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On the problems of tension, twisting and bending of ropes
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Abstract. The paper gives a brief description of the construction of
a new theory of the rope, based on the spectral theory operators. The
ropes are modeled as a cylinder with a helical anisotropy, in which the
filler is eliminated by means of the limiting transition in the material
characteristics obtained on the basis of the averaging theory. Based on
the solutions of the Saint-Venant problems of tension-torsion and bend-
ing of ropes, new formulas for calculating the elements of the stiffness
matrix are obtained. The calculation results are presented graphically.
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1 Introduction

There are different designs of ropes, which differ mainly in the way they are braided and the
profile of the wire cross-section from which they are twisted [4]. Such diversity is caused
by different conditions of their exploitation. The most common ongoing are single and
double lay round steel ropes. For single-wire ropes, the wires (fibers) are arranged along
the twisting spirals around the central rectilinear fiber in several layers. Two lay rope are
woven from lay. There are two basic approaches to constructing the theory of single lay
rope (the lay of an ordinary rope will refer as a ”rope”). One such approach [4, 2] is based
on the concept of a rope as a discrete system of curvilinear rods and uses the methods
of construction mechanics. The second approach is based on the equations of an elastic
continuous medium with helical anisotropy [6, 7, 9].

Unlike rectilinear rods, where all the known approaches to constructing an elementary
theory (the method of hypotheses, the Saint-Venant theory, the asymptotic methods of the
theory of elasticity) give the same result
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where Br is the tensile rigidity, E is the Young’s modulus, S is the cross-sectional area,
in the rope theories different approaches lead to different analytical expressions for the
elements of the stiffness matrix dij .

Adduce the expressions d11, obtained by different authors, to illustrate the variety of the
available formulas,

Gegauff (1907, by methods of the theory of elasticity)

Br = ES0 cos
2(α)

where S0 is the effective cross-sectional area of the rope, α is the angle between the tangent
to the outermost fiber and the axis of the rope.

Dinnik A.N. (1957, by the methods of construction mechanics)

Br = ES0 cos
4(α)

Glushko M.F. (1966, by the methods of construction mechanics)

Br =

m∑
i=1

(ESi cos
3(αi) + 1/r2iEIpi sin

4(αi) cos
3(αi) + 1/r2iGIpi sin

6(αi) cos
2(αi))

there m is the number of fibers in the rope, G is the shear modulus, Si, Ii, Ipi - cross sec-
tional area section, the moment of inertia of the section with respect to the axis lying in the
transverse section, the polar moment of inertia of the i-th fiber, respectively, ri - the distance
between the axis of the rope and the fiber, αi is the angle of inclination of the fiber to the
axis of the rope. The construction of the stiffness matrix was carried out in [3] on the basis
of the Saint-Venant solution for a cylinder of a fiber composite with a weak filler. Since the
construction of the solution is related to the numerical integration of a second-order differ-
ential equation whose coefficient with the highest derivative tends to zero as the aggregate’s
Young modulus tends to zero. This process of numerical integration is unstable and does
not allow to obtain an ”exact result” in the limiting case. Therefore, the stress-strain state
(SSS) calculations were duplicated by constructing the solution of the three-dimensional
problem of the theory of elasticity for a continuous inhomogeneous cylinder formed by a fi-
nite number of elastic helical spirals connected by a weak filler by the finite element method
(FEM). In the present paper, a new approach is used to determine the SSS and its rigidity
dij , which allows to obtain expressions for the elements of the stiffness matrix in the form
of elementary functions of the parameter α.

In [3], the stiffness matrix was constructed on the basis of helical spirals so that the step
h of each of them and the twist τ = 2πh remain constant. Simultaneously with the winding
the layers are coated with a polymer binder. After polymerization of the bonding layers we
obtain a cylinder of a fibrous composite.

We denote by E1, ν1 the Young’s modulus and the Poisson’s ratio of helix; through
E2, ν2, the elastic characteristics of the aggregate. To describe the integral elastic properties
of such a cylinder, we proceed as follows: with the geometric center of gravity of one of
the ends of the cylinder we connect the origin of the Cartesian coordinate system x1, x2, x3.
This coordinate system will be called the base coordinate system. We introduce the helical
coordinate system r, θ, z, associated with the basic relations

x1 = rcos(θ + τz), x2 = rsin(θ + τz), x3 = z. (1.1)

The relations (1.1) for r = const, θ = const are the parametric equations of the helical
fiber.

The radius vector of fiber points (lines) is represented in the form

R = re′1 + ze′3, (1.2)
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There

e′1 = er = i1cos(θ + τz) + i2sin(θ + τz),
e′2 = eθ = −i1sin(θ + τz) + i2cos(θ + τz)

there i1, i2, i3 are the unit vectors of the basic (Cartesian) coordinate system. With a helical
line we connect the natural basis (Frenet frame)e1 = n, e2 = b, e3 = t the units of the
principal normal, binormal and tangent, respectively.

The orthogonal transition matrix from the basis ej to the basis e′i has the form

A =

∥∥∥∥∥−1 0 0
0 − cosβ sinβ
0 sinβ cosβ

∥∥∥∥∥
where h

β = arctg(x), x = rτ

The cylinder material obtained by the method described above is not homogeneous, how-
ever, for a sufficiently large number of winding layers it can be considered as locally
transversally isotropic at each point of the cylinder based on the averaging theory, with
the direction of the principal symmetry axis coinciding with the vector e3 = t [6] .

To describe the elastic properties of a cylinder, we use the vector-matrix form of the
generalized Hooke’s law [10]:

σ = Ce
e = [e1, ..., e6]

T , σ = [σ1, ..., σ6]
T , C = (cij), i, j = 1, ...6

σ1 = σ11, σ2 = σ22, σ3 = σ33, σ4 = σ23, σ5 = σ13, σ6 = σ12
e1 = e11, e2 = e22, e3 = e33, e4 = 2e23, e5 = 2e13, e6 = 2e12

there σij , eij are the components of stress and deformation tensors, respectively.
The elastic properties of a transversely isotropic material are determined by five tech-

nical constants: Young’s modulus E,E′, Poisson’s coefficients ν, ν ′ and the shear modulus
G′. Elements of the matrix C are expressed in terms of these constants formulas

c11 = c22 =
E(E′ − Eν ′2)

E′(1− ν2)− 2Eν ′2(1 + ν)
c12 =

E(νE′ + ν ′2Eν2)

E′(1− ν2)− 2Eν ′2(1 + ν)
,

c13 = c23 =
EE′ν ′

E′(1− ν)− 2ν ′2E
, c33 =

E′2(1− ν)

E′(1− ν)− 2ν ′2E
,

c44 = c55 = G′; c66 =
E

2(1 + ν)
c15 = c16 = c25 = c26 = c35 = c36 = 0

Based on the averaging theory [6], we have

E = (
k1(1− ν21)

E1
+
k2(1− ν22)

E2
+
ν ′2

E′ )
−1

ν = E[
k1(ν1 + ν21)

E1
+
k2(ν2 + ν22)

E2
−
ν ′2

E′ ]

G = [
2k1(1 + ν1)

E1
+

2k2(1 + ν2)

E2
]−1

E′ = k1E1 + k2E2, ν
′ = k1ν1 + k2ν2, k1 + k2 = 1

where k1, k2 is the concentration of the bearing elements and the filler respectively along
the section perpendicular to e3
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As a result of the transition from the basis ej to the basis e′i, we obtain the following
relations of the generalized Hooke’s law in a helical coordinate system

σrr = c′11err + c′12eθθ + c′13ezz + 2c′14eθz
σθθ = c′12err + c′22eθθ + c′23ezz + 2c′24eθz
σzz = c′13err + c′23eθθ + c′33ezz + 2c′34eθz
σθz = c′14err + c′24eθθ + c′34ezz + 2c′44eθz
σrz = c′55erz + c′56erθ
σrθ = c′56erz + c′66erθ

(1.3)

There
c′11 = c11, c

′
12 = c12l

2
c + c13l

2
s , c

′
13 = c13l

2
c + c12l

2
s ,

c′14 = lcls(c13 − c12),
c′23 = c13l

2
c + (c11 + c33 − 4c44)l

2
c l

2
s + c13l

4
s

c′24 = −c11l3c ls − c13(lcl
3
s − l3c ls) + c33lcl

3
s − 2c44(lcl

3
s − l3c ls)

c′33 = c11l
4
s + 2c13l

2
c l

2
s + c33l

4
c + 4c44l

2
c l

2
s

c′34 = −lcls(c11l2s − c13 + 2c13l
2
c + 2c44l

2
c − 2c44l

2
s)

c′44 = c11l
2
c l

2
s − 2c13l

2
c l

2
s + c33l

2
c l

2
s + c44(1− 4l2c l

2
s)

c′55 = c44l
2
c + c66l

2
s ,

c′56 = lcls(c44 − c66)
c′66 = c66l

2
c + c44l

2
s

lc = cosβ, ls = sinβ, β = arctg(τr)

(1.4)

there r ∈ [0, a], a - is the outer radius of the rope.
The components of the deformation tensor in the basis of the helical coordinate system

are expressed in terms of the displacements by the following relations

err = ∂rur, eθθ = ur + ∂θuθ/r,
ezz = Duz, 2erθ = ∂ruθ + (∂θur − uθ)/r,
2eθz = (∂θuz)/r +Duθ, 2erz = ∂ruz +Dur, D = ∂z − τ∂θ

(1.5)

Equations of equilibrium in stresses in this case have the form

∂σrr

∂r
−
σrr − σθθ

r
+

1

r

∂σrθ
∂θ

+Dσrz = 0

∂σrθ
∂r

+ 2
σrθ
r

+
1

r

∂σθθ
∂θ

+Dσθz = 0

∂σrz

∂r
+
σrz

r
+

1

r

∂σθz
∂θ

+Dσzz = 0

(1.6)

Using relations (1.3)-(1.6), one can obtain a system of differential equations with respect
to the components of the displacement vector, u = [ur, uθ, uz]

T , which we symbolically
write in the form

L(∂)u = 0, ∂ =
∂

∂z
(1.7)

The condition for the absence of stresses on the lateral surface is written in the form

N(∂)u = 0 (1.8)

If we look for a solution in the form

u = a(r, θ)eiλz (1.9)

after substituting (1.7) into (1.5), (1.6) we obtain the spectral problem on the cross section

Z(iλ)a = {L(iλ)a, N(iλ)a} = 0
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The operator Z has an infinite countable set of eigenvalues λ±k , among which λ0 =

0, λ±1 = ±τ are quadruple. Linear combinations of the eigenvectors and associated vectors
of eigenvalues determine six trivial elementary solutions describing the rope’s displacement
as a rigid body, three Saint Venant solutions of tensile-torsion problems, pure bending and
bending of transverse forces and trivial elementary solutions linear combination of which
describes various displacements rope as a solid body. The remaining eigenvalues are com-
plex and symmetrically located in the complex plane [3,6,8]. These properties allows to
present a general solution for the rope in the following form [1,8]:

u =

12∑
n=1

Cnun +
∑
k

[C+
k u(z, λ

+
k ) + C−

k u(z − l, λ−k )]

Here, l is the length of the cylinder Cn, C±
k are arbitrary constants that are determined

by satisfying the boundary conditions at the ends of the cylinder z = 0, l, un, are the
elementary solutions of Saint-Venant [5 - 7],

u(z, λk) = ake
iλkz

λ+k (Imλ
+
k > 0), λ−k (Imλ

−
k < 0) eigenvalues of the problem (1.19), a+k ,a

−
k are the cor-

responding eigenvectors. The SSS responding to these decisions is self-balanced in each
cross-section and exponentially damps at a distance from the ends. However, with a weak
filler, which in the case under consideration is equivalent to the inequality E2/E1 ≪ 1
(the cross-sectional material is highly inhomogeneous), the ”averaging” procedure results
in E ≪ E′ , i.e. the ”material” obtained after the ”averaging” procedure has a strong
anisotropy. The studies carried out in [1, 11] for layered plates and cylinders have shown that
there exists a finite number λ±k , the imaginary part of which tends to zero as m → 0. Ele-
mentary solutions corresponding to these eigenvalues at the corresponding boundary condi-
tions at the ends, can have a significant effect on the inner cylinder SSS and its rigidity. The
presence of weakly damped elementary solutions in the solution of the three-dimensional
problem leads to a violation of the Saint-Venant principle for cylindrical bodies of compos-
ite materials with a weak filler. In the case of a rope, examples of self-balanced loads can
be given which will lead to its destruction, if applied to one of the ends of the rope and the
other left free.

2. The problem of tension-torsion
For a cylinder with helical anisotropy, the construction of the Saint-Venant solution of

the tensile-contraction problem leads to the following relations [10].

2π

∫ a

0
σzzrdr = d11C1 + d12C2 = Pz, 2π

∫ a

0
σzθr

2dr = d12C1 + d22C2 =Mz

there Pz,Mz are the projections of the principal vector and the principal stress moment
acting in the cross section, C1 = ε, C2 = φ are arbitrary constants, the first of which can be
interpreted as the relative elongation of the rope axis, the second as the relative twist angle
of its cross section. The rope will be considered as a composite cylinder described above,
for which E2 = 0, ν2 = 0. In this case it follows from relations (1.3), (1.4) that which is
different from zero only three elements of the matrix of modulus C

c33 = E′ = k1E1, c44 = c55 = G′ = k1G1

G′ = E′/2(1 + ν1)
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After transforming the corresponding stiffness matrix C′ to the helical coordinate sys-
tem, we obtain the following expressions for the stresses:

σrr = 0, σθθ = 0, σrθ = 0
σzz = c′23eθθ + c′33ezz + c′34eθz
σθz = c′24eθθ + c′34ezz + c′44eθz
σrz = c′55erz + c′56erθ

(1.10)

c′23 = sin(2β)2(−4G′ + E′)/4, c′33 = cos(β)4E′ + sin(2β)2G′,
c′34 = (cos(β)2 sin(2β)E′ − sin(4β)G′)/2, c′44 = cos(2β)2G′ + sin(2β)2E′/4,
c′55 = cos(β)2G′, c′56 = sin(2β)G′/2, 0 < β < α < π/2

(1.11)

All other elements of the matrix C′ are equal to zero. For the extension problem, the dis-
placement vector has the form

u(1) = (a(1)(r), 0, εz + u0z) (1.12)

u0z is an arbitrary constant, which can be interpreted as a translational displacement parallel
to theOz axis. For a given displacement, different from zero components of the stress tensor
have the following form

σ
(1)
zz =

E′

1 + kt2
ε, σ

(1)
θz =

E′t

2(1 + kt2)
ε

For the torsion problem, the displacement vector has the form

u(2) = (a(2)(r), 0, φrz + u0z)

φ is an arbitrary constant, which can be interpreted as the relative angle of rotation of the
cross section of the rope, u0z is an arbitrary constant, which can be interpreted as the angle
of rotation of the rope (as a rigid body) around the axis Oz.

For u(2), different from zero components of the stress tensor have the form

σ(2)zz =
E′t

2(1 + kt2)
aφ, σ

(2)
θz =

E′r

2(1 + kt2)
φ

there

t = β, k =
1 + ν1

2
=

E′

4G′

The principal vector and principal moment of the stresses acting in the cross section of
the rope z = const, are determined by the following relations:

Pz = d11ε+ d12φ, Mz = d21ε+ d22φ

where
d11 =

πa2E′ ln(1+kt21)
t1k

d12 = d21 =
1
2
πa3E′(kt21−ln(1+kt21))

t21k
2

d22 =
1
2
πa4E′(kt21−ln(1+kt21))

t31k
2

(1.13)

and
t1 = α, α = τa, r =

aβ

α
, 0 < β < α < π/2.

3. Rigidity of the rope for tension and torsion. It can be seen from relations (1.13)
that the rigidity of the rope for tension and torsion depends substantially on the boundary
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conditions at the ends of the rope z = 0, L. Indeed, if the ends are rigidly jammed (φ = 0),
then it follows from the relations (1.13) that in this case the rigidity to tension

Dε = d11

while in the rope there is a torque Mz = d12ε.
If we assume that the rope is stretched freely suspended by weight P , then in this case,

taking into account that M = 0, we obtain

DM = d11 − d212/d22

In conclusion, we give graphs illustrating the dependence of Dε, DM on the parameter α
106 (Fig. 1) [5].

Fig.1. Tension rigidity Dφ(φ = 0,M ̸= 0), DM (M = 0, φ ̸= 0).

4. Saint-Venant’s solutions the bending problems
The rope will be considered as a composite cylinder described above, for which

E2 = 0, ν2 = 0. In this case, the following relations hold (1.10)-(1.12):

c33 = E′ = k1E1, c44 = c55 = G′ = k1G1

The displacement C′ field of rope points and, accordingly, the strain and stress fields
can be described by three groups of elementary solutions [3.8,10].

The first group of six vectors describes the movement of the rope as a rigid body (it
is necessary to satisfy the geometric boundary conditions at the ends of the rope). In the
helical coordinate system, this group can be represented as:

u0r = C1e
iψ + C2e

−iψ + zC3e
iψ + zC4e

−iψ,

u0θ = iC1e
iψ − iC2e

−iψ + izC3e
iψ − izC4e

−iψ + C6r,

u0z = −C3re
iψ − C4re

−iψ + C5,

ψ = τz + θ.

C1 =
1

2
(a01 − ia02), C2 = C1, C3 =

1

2
(ω2 + iω1), C4 = C3

C5 = a03, C6 = ω3
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Here a0k, ωk are the projections of the vectors of translational displacement and rotation of
the rope as a rigid body on the axis of the basic coordinate system Ox1x2x3 . A stress-
strain state corresponding to the second group is equivalent to the bending moment M =
M1 + iM2 and SSS corresponding to the third group is equivalent to the transverse force
Q = Q1 + iQ2 . The elementary solutions that answer them have the form:

ul = eiψal.

There
a7 = (z2/2 + f(r), iz2/2, rz), a8 = a7
a9 = (z3/6 + zf(r), iz3/6, rz2/2), a10 = a9
f(r) = c′23r

2/4c′22

For the elementary solution u7 the corresponding stresses are determined by the following
formulas:

σzz,7 = eiψbzz,7, σzz,8 = σzz,7
σzθ,7 = eiψbzθ,7, σzθ,8 = σzθ,7
σrz,7 = eiψbrz,7, σrz,8 = σrz,7

There

bzz,7 =
E′t

(1 + kt2)
, brz,7 =

G′t1

2(1 + t2)
, bθz,7 =

G′tt1

2(1 + t2)

All other components are equal to zero.
For the elementary solution u9 the stresses are determined by the following formulas:

σzz,9 = eiψ(zbzz,7 + ibzz,9), σzz,10 = σzz,9
σzθ,9 = eiψ(zbzθ,7 + ibzθ,9), σzθ,10 = σzθ,9
σrz,9 = eiψ(zbrz,7 + ibrz,9), σrz,10 = σrz,9

There

bzz,9 =
E′t

1 + t2
, brz,9 =

G′

1 + t2
(1 +

t1

6
), bzθ,9 =

G′

1 + t2
(1 +

tt1

6
)

All other components are equal to zero.
Thus, the vector of displacements and the stress vector of the group elementary solutions

can be represented in the form of the following linear combinations:

u = C7u7 + C8u8 + C9u9 + C10u10,
σ = C7σ7 + C8σ8 + C9σ9 + C10σ10

For a rope, as for a cylinder with helical anisotropy, the constants Ck are related to the co-
ordinates of the bending momentMk and the transverse forceQk by the following relations
[8, 10]:

d33C7 + d35C9 =M2 + iM1

d33C9 = −Q1 + iQ2

C8 = C7, C10 = C9

where Qj ,Mj are the projections of the transverse force and bending moment on the axis
of the basic coordinate system Ox1x2x3 (Fig. 2),

d33 =
1
2
πa4kE′

t21
− 1

2
πa4kE′ln(1+kt21))

t41k
2

d35 =
4
3πa

4G− 4πaG
t21k

2 + 4πa4Garctg(kt1)
t31k

3

,

D33 =
d33

πa4kE
, D35 =

d35
πa4G
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Fig.2. Flexion rigidity D33D35 .

5. Applied theory of bending ropes
The obtained relationships have a narrow area of application since it is possible to calcu-

late the SSS rope for loads of the bending moment type and transverse force that are applied
to its ends. Below we propose another theory, in a sense equivalent to the theory of bending
of Bernoulli-Euler rods, which makes it possible to study H under the action of a transverse
load on its axis. Let’s illustrate this with a concrete example.

Consider the following equation:

d33D
4w = qcos(θ + τz), q = const

D =
∂

∂z
− τ

∂

∂θ

(1.14)

Here, the right-hand side corresponds to a uniformly distributed transverse load along the
axis, directed parallel to the axis Ox1. Note that for θ = 0, τ = 0, this equation degenerates
into the classical bending equation of the rod under the action of a uniformly distributed
load perpendicular to its axis. The particular solution of the inhomogeneous equation in this
case has the form

w1 =
qz4

24
cos(θ + τz)

The general solution of the homogeneous equation can be represented in the form:

w0 = (X0 +X1z +X2z
2 +X3z

3)cos(θ + τz)

there Xk - are arbitrary constants, which are determined by satisfying the boundary condi-
tions at the ends of the rope.

Thus, the general solution of equation (1.12) has the form:

w = w0 + w1

If, for example, the ends of the rope are rigidly embedded, then to determine these
constants we obtain the following boundary conditions

w(0, θ) = 0, ∂zw(0, θ) = 0
w(l, θ) = 0, ∂zw(l, θ) = 0
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The solution of these equations has the form

X0 = 0, X1 = 0, X2 =
1

24
ql2, X3 = −

1

12
ql (1.15)
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