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Abstract. In the paper, kinetics of processes that occur in diffusion sat-
uration of composites are analyzed and justified. It is determined that in
multi-component composite systems, the analytic solution of diffusion
saturation equations is obtained from the assumption that the diffusion
coefficients are constant.
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1 Introduction.

Kinetics of formation of diffusion coatings of powder compositions substantially depends
on their structure, phase compositions and properties. Porosity of sintered power composi-
tions have decisive influence on the character of diffusion coatings formation. Therefore, in
the paper, the kinetics of diffusion coatings of iron-based composite materials are consid-
ered.

It is known that closed pores may both increase and decrease the diffusion flow-Ratio
between surface and volume diffusion are determined by the sizes of pores. In the R radius
of the pore, decrease of volume flow is compensated by surface diffusion and is calculated
as follows [2]:

R =
2δDS

D0
. (1.1)

Here δ is the thickness of the layer participating in the surface diffusion DS and D0 are
the coefficients of the surface and volume diffusions, respectively. Here the critical size of
pores are estimated by the value about 10−3mm. The ratio DS/D0 increases as the temper-
ature decreases. This shows that the critical size of the pore should increase [2,4].

The sizes of granulars of cooked composite materials are determined by their manu-
facturing technology. They are: pressing, sintered, chemical composition, etc. But in sinter
materials, taking into account small inclination and significant compacting pressure it is
expected that after ordinary sinter modes the powder compositions do not remain constant.
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If we compare the characteristics of compact and sintered materials of the same composi-
tion and with the same initial granular, we can affirm that in the sintered material during
chemical-thermal treatment process the size of the granular is growing less. The third rea-
son of diffusion velocity increase in powder composites is distortion of the crystal cell and
its imperfect structure.

The sintered materials have a great number of vacancy sources-pores. In any case, con-
centration of vacancies near the pores are significantly high in the equilibrium state. The
informations in [2] affirm the influence of the above listed factors.

It should be noted that in the case under consideration the diffusion is not entirely volu-
metric, the diffusion is the result of flow: surface, boundary and volumetric. Such a variant
of diffusion transfer is realized only at great power of the diffusion source. Depending on
its decrease (for example, getting away the boundaries), the surface and boundary diffusion
dominates over volume diffusion.

The influence of soluble additives on the results of diffusion saturation and the diffusion
coefficients of alloy elements (saturational) are less clear compared with influence of other
factors. This is stipulated by considerable complexity of the case. Because, in this it is
necessary to consider the diffusion not in the binary but in the multi-component system.

2 Problem statement

In multi-component systems, the most part of analytic solution were obtained from the
assumption that diffusion coefficients are constant. But as was shown in [7,9],such an ap-
proach does not give the accepted results. In this connection, it is necessary to calculate the
dependencies of diffusion coefficients, in particular, concentration dependencies of non-
diagonal coefficients. But in this case, diffusion equations are nonlinear and it is impossible
to get their solution in the closed form. In multi-component systems the numerical method
is the most convenient method for calculation of diffusion processes. In [5,6], the problems
describing diffusion processes in multi-component solid solutions are considered.

Usually, the system’s composition is determined by the number of every type atoms in
the share of their general amount: Ci =

ni
n∑

i=1
ni

, here ni is the density of the i compact atoms

(the i index belongs to the atoms of the matrix).
But it is convenient to pass to appropriate concentrations that create substitution solid

solutions and with alloy elements to describe diffusion in solid solution, i.e. (R− r) to
Ci = ni

n0
(here n0 is the density of the node of crystal cells). Ci concentrations and the

concentrations with included Ci have the following ratio:

Ci =
Ci

1 +
r∑

i=r+1
Ci

, (2.1)

Then we simplicity we assume that in the deformation process the crystal cell is not
deformed, i.e. n0 = const. Ignoring Onzager’s non-diagonal coefficients, at i = j, for
density of diffusion flow of the i component we get

−→
I C =

1

V
(C,−→υ − Lii∇µi) , (2.2)

here V = in0 is the volume per each node of the crystal cell; µmi is the chemical potential
of the i component, −→υ is the velocity of plastic yield of the substance in the diffusion area.
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There is an additional condition in approximation of local quasi-equilibrium distribution
for concentrations of substitution components [3]

r∑
i=1

Ci = 1.

The equations of continuity of flows for each substitution components yield the follow-
ing expression

∇ =

(
r∑

i=1

Ii

)
= 0.

which admits to determine the flow velocity

−→
V =

r∑
i=1

Ljj∇µj . (2.3)

From equations (2.2) and (2.3) we choose Ci, i = 2−R and taking into account the Gibs -
Dyugon ratio for the density of components

R∑
i=1

Ciδµi = 0,

of flow and mutual diffusion coefficients we get the expression

IC = − 1

V

R∑
j=2

Dij∇Ci (2.4)

˜̃
Dij =

Ci

RT

[
D∗

i

dµ

dc
+

R∑
α=2

Cα (D
∗
i − ξαD∗

α)
dµα
dcj

]
, (2.4′)

here D∗
i = LiiRT/Ci are the diffusion coefficients of the i element in the matrix

ξi =

{
1, i ≤ r,
0, i > r.

The expressions (2.4) and (2.4’) is the generalized form of the results obtained in [3] for a
three-component system.

As is seen from the results it is necessary to know the character of concentration values
of chemical potentials for solving three-component diffusion problems. The existing meth-
ods for calculating the mentioned dependencies [1,10], are based on the use of different
approximation models in accordance with specific systems. This essentially complicates
their application for numerical solution of diffusion problems. Taking this into account, de-
pending on strong statistic theory, the character of concentration dependencies of chemical
potentials in multi-component solutions were analyzed based on pure solvents. In this case,
the great canonic ensemble method suggested by Mayer and McMillan [13] and based on
distribution function apparatus [11] was used. Being restricted by the first and second row
coefficients, we get

µi (i > 1) = ψi +RT ln

Ci +
R∑

j=2

AijCiC

 ,
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µi = µ∗iRT ln

Ci +
R∑

2≤i≤j

A
(1)
ij CiCj

 ,

Aij = Aji = −A(1)
ij = n0

(∑
ij −

∑
ij −

∑
ij

)
, i ̸= j (2.5)

Aij = −2A
(1)
ij = −2n0

∑
ij −

∑
ij = b2bi + b2δi − bδi+δi .

The group integrals contained in the coefficients of formula (2.5) are written as follows:

−→
b −−−→
bi+δj

=
1

V

∫ [
exp

(
−W (li, lj)

RT

)
− 1

]
d [li] d [lj ] ,

−→
b −−−→
bi+δj

=
1

2V

∫ [
exp

(
−W (li, lj)

RT

)
− 1

]
d [li] d [lj ] ,

here W (li, lj) is the potential of average force. The physical meaning of
∑

ij is that they
show stability of i− i and j − j pair compared with the pair i− j. Taking into account the
ratio (2.5) in (2.1), in (2.5’) the coefficients of mutual diffusion in multi-component solid
solutions are reduced to the following expressions:

Dij = D∗
j

δij + aijCi

1 +
R∑

β=2

aiβCβ

+

+Ci

R∑
α=2

(D∗
i − ξαD

∗
α)

δ2j + aαj

1 +
R∑

β=2

aαβCβ

 . (2.6)

Here aij = Aij − 1 + ξ, j. Analyze this ratio. In linear approximation, formulas (2.6)
are essentially simplified. The expression (2.7) is obtained under the condition that the j-
element creates substitution solid solution, (2.7’), the inclusion solid solution

−→
D ij ≈ D∗

i δij + CiD
∗
i

(
Aij +

D∗
i −D∗

j

D∗
i

)
(2.7)

−→
D ij ≈ D∗

i δij + CiD
∗
i

(
Aij +

D∗
i −D∗

j

D∗
i

)
. (2.7′)

As we see from expressions (2.7) and (2.7’) the diffusion flow of the j-component into
i depends not on their thermodynamic interactive parameters, but also on the ratio of the
matrix and the diffusion coefficients of atoms of these elements. But if the j-element cre-
ates substitution, i creates inclusion solution, then we can ignore the last expression D∗

i ,
D∗

j ≤ D∗
i .

Because in this case (2.4) and (2.4’) and the expressions of natural diffusion coefficients
found for flow density enable to compose the system of equations that determines distri-
bution of concentration of diffusive elements in multi-component solid solutions. Let us
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consider only one-dimensional diffusion. In this case the system equations takes the follow-
ing form:

dCi

di
=

d

dx

 R∑
j=2

Dij

−→
d Ci

dx

 , i = 2, 3, 4.....R. (2.8)

We write the boundary conditions in diffusion saturation of alloys in the form:

R∑
j=2

Dij
dCi

dx

∣∣∣∣∣∣
x=2

=

R∑
j=2

−→
V ij

(−→
C n

j − Cj

)∣∣∣∣∣∣
x=0

; (2.9)

Ci|x→∞ − C∞
i , Ci|i=0 − C

′′
i (x) , (2.10)

here the coefficients
−→
V ij (t) take into account interaction of the atoms of different elements

in the saturated surface (in [8] the necessity of the same consideration was shown). Ci is
concentration of the i component in the matrix. CH

i is the limit surface concentration of the
j component. CH

i is initial distribution of the i -component in (x)-diffusion area.
For solving problem (2.8) and (2.10) as t → 0 it is required to fulfill the following

equalities that determine the functions
−→
V ij (t).

−
R∑

j=2

−→
D ij

dCi

dx

∣∣∣∣∣∣
x=2

=
R∑

j=2

−→
V ij(0)

(
C

′′
j − C

′′
j

)∣∣∣∣∣∣
x=0

, CH
i

∣∣
x→∞

Let us pass to equations (2.8) and (2.10) and pure variables

τ =
t

t0
, z =

x

L
, Dij =

−→
D ij

D0
, Vij =

−→
V ij

V0
,

here D0 = L2/t, V0 = L/t, L is a measure exceeding the length of diffusion area. Having
substituted and closing the unlimited area by the boundary at L distance, we get

−→
d C

dτ
=

d

dz

(
D

−→
d C

dz

)

D

−→
d C

dτ

∣∣∣∣∣
z=0

= V
(−→
C n −

−→
C
)−∣∣∣∣

z=0

;
−→
C
∣∣∣
z=0

=
−−→
C∞;

−→
C−
∣∣∣
t=0

= CH . (2.11)

Here, we included the following matrices: C = (Ci), D = (Dij), V= (Vij). For nu-
merical solution of problem (1.12) we used the net ω = ωz + ωτ with respect to z and
τ .

ωz = (Zs, S = 0, 1...N ; z0 = 0, zN = 1, hs = zs − zs−1) ,

ωτ = (τj , j = 0, 1...ri, τ0 = 0, τ1 = 1,∆τj = τj+1 − τj) .

The indefinite difference scheme (balance method) constructed by means of the integro-
interpolation method in the net ω is as follows [1,10]

−→
C j+1

S −−→
C j

S

∆τj
=

2

hS + hS+1

(
DS+1

2

−→
C i+1

S+1 −
−→
C j

S

hS+1
−DS−1/2

−→
C iH

S+1 −
−→
C j+1

S

hS

)

D1/2
−→
C iH

1 −−→
C j+1

0 = V j+1/2
(−→
C j+H

0 −−→
CH

)
+
(−→
C jH

0 −−→
C j

0

) h1
2∆τ1

(2.12)
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−→
C jH

N =
−→
C∞,

−→
C 0

S =
−→
CH

S .

Here Cj
S is concentration of components in time interval τj at the point zs

DS+1/2 = D

[
1

2

(−→
C j+1

S+1 +
−→
C j+1

S

)]
.

The error of this scheme approximation is
(
∆τmax +∆τ2max

)
[12]. For solving nonlin-

ear system (2.12) we usually use iteration method [12]. In equations (2.12) the iteration
process is structured by the following three changes

−→
C j+1

S → −→
C j+1,α

S , DS+1/2 → Dα−1
S+1/2 = D

[
1

2

(−→
C j+1

S +
−→
C j+1,α+1

S

)]
.

In the ratioCj+1
S , S = 0, 1, ...N the numerical difference scheme is linear. For the initial

iteration the distribution concentration of the previous value of time is taken. For
−→
C j+1,0

S =

Cj+1
S Cj+1,α

S the numerical scheme is three-point. Reducing this scheme to calculations we
get

Dα−1
S+H

−→
C j+1

S −
(
Dα−1

S+1/2 +Dα−1
S−1/2WS + δSE

)−→
C j+1,α

S +Dα+1
S−1/2WS

−→
C j+1,α

S = −δS
−→
C j

S

Dα−1,jH,α
1/2 −

(
Dα−1

1/2 + h1V
jH/2 +

h1
2∆τ1E

)
CjH,α
0 = −

(
h1V

jH
2 CR +

h21

2∆τ1
−→
C j

0

)
,

−→
C jH

N =
−→
C∞,

−→
C 0 =

−→
CH

here E is a unit matrix, WS = hS+1/hS+1, σS = (hS + hS+1) /2∆τj . This problem is
solved by the sweeping method [10]

−→
C j+1,σ

S−1 = x
−→
C j+1,σ

S + zS , S = 1, 2, 3, ..., N (2.13)

here xS and zS matrices are calculated from recurrent ratios for S = 1, 2, ..., N − 1

x1 =

(
Dα−1

1/2 + h1V
j+1/2 +

h21
2∆τ1E

)−1

Dα−1
1/2 , (2.14)

z1 =

(
Dα−1

1/2 + h1V h1V
j+1/2 +

h21
2∆τ1E

)−1
(
h1V

j+1/2Cn +
h21

2∆τ1
−→
C j

0

)
,

XSH =
(
Dα−1

1/2 +Dα−1
S−1/2WS + δSE −Dα−1

S−1/2WSXS

)
Dα−1

S+1/2,

XS+1 =
(
Dα−1

S−1/2 +Dα−1
S−1/2WS + δSE −Dα−1

S−1/2WSXS

)−1
×

×
(
Dα−1

S−1/2WSZS + δS
−→
C j

S

)
. (2.14′)

At first, by formulas (2.14) and (2.14’) we calculate the matrices xS and zS for
S = 1, ..., N − 1. Then, we take into account that by means of the ratio

−→
C j+1

N =
−→
C∞

(2.14) the concentration Cj+1,α
S is determined in all the nodes of the cell. Iterations are

successively calculated until the following inequality is obtained

E ≥ max
R,S

∣∣∣Cj+1,α
R,S − Cj+1,α−1

R,S

∣∣∣ . (2.15)
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As the diffusion coefficients of elements differ several times, for saving time we can
apply unequal cracks with respect to z and τ . To this end, to M simultaneously WM and
mM whose elements WS = WR give the amount of Wh = hS+1/hS . In this case the
following relations are fulfilled:

hmax

hmin
˜

(
D∗

i,max

D∗
i,min

) 1
2

,

m∑
R=1

= N − 1.

Here N is the number of node of space cell. D∗
i,max

(
D∗

i,min

)
is the greatest and least

coefficient of the hmax (hmin) diffusion is the greatest (the least) step of the space cell. By
the time ∆τj the step increases according to linear law

∆τj+1 = ∆τj +∆τ, ∆τ =
h2min

λ
, λ = 1.

So the suggested expressions enable to calculate different diffusion processes in multi-
parameter solid solutions.

3 Conclusions

1. Kinetic of processes that occur in diffusion saturation of compositions are analyzed and
justified. It was determined that kinetics of multi-component diffusion depends on the char-
acter of concentration of chemical potentials.

2. A significant part of analytic solution of diffusion saturation equations in multi-
component systems is obtained from the assumption that diffusion coefficients are con-
stant. But in this case diffusion equations are obtained as nonlinear and it is impossible to
solve them in the closed form. Therefore, it is the most suitable method is to the numerical
method.

3. The higher the open porosity of the press-billet of the saturation medium penetrates
the deeper layers of the product.
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