solution of the problem (1.1) - (1.5), from (1.1) - (1.3),

h′′1(t)− uxxx(0, t) = a(t)h1(t) + b(t)h′1(t) +

1∫
0

f(x, t)dx(0 ≤ t ≤ T ) (1.6)

h′′2(t) + uxxxx(1, t) = a(t)h2(t) + b(t)h′2(t) + f(1, t)(0 ≤ t ≤ T ). (1.7)
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Proof. Suppose that{u(x, t), a(t), b(t)} is the solution of the problem (1.1) - (1.5). Con-
sidering hi (t) ∈ C [0, t] (i = 1, 2) from (1.4) and (1.5), respectively, we obtain:

1∫
0

ut (x, t) dx = h′1(t),

1∫
0

utt (x, t) dx = h′′1(t) (0 ≤ t ≤ T ) (1.8)

ut (1, t) = h′t (t) , utt (1, t) = h′′2 (t) (0 ≤ t ≤ T ) . (1.9)
Integrating equation (1.1) by x from 0 to 1, we have:

d2

dt2

1∫
0

u(x, t)dx+ uxxx(1, t)− uxxx(0, t) = a(t)
1∫
0

u(x, t)dx+ b(t)×

× d
dt

1∫
0

u(x, t)dx+
1∫
0

f(x, t)dx (0 ≤ t ≤ T ).

(1.10)

Hence given (1.3), (1.4), (1.8) we come to implementation (1.6).
Substituting x=1 in equation (1.1), we find:

utt(1, t) + uxxxx(1, t) = a(t)u(1, t) + b(t)ut(1, t) + f(1, t)(0 ≤ t ≤ T ) (1.11)

Given (1.5) and (1.9) of (1.10), execution (1.7) follows.
Let {u(x, t), a(t), b(t)} is the solution of the problem (1.1)-(1.3), (1.6), (1.7). Then from

(1.6) and (1.10) taking into account (1.3) we have:

y′′(t) = a(t)y(t) + b(t)y′(t) (0 ≤ t ≤ T ), (1.12)

where

y(t) =

1∫
0

u(x, t)dx− h1(t) (0 ≤ t ≤ T ). (1.13)

Because of
1∫

0

φ(x)dx = h1(0),

1∫
0

ψ(x)dx = h′1(0),

we find

y(0) =

1∫
0

u(x, 0)dx− h1(0) =

1∫
0

φ(x)dx− h1(0) = 0

y′(0) =

1∫
0

ut(x, 0)− h′1(0) =

1∫
0

ψ(x)dx− h′1(0) = 0. (1.14)

From (1.12), given (1.14) it is obvious that y(t) ≡ 0 (0 ≤ t ≤ T ). Hence, by virtue of
(1.13), we easily come to fulfillment (1.4).

Next, from (1.7) and (1.11), we obtain:

d2

dt2
(u(1, t)−h2(t))=a(t) (u(1, t)−h2(t))+b(t)

d

dt
(u(1, t)−h2(t)) (0 ≤ t ≤ T ) (1.15)

Because of φ(1) = h2(0), ψ(1) = h′2(0), we have

u(1, 0)− h2(0) = φ(1)− h2(0) = 0

ut(1, 0)− h′2(0) = ψ(1)− h′2(0) = 0. (1.16)
From (1.15), (1.16) it is clear that the condition (1.5) is fulfilled. The theorem is proved.
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2 Solvability of the inverse boundary value problem

The first component u(x, t) of the solution {u(x, t), a(t), b(t)} of the problem (1.1)-(1.3),
(1.6), (1.7) we will look in the form:

u(x, t) =

∞∑
k=1

uk(t) sinλkx
(
λk =

π

2
(2k − 1)

)
, (2.1)

where

uk(t) =

1∫
0

u(x, t) sinλkxdx.

Then applying the formal scheme of the Fourier, we have from (1.1) and (1.2) have:

u′′k(t) + λ4kuk(t) = Fk(t, u, a, b)(0 ≤ t ≤ T ; k = 1, 2...), (2.2)

uk(0) = φk, u
′
k(0) = ψk(k = 1, 2...), (2.3)

where
Fk(t, u, a, b) = a(t)uk(t) + b(t)u′k(t) + fk(t),

fk(t) = 2

1∫
0

f(x, t) sinλkxdx,

φk = 2

1∫
0

φ(x) sinλkxdx, ψk = 2

1∫
0

ψ(x) sinλkxdx(k = 1, 2...).

Having solved the problem (2.2), (2.3), we find:

uk(t) = φk cosλ
2
kt+

1

λ2k
ψk sinλ

2
kt+

+
1

λ2k

t∫
0

Fk(τ, u, a, b) sinλ
2
k(t− τ)dτ (k = 1, 2...). (2.4)

After substitution of expressions from (2.4) to (2.1),

u(x, t) =
∞∑
k=1

{
φk cosλ

2
kt+

1

λ2k
ψk sinλ

2
k t+

+
1

λ2k

t∫
0

Fk(τ, u, a, b) sinλ
2
k(t− τ)dτ

 sinλkx. (2.5)

Now from (1.6) and (1.7) taking into account (2.1) we have:

a(t) = [h(t)]−1

h′2(t)
h′′1(t)− 1∫

0

f(x, t)dx

 − h′1(t)
(
h′′2(t)− f(0, t)

)
+
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+

∞∑
k=1

λ3k

(
h′2(t)− (−1)k−1λkh

′
1(t)
)
uk(t)

}
, (2.6)

b(t) = [h(t)]−1

h1(t) (h′′2(t)− f(0, t)
)
− h′2(t)

h′′1(t)− 1∫
0

f(x, t)dx

 +

+

∞∑
k=1

λ3k

(
(−1)k+1λkh1(t)− h2(t)

)
uk(t)

}
, (2.7)

where
h(t) = h1(t)h

′
2 − h2(t)h

′
1(t) ̸= 0(0 ≤ t ≤ T ).

Substituting the expression (2.4) in (2.6) and (2.7), respectively, we obtain:

a(t) = [h(t)]−1

h′
2(t)(h

′′
1(t)−

1∫
0

f(x, t)dx)− h
′
1(t)(h

′′
2(t)− f(0, t)+

+

∞∑
k=1

λ3k

(
h

′
2(t)− (−1)k+1λkh

′
1(t)) ×

×

φk cosλ
2
kt+

1

λ2k
ψk sinλ

2
kt+

1

λ2k

t∫
0

Fk(τ ;u, a, b) sinλ
2
k(t− τ)dτ

 , (2.8)

b(t) = [h(t)]−1

h1(t)(h′′
2(t)− f(0, t))− h2(t)

h′′
1(t)−

1∫
0

f(x, t)dx

 +

+

∞∑
k=1

λ3k

(
(−1k+1λkh1(t)− h2(t)

)
×

×

φk cosλ
2
kt+

1

λ2k
ψk sinλ

2
kt+

1

λ2k

t∫
0

Fk(τ, u, a, b) sinλ
2
k(t− τ)dτ

 . (2.9)

Thus, the solution of the problem (1.1) – (1.3), (1.6), (1.7), it was reduced to the solution of
system (2.5), (2.8), (2.9) relatively unknown functions u(x, t), a(t), b(t).

To study the uniqueness of the solution of the problem (1.1) - (1.3), (1.6), (1.7) the
following Lemma plays an important role.

Lemma 2.1 If {u(x, t), a(t), b(t)} is any solution to the problem (1.1)-(1.3), (1.6), (1.7),

then function uk(t) = 2
1∫
0

u(x, t) sinλkxdx (k = 1, 2...) satisfies system (2.4) at [0;T ].

Proof. Suppose that {u(x, t), a(t), b(t)}-is some solution of the problem (1.1)-(1.3),
(1.6), (1.7). Multiplying both parts of equation (1.1) by a function 2 sinλkx (k = 1, 2...) ,
integrating the obtained equality with respect to x from 0 to 1 and using the relations

1∫
0

utt(x, t) sinλkxdx =
d2

dx2

 1∫
0

u(x, t) sinλkxdx

 = u′′k(t), (k = 1, 2...),
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1∫
0

uxxxx sinλkxdx = λ4k

 1∫
0

u(x, t) sinλkxdx

 = λ4kuk(t)(k = 1, 2...)

we obtain that the equation (2.2) is satisfied.
Similarly, from (1.2) we obtain that the condition (2.3) is satisfied. Thus, uk(t) (k =

1, 2...) it is the solution of the problem (2.2), (2.3). Hence, it follows directly that the func-
tions uk(t) (k = 1, 2...) satisfy on [0, T ] system (2.4). The Lemma is proved.

Obviously, if uk(t) = 2
∫ 1
0 u(x, t) sinλkxdx (k = 1, 2...) is the solution of the system

(2.4), the triangle {u(x, t), a(t), b(t)} of functions u(x, t) =
∞∑
k=1

uk(t) sinλkx, a(t), b(t) is

the solution of the system (2.5), (2.8), (2.9).
It follows from the Lemma that there is a consequence.

Corollary 2.1 Let the system (2.5), (2.8), (2.9) has the only solution. Then the task (1.1) –
(1.3), (1.6), (1.7) can not have more than one solution, i.e. if the problem (1.1) – (1.3), (1.6),
(1.7) (1.2) has a solution, then it is the only one.

We denoteB5,3
2,T [9] the set of all functions of the form u(x, t) =

∞∑
k=1

uk(t) sinλkx(λk) =

= π
2 (2k − 1)) considered in DT , where uk(t) ∈ C1 [0;T ] (k = 1, 2...) and

I (u) =

{ ∞∑
k=1

(
λ5k ∥uk(t)∥C[0;T ]

)2} 1
2

+

{ ∞∑
k=1

(
λ3k
∥∥u′k(t)∥∥C[0;T ]

)2} 1
2

< +∞.

The norm in this set is defined as:

∥(u(x, t)∥
B5,3

2,T
= I(u).

Through E5,3
T denote the space B5,3

2,T × C [0, T ] × C [0, T ] vector of functions z(x, t) =

{u(x, t), a(t), b(t)} with the norm

∥z(x, t)∥
E5,4

2,T
= ∥u(x, t)∥

B
5,4
2,T

+ ∥a(t)∥C[0,T ] + ∥b(t)∥C[0,T ] .

It is known that B5,3
2,T and E5,3

T are Banach spaces.
Consider the operator E5,3

T in space Φ(u, a, b) = {Φ1(u, a, b), Φ2(u, a, b), Φ3(u, a, b)}

where Φ1(u, a, b) = ũ(x, t) =
∞∑
k=1

ũk(t) sinλkx, Φ2(u, a, b) = ã(t), Φ3(u, a, b) = b̃(t),

and ũk(t) (k = 1, 2...), ã(t), b̃(t) are equal respectively right parts of (2.4),(2.8),(2.9). Of
(2.4) it is not difficult to see that

ũ′k(t) = −λ2kφk sinλ
2
kt+ ψk cosλ

2
kt+

+

t∫
0

Fk(τ, u, a, b) cosλ
2
k(t− τ)dt (k = 1, 2...). (2.10)

With the help of easy transformations, respectively, we find:{ ∞∑
k=1

(
λ5k ∥ũk(t)∥C[0;T ]

)2} 1
2

≤
√
5

{ ∞∑
k=1

(
λ5k |φk|

)2} 1
2

+
√
5

{ ∞∑
k=1

(
λ3k |ψk|

)2} 1
2

+
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+
√
5T

 T∫
0

∞∑
k=1

(
λ3k |fk(τ)|

)2
dτ


1
2

+
√
5T ∥a(t)∥C[0,T ]

{ ∞∑
k=1

(
λ5k ∥uk(t)∥C[0;T ]

)2} 1
2

+

+
√
5T ∥b(t)∥C[0,T ]

{ ∞∑
k=1

(
λ3k
∥∥u′k(t)∥∥C[0;T ]

)2} 1
2

, (2.11)

{ ∞∑
k=1

(
λ3k
∥∥u′k(t)∥∥C[0;T ]

)2} 1
2

≤
√
5

{ ∞∑
k=1

(
λ5k |φk|

)2} 1
2

+
√
5

{ ∞∑
k=1

(
λ3k |ψk|

)2} 1
2

+

+
√
5T

(∫ T

0

∞∑
k=1

(
λ3k |fk(τ)|

)2
dτ

) 1
2

+
√
5T ∥a(t)∥C[0,T ]

{ ∞∑
k=1

(
λ5k ∥uk(t)∥C[0;T ]

)2} 1
2

+

+ ∥b(t)∥C[0,T ]

{ ∞∑
k=1

(
λ3k
∥∥u′k(t)∥∥C[0;T ]

)2} 1
2

, (2.12)

∥ã(t)∥C[0,T ] ≤
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

×

×

{∥∥∥∥h′2(t)(h′′1(t)− ∫ 1

0
f(x, t)dx

)
− h′1(t)

(
h′2(t)− f(0, t)

)∥∥∥∥
C[0,T ]

+

+
∥∥∣∣h′2(t)∣∣+ ∣∣h′1(t)∣∣∥∥C[0,T ]

( ∞∑
K=1

λ−2
k

) 1
2

{ ∞∑
k=1

(
λ5k |φk|

)2} 1
2

+

{ ∞∑
k=1

(
λ3k |ψk|

)2} 1
2

+

+
√
T

 T∫
0

∞∑
k=1

(
λ3k |fk(τ)|

)2
dτ


1
2

+ T ∥a(t)∥C[0,T ]

{ ∞∑
k=1

(
λ5k ∥uk(t)∥C[0;T ]

)2} 1
2

+

+T ∥b(t)∥C[0,T ]

{ ∞∑
k=1

(
λ3k
∥∥u′k(t)∥∥C[0;T ]

)2} 1
2

 , (2.13)

∥∥∥b̃(t)∥∥∥
C[0,T ]

≤
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

×

×


∥∥∥∥∥∥h1(t)(h′′2(t)− f(0, t))− h2(t)

h′′1(t)− 1∫
0

f(x, t)dx

∥∥∥∥∥∥
C[0,T ]

+

+ ∥|h1(t)|+ |h2(t)|∥C[0,T ]

( ∞∑
K=1

λ−2
k

) 1
2

{ ∞∑
k=1

(
λ5k |φk|

)2} 1
2

+

{ ∞∑
k=1

(
λ3k |ψk|

)2} 1
2

+

+
√
T

 T∫
0

∞∑
k=1

(
λ3k |fk(τ)|

)2
dτ


1
2

+ T ∥a(t)∥C[0,T ]

{ ∞∑
k=1

(
λ5k ∥uk(t)∥C[0;T ]

)2} 1
2

+
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+ T ∥b(t)∥C[0,T ]

{ ∞∑
k=1

(
λ3k
∥∥u′k(t)∥∥C[0;T ]

)2} 1
2

 . (2.14)

Let the problems (1.1)-(1.3),(1.6),(1.7) satisfy the following conditions:

1.φ(x) ∈ C4 [0, 1] , φ(5)(x) ∈ L2(0, 1), φ(0) = φ′
1(1) = φ′′(0) = φ′′′(1) = φ(4)(0) = 0;

2.ψ(x) ∈ C2 [0, 1]ψ′′′(x) ∈ L2(0, 1), ψ(0) = ψ′(1) = ψ′′(0) = 0;
3.f(x, t), fx(x, t), fxx(x.t) ∈ L(DT ), fxxx(x, t) ∈ L2(DT ),

f(0, t) = fx(1, t) = fxx(0, t) = 0(0 ≤ t ≤ T );

4.hi(t) ∈ C2 [0, T ] (i = 1, 2), h(t) ≡ h1(t)h
′
2(t) − h2(t)h

′
1(t) ̸= 0(0 ≤ t ≤ T ). Then

from (2.10) and (2.12) we have:

∥ũ(x, t)∥
B5,3

2,T
≤ A1(T ) +B1(T )

(
∥a(t)∥C[0,T ] + ∥b(t)∥C[0,T ]

)
∥u(x, t)∥

B5,3
2,T
, (2.15)

where

A1(T ) = 2
√
5
∥∥∥φ(5)(x)

∥∥∥
L2(0,1)

+ 2
√
5
∥∥ψ′′′(x)

∥∥
L2(0,1)

+ 2
√
5T ∥fxxx(x, t)∥L2(DT ) ,

B1(T ) = 2
√
5T.

Then from (2.13) and (2.14) respectively get:

∥ã(t)∥C[0,T ] ≤ A2(T ) +B2(T )
(
∥a(t)∥C[0,T ] + ∥b(t)∥C[0,T ]

)
∥u(x, t)∥

B5,3
2,T
, (2.16)∥∥∥b̃(t)∥∥∥

C[0,T ]
≤ A3(T ) +B2(T )

(
∥a(t)∥C[0,T ] + ∥b(t)∥C[0,T ]

)
∥u(x, t)∥

B5,3
2,T
, (2.17)

where
A2(T ) =

∥∥∥[h(t)]−1
∥∥∥
C[0,T ]

×

×

{∥∥∥∥h′2(t)(h′1(t)− ∫ 1

0
f(x, t)dx

)
− h′1(t)

(
h′2(t)− f(0, t)

)∥∥∥∥
C[0,T ]

+∥∥∣∣h′2(t)∣∣+ ∣∣h′1(t)∣∣∥∥C[0,T ]
×

×

( ∞∑
K=1

λ−2
k

) 1
2 [∥∥∥φ(5)(x)

∥∥∥
L2(0,1)

+
∥∥ψ′′′(x)

∥∥
L2(0,1)

+
√
T ∥fxxx(x, t)∥L2(DT ) ] } ,

B2(T ) =
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

∥∥∣∣h′1(t)∣∣+ ∣∣h′2(t)∣∣∥∥C[0,T ]
×

×

( ∞∑
K=1

λ−2
k

) 1
2 [∥∥∥φ(5)(x)

∥∥∥
L2(0,1)

+
∥∥ψ′′′(x)

∥∥
L2(0,1)

+
√
T ∥fxxx(x, t)∥L2(DT )

]
A3 (T ) =

∥∥∥[h (t)]−1
∥∥∥
C[0,T ]

×

×

{∥∥∥∥h1 (t) (h′′2 (t)− f (0, t)
)
− h2 (t)

(
h′′1(t

)
−
∫ 1

0
f (x, t) dx

∥∥∥∥
C[0,T ]

+
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+ ∥|h1 (t)|+ |h2 (t)|∥C[0,T ]

( ∞∑
k=1

λ−2
k

)1/2
×

×
[∥∥∥φ(5) (x)

∥∥∥
L2(0,1)

+
∥∥ψ′′′ (x)

∥∥
L2(0,1)

+
√
T ∥f xxx (x, t)∥L2(0,1)

]}
,

B3(T ) =
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

∥|h1(t)|+ |h2(t)|∥C[0,T ]

( ∞∑
K=1

λ−2
k

) 1
2

T.

From inequalities (2.15) - (2.17) we conclude

∥ũ(x, t)∥
B5,3

2,T
+ ∥ã(t)∥C[0,T ] +

∥∥∥b̃(t)∥∥∥
C[0,T ]

≤

≤ A(T ) +B(T )
((

∥a(t)∥C[0,T ] + ∥b(t)∥C[0,T ]

)
∥ũ(x, t)∥

B5,3
2,T

)
, (2.18)

where

A(T ) = A1(T ) +A2(T ) +A3(T ), B(T ) = B1(T ) +B2(T ) +B3(T ).

The following theorem is proved by means of inequality (2.18).

Theorem 2.1 Let are executed (1.1)-(1.4) and

B(T ) (A(T ) + 2)2 < 1. (2.19)

Then the problem (1.1)-(1.3), (1.6), (1.7) has in the ball K = KR

(
∥z∥

E5,3
T

≤ A(T ) + 2
)

of the space E5,3
T unique solution.

Proof. In the space E5,3
T , we consider the operator equation

z = Φz, (2.20)

where z = {u, a, b}, are the components of the operator is defined right-hand sides of
equations (2.5), (2.8), (2.9) accordingly.

Consider the operator Φ (u, a, b) in a ball K = KR

(
∥z∥

E5,4
T

≤ A(T ) + 2
)

of E5,3
T .

Analogously (2.18) get that for any z, z1,z2 ∈ KR fair estimates

∥Φz∥
E5,3

T
≤ A(T ) +B(T )

((
∥a(t)∥C[0,T ] + ∥b(t)∥C[0,T ]

)
∥ũ(x, t)∥

B5,3
2,T

)
, (2.21)

∥Φz1 − Φz2∥E5,3
T

≤ B(T )R (∥a1(t)− a2(t)∥C[0,T ]+

+(∥b1(t)− b2(t)∥C[0,T ] + ∥u1(x, t)− u2(x, t)∥B5,3
2,T

)
. (2.22)

From estimates (2.21) and (2.22), with consideration (2.19) it is clear that the operator Φ
acts in the bowl K = KR is the compressive. That’s why in the bowlK = KRoperator
Φ has a single fixed point. {u, a, b} which is the solution of the equation (2.20), that is
{u, a, b} has in the bowl K = KR a single solution of system (2.5), (2.8), (2.9).

Function u(x, t), as an element of space B5,3
2,T , continuous and has continuous deriva-

tives
ux(x, t), uxx(x, t), uxxx(x, t), uxxxx(x, t), ut(x, t), utx(x, t), utxx(x, t) and DT .
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From (2.2) it is not difficult to see that u′′k(t) ∈ C [0, T ] and( ∞∑
k=1

(
λk
∥∥u′′k(t)∥∥C[0,T ]

)2)1/2

≤
√
2

( ∞∑
k=1

(
λ5k ∥uk(t)∥C[0,T ]

)2)1/2

+

+
∥∥∥∥a(t)ux(x, t) + b(t)utx(x, t) + fx(x, t)∥C[0,T ]

∥∥∥
L2[0,1]

.

It follows that utt(x, t) continuous in DT . We can show that the equation (1.1) with
condition (1.2), (1.3), (1.6), (1.7) satisfied in the usual sense. And this in turn means that
{u(x, t), a(t), b(t)} is the solution of task (1.1)-(1.3), (1.6), (1.7) and by virtue of the corol-
lary of Lemma it is the only one in the bowl K = KR. The theorem is proved.

With the help of theorem 1, from the last theorem immediately follows the uniqueness
of solvability of the original problem (1.1)-(1.5).

Theorem 2.2 Let all conditions of the theorem 2 be satisfied, as well as the conditions of
approval

1∫
0

φ(x)dx = h1(0),

1∫
0

ψ(x)dx = h′1(0), φ(1) = h2(0), ψ(1) = h′2(0).

Than the tasks (1.1)-(1.5) has in the bowl K = KR

(
∥z∥

E5,4
T

≤ A(T ) + 2
)

in space

E5,3
T a single classical solution.
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