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Abstract. This paper is a continuation of the paper “Akbarov SD and
Mehdiyev MA. (2018) “The interface stress field in the elastic system
consisting of the hollow cylinder and surrounding elastic medium un-
der 3D non-axisymmetric forced vibration”, CMC: Computers, Mate-
rials & Continua 54 (1): 61 - 81” in which it was proposed and em-
ployed the solution method for investigation of the 3D non-axisymmetric
dynamic problems for the bi-material elastic system consisting hollow
cylinder and surrounding infinite elastic medium. However, in the afore-
mentioned paper, the concrete investigations are made for the interface
normal stress only. Therefore, in the present paper, the aforementioned
investigations and discussions are made for the interface shear stresses.
Numerical results on the frequency responses of the mentioned shear
stresses are presented and discussed .
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1 Introduction

First of all, we note that the detailed review of the related investigations are given in the
papers [3, 4, 8, 12] and in the monograph [5] therefore we do not consider here this review
again. Nevertheless, we review here some recent results which have been obtained with the
participation of the author of the present paper and begin this review with the paper [1] in
which the axisymmetric interface stress state in the “hollow cylinder surrounding elastic
medium” under action in the interior the time-harmonic ring forces. The dynamics of the
moving ring load acting in the interior of the cylinder surrounded by an elastic medium
in the axisymmetric case has been studied in the paper [8]. In the paper [8] the problem
considered in the [8] is studied in the case where in the “hollow cylinder - surrounding elas-
tic system” there exist the homogeneous initial stresses caused by the initial static forces
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acting at infinity in the cylinder’s axis direction. 3D non-axisymmetric dynamics of the
moving load acting on the interior of the hollow cylinder surrounded by the elastic medium
has been investigated in the paper [3]. The 3D non-axisymmetric forced vibration of the
aforementioned bi-material system is considered in the paper [4] and it is studied the in-
terface normal stress only. However, the working carrying capacity as well as the adhesion
strengths of the system consisting of the hollow cylinder and surrounding elastic medium
depend also significantly on the interface shear stresses. Therefore in the present paper, the
investigations, started in the paper [4] is developed, and the aforementioned interface shear
stresses are studied. Numerical results on the frequency response of these stresses and the
influence of the problem parameters on these responses are presented and discussed.

2 Formulation of the problem and solution method

Note that the formulation of the problem is the same as in the paper [4], nevertheless for
readability of the paper briefly we repute this formulation Note that the formulation of the
problem is the same as in the paper [4], nevertheless, for readability of the paper we repute
briefly this formulation and consider the system the sketch of which is illustrated in Fig. 1.

Fig. 1. The sketch of the system under consideration and non-axisymmetric time-harmonic
forces acting in the interior of the hollow cylinder (a) and the cross-section of the cylinder

(b) and the distribution of the amplitude of the external forces in the circumferential
direction

Note that the formulation of the problem is the same as in the paper [4], nevertheless for
readability of the paper briefly we repute this formulation Note that the formulation of the
problem is the same as in the paper [4], nevertheless, for readability of the paper we repute
briefly this formulation and consider the system the sketch of which is illustrated in Fig.
2.1.

As shown in Fig. 2.1 the thickness of the cylinder is h and the external radius of the
cross-section of this cylinder is R. We associate the cylindrical system of coordinate with
the axis of the cylinder and assume that in the interior of the cylinder the point located with
respect to the cylinder axis and non-uniformly distributed in the circumferential direction
time-harmonic normal forces act. Moreover, assume that the materials of the cylinder and
surrounding elastic medium are homogeneous and isotropic. Within these frameworks we
investigate the non-axisymmetric frequency response of the system to the time-harmonic
external forces.

As in [4], below, we denote the values related to the hollow cylinder and to the surround-
ing elastic medium with the upper indices (2.2) and (2.1) respectively.

Thus, we write the field equations, relations and boundary and contact conditions in the
selected cylindrical system of coordinates.



Mahir A. Mehdiyev 45

Equations of motion:
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Elasticity relations:
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In (2.1) and (2.2) the conventional notation is used.
It follows from the foregoing assumptions and from the Fig. 1b that it can be written the

following boundary conditions on the interior surface of the hollow cylinder.
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where Pα is determined from the following relation.
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It is assumed that the perfect contact conditions satisfy and these conditions are written
as follows.
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Moreover, it is assumed that assume that



46 Strain and elasticity parameters of the medium...
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With this we exhaust the problem formulation and consider the solution method of this
problem. This method is based on the use of the following representation described in [7].

u(m)
r =

1

r

∂

∂θ
Ψ (m) − ∂2

∂ r∂ z
X(m), u

(m)
θ = − ∂

∂r
Ψ (m) − 1

r

∂2

∂θ ∂ z
X(m),

u(m)
z = (λ(m) + µ(m))−1

(
(λ(m) + 2µ(m))∆1 + µ(m) ∂

2

∂z2
− ρ(m) ∂

2

∂t2

)
X(m),

∆ 1 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
,m = 1, 2, (2.7)

where the functions Ψ (m) and X(m)are the solutions to the equations given below.(
∆1 +

∂2

∂z2
− ρ(k)

µ(k)
∂2

∂t2

)
Ψ (m) = 0,

[(
∆ 1 +

∂2

∂z2

)(
∆ 1 +

∂2

∂z2

)
+

−ρ(m) λ(m) + 3µ(m)

µ(m)(λ(m) + 2µ(m))
(∆1 +

∂2

∂z2
)

)
∂2

∂t2
+

+
(ρ(m))2

µ(m)(λ(m) + 2µ(m))

∂4

∂t4

]
X(m) = 0. (2.8)

Using the presentation f(r, θ, z, t) = f̄(r, θ, z)eiωt where f̄(r, θ, z) is an amplitude of
the sought value (we will omit the over-bar on the amplitudes) we can replace the operators
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boundary and contact conditions for the amplitudes of the sought values from the forgoing
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respect to the coordinate z (where s is a transform parameter) to all the equations, relations,
boundary and contact conditions obtained for the amplitudes.

Thus, according to the foregoing discussions the amplitudes of the sought values can be
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We use the dimensionless coordinates r′ = r/h and z′ = z/h (the upper prime will be
omitted below) and introduce the notation
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where c(1.2)2 =
√
µ(1.2)/ρ(1.2)and call it the dimensionless frequency.

Thus, substituting the expressions in (2.9) into the foregoing equations and relations,
and taking the notation (2.10) into consideration we obtain the following equations for the
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Taking the condition in (2.6) into consideration, the solution to the equations in (2.13)
is found as follows.

For the hollow cylinder:
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where In(x) and Kn(x) are the modified Bessel functions of the n − th order of the first
and second kinds, respectively. In (2.16) and (2.17) the arguments of these functions, i.e.
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Thus, in this way it is determined analytical expressions of the Fourier transforms of the
sought values. The original of those are determined numerically with the use of the algo-
rithm and PC programs described in the paper [4]. Therefore, we here do not consider this
algorithm and PC programs and their testing and immediately go to the analysis of the re-
lated numerical results. At the same time, we note that under numerical investigations the

infinite series
∞∑
n=1

(·)n in (2.12) and (2.19) are replaced with the corresponding finite series

N∑
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(·)n and the number N is determined as N = 20 from the convergence requirement of

the numerical results.

3 Numerical results and their analysis

We consider numerical results related to the interface shear stresses

σrz(R, θ, z) = σ(2)rz (R, θ, z) = σ(1)rz (R, θ, z), (3.1)

σrθ(R, θ, z) = σ
(2)
rθ (R, θ, z) = σ

(1)
rθ (R, θ, z). (3.2)

First we consider the frequency response of these stresses in the case where the shear
stress σrz(R, θ, z)is calculated at z/h = 0.5 and θ = 0, however, the shear stress σrθis
calculated at z/h = 0 and θ = π/12. Such selection of the coordinates follows from
the fact that the considered stresses their absolute maximum values obtain namely in the
around of the corresponding selected points. In obtaining all numerical results which will
be considered below it is assumed that ν(2.1) = ν(2.1) = 0.3, where through ν the Poisson’s
ratio of the corresponding material is denoted. Moreover, below through the letters Eand
ρthe modulus of elasticity and the density of the corresponding material will be denoted.

Thus, we consider the graphs given in Fig. 2 which illustrate the frequency response of
the shear stress σrzin the cases where α = π/12 (a), π/6(b) and π/4(c) for various values
of the ratios E(2.1)

/
E(2.2) (= ρ(1)

/
ρ(2.2)) under R/h = 10.
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a) b)

c)

Fig. 2. Frequency response of the interface shear stress σrzin the cases where
α = π/12(a), π/6 (b) and π/4(c) for various values of the ratio

E(1)
/
E(2.2)(= ρ(1)

/
ρ(2.2)) under R/h = 10

It follows from these results that maximum values of the shear stress σrzwith respect to
Ω increase monotonically with the ratio E(1)/E(2). This means that the maximum values
of the stressσrz increase with increasing of the modulus of elasticity of the surrounding
elastic medium under fixed modulus of the hollow cylinder material. The comparison of
the results given in Fig. 2a, Fig. 2b and Fig. 2c with each other shows that an increase in
the values of the angle α causes a decrease in the values of the shear stress σrz . Moreover,
the comparison of the results given in Fig. 3 with the corresponding ones obtained in the
paper [1] shows that the present results are greater significantly than those obtained in the
corresponding axisymmetric case. Consequently, such results enhance the significance of
the numerical results obtained in the present paper for the interface shear stresses under
non-axisymmetric dynamic time-harmonic loading.

We consider also the influence of the ratio R/h on the frequency response of the shear
stress σrz the results for which are given in Fig. 3 which are constructed in the cases where
E(1)

/
E(2) = ρ(1)

/
ρ(2)) = 0.5 (Fig. 3a, Fig. 3b and Fig. 3c) and E(1)/E(2) = 1.2 (Fig.

3d and Fig. 3e) under α = π/12 (Fig. 3a and Fig. 3d), π/6 (Fig. 3b and Fig. 3e) and π/4
(Fig. 3c). It follows from these results that, in general, an increase in the values of the ratio
R/h causes to increase the values of the shear stress σrz . Moreover, these results show that
the non-monotone character of the frequency response of the stress σrz is established with
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increasing of the ratio R/h. Besides all of these the results show that the values of the σrz
approach to each other with R/h.

a) b)

c) d)

e)

Fig. 3. The influence of the ratio R/h on t he frequency response of the interface shear
stress σrz in the cases where α = π/12 (a), π/6(b) and π/4(c) under

E(2.1)
/
(2.1)E(2.2) E(2.1) = ρ(2.1)

/
ρ(2.2)) = 0.5 and in the cases where α = π/12 (d),

π/6(e) under E(1)
/
E(2.2) = ρ(1)

/
ρ(2.2)) = 1.2.

Thus, it follows from the foregoing discussions that the character of the influence of the
ratios E(1)/E(2)and R/hon the frequency response of the shear stress σrz is similar (in
the qualitative sense) with that obtained for the normal stress σrr discussed in [4] and has
the same explanation which are made in [4] for the results related to the σrr which is the
interface normal stress.
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Now we consider the results related to the frequency response of the circumferential
shear stress σrθ. These results are presented in Fig. 4 and 5 which illustrate the influence
of the ratios E(2.1)/E(2.2) (Fig. 4) and R/h (Fig. 5) on the mentioned frequency response.
Under investigation the

c)

a) b)

Fig. 4. Frequency response of the interface shear stress σrθ in the cases where α = π/12

(a), π/6 (b) and π/4(c) for various values of the ratio E(1)
/
E(2)(= ρ(1)

/
ρ(2)) under

R/h = 10

influence of the rationE(1)/E(2)on this response it is considered the cases where α = π/12
(Fig. 4a), π/6(Fig. 4b) and π/4 (Fig. 4c) for R/h = 10, however under investigations the
influence of the ratio R/hon this response it is considered the cases where α = π/6 (Fig.
5a under E(1)/E(2) = 0.5 and Fig. 5c under E(1)/E(2) = 1.2) and α = π/4 (Fig. 5b
under E(1)/E(2) = 0.5 and Fig. 5d under E(1)/E(2) = 1.2). Note that the shear stress σrθ
appears namely as a result of the non-axisymmetric external loading of the system under
consideration and, according to the results given in Fig. 4 and 5, decrease with the angle
α. Moreover, according to Fig. 5, it can be concluded that an increase in the values of the
ratio E(1)/E(2) causes an increase in the absolute values of the stress σrθ although there
are some deviations from this decreasing. What is more these deviations appear for the
relatively great values of the ratio E(1)/E(2) (for instance, for the E(1)/E(2) = 1.5).

If follows from the results given in Fig. 5a and Fig. 5b (in Fig. 5c and Fig. 5d) the
influence of the ratio R/h on the frequency response of the stress σrθ has complicate
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character. Nevertheless, according to these results, we can conclude that in the case where
E(1)/E(2) = 0.5 (in the case where E(1)/E(2) = 1.2) an increase of the ratio R/h causes
an increase (a decrease) in the absolute maximum values of the stress σrθ with respect to the
dimensionless frequency Ω . Moreover, these results also show that the values of the stress
σrθ approach to each other with R/h.

a) b)

c) d)

Fig. 5. The influence of the ratio R/h on the frequency response of the interface shear
stress σrθ in the cases where α = π/6 (a) and π/4(b) under E(1)

/
E(2) = ρ(1)

/
ρ(2)) = 0.5

and in the cases where α = π/6 (d) and π/4(e) under E(2)
/
E(2) =ρ(1)

/
ρ(2)) = 1.2.

Consider distribution of the shear stress σrz with respect to the dimensionless coordinate
z/h obtained for various angle α under θ = 0. This distribution is illustrated by graphs given
in Fig. 6 from which follows that this distribution is also has quasi-periodic character which
similar with that observed for the normal stress σrr which is discussed in [4]. However,
the “first” amplitude of this distribution is not absolute maximum of the stress σrz and this
absolute maximum is the “second” amplitude of this distribution which appear at z/h ≈ 3.0
(we recall that the first amplitude of the distribution of the normal stress σrr which appear
at z/h = 0 [4] is the absolute maximum of the σrr with respect to z/h). Consequently,
before a certain distance from the point at which the external force acts the amplitude of the
distribution increases, however, after this point the amplitudes of theσrzdecrease with z/h.

The distribution of the shear stress σrz at z/h = 0.5 with respect to the coordinate θ
for various α are illustrated through the graphs given in Fig. 7 from which follows that this
distribution is similar in the qualitative sense with that obtained for the normal stress σrr
and shown in [4]. Nevertheless, in Fig. 7 the appearing of the maximums of the stress σrzin
the cases where α = π/4 and π/2 at θ = θ′′ > 0 is observed more clearly than that in [4].
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a) b)

Fig. 6. The distribution of the interface shear stress σrz with respect to the coordinate z/h
in the cases where Ω = 0.3 (a) and 0.5 (b).

a) b)

Fig. 7. The distribution of the interface shear stress σrz with respect to the coordinate θ in
the cases where Ω = 0.3 (a) and 0.5 (b).

a) b)

Fig. 8. The distribution of the interface shear stress σrθ with respect to the coordinate z/h
in the cases where Ω = 0.3 (a) and 0.5 (b)

Finally, we consider the distribution of the shear stress σrθ with respect to coordinates
z/h and θ which are given in Fig.8 and 9 respectively. Note that under construction of the
graphs given in Fig. 8 the values of the stress σrθ are calculated at θ = π/12, however
under construction of the graphs given in Fig. 9 the values of the this stress are calculated
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at z/h = 0. It follows from Fig. 8 that the distribution of the stress σrθ with respect to
the z/h is similar in the qualitative sense with that obtained for the shear stress σrz , i.e.
the absolute maximum amplitude of the stress appear in a certain distance from the point
at which the external forces acts and before (after) this point amplitudes of the distribution
increase (decrease). However, Fig. 9 shows that the distribution of the shear stress σrθ with
respect to the θ differ significantly from those obtained for the stressesσrr [4] and σrz (Fig.
7). It follows from the graphs given in Fig.9 that the absolute maximum of the stress σrθ
appears at θ = θ∗ > 0 and the values of the θ∗ increase with angle α. Moreover these
graphs show that the mentioned distribution has “vibrational” character and the amplitudes
of this “vibration” decrease rapidly with θ.

a) b)

Fig. 9. The distribution of the interface shear stress σrθ with respect to the coordinate θ in
the cases where Ω = 0.3 (a) and 0.5 (b).

This completes the consideration and analysis of the numerical results.

4 Conclusions

According to these discussions, the following main and concrete conclusions can be drawn:
1 Absolute maximum values of amplitudes of the interface stresses obtained in the non-

axisymmetric case are greater significantly than those obtained in the corresponding
axisymmetric case;

2 An increase in a modulus of elasticity of the surrounding elastic medium (of the material
of the hollow cylinder) under fixed modulus of elasticity of a modulus of elasticity of
the hollow cylinder’s material (of the surrounding elastic medium) cases an increase (a
decrease) in the absolute values of amplitudes of the interface shear stresses;

3 Absolute values of amplitudes of the interface shear stresses increase monotonically
with decreasing of the thickness (with increasing of the external radius of the cross
section) of the hollow cylinder;

4 An increase of the central angle within which the external forces are distributed, causes
a decrease in the absolute maximum values of the interface shear stresses;

5 Distributions of amplitudes of the interface shear stresses with respect to the axial coor-
dinate has quasi-periodic character and period of these distributions increase, however
the amplitudes decrease with the aforementioned central angle;

6 The character of the distribution of amplitudes of the interface shear stresses with respect
to the circumferential coordinate depends significantly on the values of the aforemen-
tioned central angle.
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