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Effect of wave generation at critical time combined viscous-elastic ring
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Abstract. In this paper we consider the problem of loss of stability for
a ring as a result of external pressure. The pressure intensity is set. The
ring is three-layered, composed of various materials, the ring structure
is symmetrical about the middle surface, the material of the ring is vis-
coelastic. The article studies the critical time of stability with the aid
of various geometric theories. In addition, we consider how the number
of waves affects this critical time. The possibility of exact solutions of
such problems is difficult, since as a result we have to solve a nonlinear
boundary value problem with discontinuous coefficients. Therefore, it is
necessary to resort to variational methods of solution.
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1 Derivation of the variational equation

We introduce the ring of radius R and thickness 2h in the polar coordinate system (z, φ).
Suppose that it is made up of s alternating connected concentric layers with different values
of the modulus of elasticity Ek+1 and creep functions

Dk+1 {(t− τ) σ (τ)} [ k = 0, 1, . . . (s− 1) ] .

Further, we shall regard them as linear with respect to the voltage σ:

Dk+1 {(t− τ) σ (τ)} = F ′
k+1 (t− τ) σ (τ) ,
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where F ′
k+1 (t− τ) is the difference kernel of creep, and the prime denotes differentiation

with respect to the parameter (t− τ) [1]. The thickness of each layer will be denoted by
δk. Thus, δ1 + δ2 + . . .+ δs = 2h there is a full thickness of the ring.

In [4], an analogous problem was solved by using a theory in which the nonlinearity of
the deflection is taken into account w and the inequality w/R << 1 (simple nonlinearity)
is assumed to be satisfied.

The following assumptions are based on the geometrically nonlinear theory used here:
a) in the process of deformation, the nonlinearity is simultaneously taken into account

both in deflection w and in tangential displacement v (total nonlinearity);
b) neglecting the tangential displacement, we confine ourselves to nonlinearity only of

the deflection (partial nonlinearity).
The remaining assumptions of the theory of condensed multilayer rings are listed in [4].
Under the assumed assumptions, we write out the physical relation for the package as a

whole in the form of a single equality [5]

εΦ =
σ

Ek+1
+

t∫
0

F ′
k+1 (t− τ) σ (τ) dτ, ak ≤ z ≤ ak+1 (1.1)

where

ak = −h+

s∑
i=0

δi (δ0 = 0) . (1.2)

Consider the function F ′
k+1 (t− τ) in an exponential form:

F ′
k+1 (t− τ) =

Ak+1

Ek+1
e−α (t−τ). (1.3)

Here Ak+1 are the creep coefficients of the materials of the layers and the indicator α is
assumed to be the same for the entire package.

Let us now consider the stability of a selected ring, compressed by a compressive load
uniformly distributed over the outer surface q = const.

Due to the hypothesis of flat sections, we write

ε = ε0 + kz.

Taking into account the assumption a) the magnitude ε0 and curvature k are determined
from the formulas of the nonlinear theory of thin shells [8]:

ε0 =
1

R

(
w +

∂v

∂φ

)
+

1

2R2

{(
∂v

∂φ
+ w

)2

+

(
∂w

∂φ
− v

)2
}
,

κ = − 1

R2

(
∂2w

∂φ2
− ∂v

∂φ

)
. (1.4)

For case b) the corresponding formulas are reduced to the form:

ε0 =
w

R
+

1

2R2

{
w2 +

(
∂w

∂φ

)2
}
, κ = − 1

R2

(
∂2w

∂φ2

)
. (1.5)
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We solve the problem by means of the variational method [2], in which the expressions
for the functionals for cases a) and b) have the following form, respectively:

K = R

h∫
−h

2π∫
0

{
σ̇ε̇+

σ

2R2

[(
∂ẇ

∂φ
− v̇

)2

+

(
∂v̇

∂φ
+ ẇ

)2
]}

dφdz−

−R

2π∫
0

s−1∑
k=0

ak+1∫
ak

ε̇Φσ̇ dz dφ+
R

2

2π∫
0

s−1∑
k=0

ak+1∫
ak

σ̇2

Ek+1
dzdφ, (1.6)

K = R

h∫
−h

2π∫
0

{
σ̇ε̇+

σ

2R2

[(
∂ẇ

∂φ

)2

+ ẇ2

]}
dφdz−

−R

2π∫
0

s−1∑
k=0

ak+1∫
ak

ε̇Φσ̇ dz dφ+
R

2

2π∫
0

s−1∑
k=0

ak+1∫
ak

σ̇2

Ek+1
dzdφ. (1.7)

We differentiate by the parameter t (physical time). From (1.3) we have:

F ′′ (t− τ) = −α
Ak+1

Ek+1
e−α(t−τ)

and for ε̇Φ writing

ε̇Φ =
1

Ek+1

σ̇ +Ak+1

σ − α

t∫
0

e−α(t−τ)σ (τ) dτ

 . (1.8)

Taking into account (1.8) in (1.6) and (1.7), we obtain the following expressions for the
functionals:

K = R

h∫
−h

2π∫
0

{
σ̇ε̇+

σ

2R2

[(
∂ẇ

∂φ
− v̇

)2

+

(
∂v̇

∂φ
+ ẇ

)2
]}

dφ dz−

−R

2

2π∫
0

s−1∑
k=0

1

Ek+1

ak+1∫
ak

σ̇2 dz dφ−R

2π∫
0

s−1∑
k=0

Ak+1

Ek+1

ak+1∫
ak

σσ̇ dz dφ+

+αR

2π∫
0

s−1∑
k=0

Ak+1

Ek+1

ak+1∫
ak

σ̇


t∫

0

e−α(t−τ)σ (τ) dτ

 dz dφ (1.9)

for case a),

K = R

h∫
−h

2π∫
0

{
σ̇ε̇+

σ

2R2

[(
∂ẇ

∂φ

)2

+ ẇ2

]}
dφdz−

−R

2

2π∫
0

s−1∑
k=0

1

Ek+1

ak+1∫
ak

σ̇2 dz dφ−R

2π∫
0

s−1∑
k=0

Ak+1

Ek+1

ak+1∫
ak

σσ̇ dz dφ+
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+αR

2π∫
0

s−1∑
k=0

Ak+1

Ek+1

ak+1∫
ak

σ̇


t∫

0

e−α(t−τ)σ (τ) dτ

 dz dφ (1.10)

for case b).
To obtain the final form of the functional, we use the Rayleigh-Ritz method. To this end,

as approximating functions, as in [4], we set

w = w0 (t) + w1 (t) cos lφ, v = v0(t) sin lφ,M = m (t) cos lφ, (1.11)

or after differentiation with t respect to the velocity, we have:

ẇ = ẇ0 + ẇ1 cos lφ, v̇ = v̇0 sin lφ, Ṁ = ṁ cos lφ, (1.12)

where the value l takes even values (2,4,6) and characterizes the number of waves in the
circumferential direction, in particular, for l = 2, the buckling of the ring occurs as a ”figure-
eight”. But ẇ0, ẇ1, v̇0 and ṁ are independent variable parameters. Because of its thinness,
the circumferential voltage σ varies linearly according to thickness:

σ = −qR

2h
+

3z

2h3
M or σ̇ =

3z

2h3
Ṁ. (1.13)

2 The case of total nonlinearity

The subsequent course of the calculations is that the relations (1.11) - (1.13) are substituted
into the expression of the functional (1.9), after integration with respect to z and φ, we find
it as a function of w0, w1, v0, m and their derivatives with respect to t. Carrying out the
appropriate calculations, we get:

K = π l2

R ẇ1ṁ+ π l
R v̇0ṁ− π l2

2 qẇ2
1 −

πq
2 v̇20 − πl2

2 qv̇20 − πqẇ2
0 − π

2 qẇ
2
1−

−2πlqẇ1v̇0 − 9π R
8h6 η2ṁ

2 − 9π R
4h6 γ2mṁ+ α9π R

4h6 γ2ṁ
t∫
0

e−α(t−τ)m (τ) dτ.
(2.1)

In (2.1), for brevity of the notation, the following notation is introduced

η2 =

s−1∑
k=0

1

Ek+1

ak+1∫
ak

z2dz, γ2 =

s−1∑
k=0

Ak+1

Ek+1

ak+1∫
ak

z2dz. (2.2)

The stationarity condition - δK = 0 is the constructed functional (2.1) corresponding to
the equality of the expressions

∂K

∂ẇ0
= 0,

∂K

∂ẇ1
= 0,

∂K

∂v̇0
= 0 and

∂K

∂ṁ
= 0,

leads to the following system of three ordinary differential equations

ṁ =
l2 − 1

l2
Rqẇ1 or rm =

l2 − 1

l2
Rqw1 (i.e. m = 0 when q = 0),

v̇0 = −1

l
ẇ1,

l2

R
ẇ1 +

π

R
v̇0l −

9R

4h6
η2ṁ−

− 9R

4h6
γ2m+ α

9R

4h6
γ2

t∫
0

e−α(t−τ)m (τ) dτ = 0. (2.3)
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Combining equations (2.3), we can write

ẇ1

(
− l2−1

R +
9(l2−1)R2

4l2h6 η2q

)
+

9(l2−1)R2

4l2h6 γ2qw1−

−α
9(l2−1)R2

4l2h6 γ2q
t∫
0

e−α(t−τ)w1 (τ) dτ = 0.
(2.4)

Equation (2.4) must be supplemented by the initial condition

w1 (0) = w0
1.

Here, the value w0
1 represents the deflection value immediately after applying the load

q. The consideration of the problem of stability in viscoelasticity is meaningful only if the
effective load is less than the critical load. Since the instantaneous deformation is linearly
elastic, it is natural to apply the variational principle [3] to determine w0

1 and qcr it is natural
to set the same probable distribution of stress, displacements and angular momentum as
in the analysis of viscoelasticity, that is, representing w, v, M and σ by formulas (1.11)
and (1.13). Leaving basically the previous notation, in this case we write the corresponding
functional in the following form:

K = R

h∫
−h

2π∫
0

{
σ̇ε̇+

σ

2R2

[(
∂ẇ

∂φ
− v̇

)2

+

(
∂v̇

∂φ
+ ẇ

)2
]}

dφdz−

−R

2

2π∫
0

s−1∑
k=0

1

Ek+1

ak+1∫
ak

σ̇2 dz dφ+R

2π∫
0

ẇ dφ.

However, here by a point we mean differentiation with respect to q. Calculating this
functional and varying it with respect to ẇ0, ẇ1, v̇0 and ṁ, finally we arrive at the following
differential equation for ẇ1

ẇ1 = w1

{
3R2

(
l2 − 1

)
2l2h4

η2

}{
2h2

(
l2 − 1

)
3R

−
3R2

(
l2 − 1

)
2l2h4

qη2

}−1

. (2.5)

To determine the critical load, the denominator of equation (2.5) must be equated to
zero. From here

qcr =
4l2h6

9R3
η−1
2 , (2.6)

and the magnitude of the instantaneous deflection is found by the formula, which can be
easily established from the integration of equation (2.5) by the method of separation of
variables:

w0
1 = w∨

1

1

1− 9R3q
4l2h6 η2

. (2.7)

Here, the value w∨
1 is the given amplitude of the initial imperfection of the ring.

We introduce the following dimensionless relations, which make it possible to signifi-
cantly reduce subsequent entries

y =
w1

h
, ω =

q

qcr
=

ωt/n

l2
,
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then

ω t/n = q

{
4h6

9R3
η−1
2

}−1

,

but qcr is determined by formula (2.6).
Such dimensionization ω aims to write down the problem further in a form that depends

explicitly on l. As for ω, then, as already noted above, for it we have an inequality ω < 1,
from which it follows that ωt/n < l2. Now, equation (2.4) and the initial condition (2.7) will
look like this:

ẏ −
ωt/n.

l2 − ω t/n

γ2
η2

y − α

t∫
0

e−α(t−τ)y (τ) dτ

 = 0, (2.8)

y0 = y∨
1

1− ωt/n.

l2

, (2.9)

where

y∨ =
w∨
1

h
.

Taking into account the differentiation formula under the integral sign, we have
t∫

0

e−α(t−τ)y (τ) dτ


•

= y − α

t∫
0

e−α(t−τ)y (τ) dτ,

which reduces equation (2.8) to the formy (t)−
ω t/n

l2 − ω t/n

γ2
η2

t∫
0

e−α(t−τ)y (τ) dτ


•

= 0.

Integrating the expression in curly brackets, we get:

y (t)−
ω t/n

l2 − ωt/n

γ2
η2

t∫
0

e−α(t−τ)y (τ) dτ = C. (2.10)

We define a constant C using condition (2.9). When t = 0

C = y (0) = y0,

exactly

C = y∨
1

1− ωt/n

l2

.

Then, if we denote by β a combination

β =
ωt/n

l2 − ωt/n

γ2
η2

,

from (2.10) we have:

y (t)− β

t∫
0

e−α(t−τ)y (τ) dτ = y0. (2.11)
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From this, using the substitution −λ = β − α, we reduce equation (2.11) to the form

y (t)− β

t∫
0

e−(λ+β)(t−τ)y (τ) dτ = y0. (2.12)

Now we can immediately write the solution of the integral equation (2.12) [7]

y = y0

1 + β

t∫
0

e−λ(t−τ)dτ

 . (2.13)

Calculating the integral appearing in (2.13), we obtain

y (t) = y0

{(
1− α

λ

)
e−λt +

α

λ

}
. (2.14)

According to the formula (2.14) we have that, depending on the sign λ, various solutions
are possible. If λ ≤ 0, then there is an unlimited growth of the deflection in time. When
λ < 0 it is exponential, and for λ = 0 - linear, and

y = y0 ( 1 + α t) ,

as can easily be verified by applying the Lopital rule to (2.8). If λ > 0, then, there is a
limited increase in deflection. Its limit value is determined by the value y∗ = y0

α
λ , where,

by definition α/λ > 1.

3 The case of nonlinearity only of deflection

Neglecting the tangential displacement, we confine ourselves to a nonlinearity only of the
deflection. The corresponding relations (1.11) - (1.13) are substituted into the expression of
the functional (1.10) and after a certain procedure we have:

K = π l2

R ẇ1ṁ− π l2

2 qẇ2
1 − πqẇ2

0 − π
2 qẇ

2
1 − 9π R

8h6 η2ṁ
2−

−9π R
4h6 γ2mṁ+ α9π R

4h6 γ2ṁ
t∫
0

e−α(t−τ)m (τ) dτ.
(3.1)

Here η2 and γ2 are determined by formula (2.2).
As a result of calculations performed similarly to the previous ones, we get:

ẇ1

(
− l2

R +
9(l2+1)R2

4l2h6 η2 q

)
+

9(l2+1)R2

4l2h6 γ2qw1−

−α
9(l2+1)R2

4l2h6 γ2 q
t∫
0

e−α(t−τ)w1 (τ) dτ = 0.
(3.2)

Here, the value qcr of the critical force for the case of non-linearity of the deflection, which
is determined by the formula:

qcr =
16l2h6

45R3
η−1
2 , (3.3)

and the magnitude of the instantaneous deflection is found from equation

w0
1 = w∨

1

1

1− 45R3q
16l2h6 η2

. (3.4)
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We note that the relations (3.3) and (3.4) were obtained in the same way as in paragraph
2 for the nonlinear theory adopted here.

We leave the former dimensionless relations

y =
w1

h
, ω =

q

qcr
=

ωp/n

l2
,

then

ωp/n = q

{
16h6

45R3
η−1
2

}−1

,

but qcr is determined by formula (3.3), equation (3.2) and the initial condition (3.4) can be
rewritten as follows:

ẏ −
ω p/n.

5l4

4(l2+1)
− ω p/n

γ2
η2

y − α

t∫
0

e−α(t−τ)y (τ) dτ

 = 0, (3.5)

y0 = y∨
1

1− ω p/n

l2

, (3.6)

where y∨ =
w∨

1
h .

Now it is not difficult to write down the solution (3.5), which has the form:

y (t) = y0

{(
1− α

λ

)
e−λ t +

α

λ

}
. (3.7)

Here β − α = −λ, but β is determined from equality

β =
ω p/n

5l4

4(l2+1)
− ωp/n

γ2
η2

.

4 Numerical calculation and conclusions

The purely visual identity of the solutions (2.14) and (3.7) obtained is quite understandable
by the conducted dimensionlessness, since in both cases the critical force is chosen from the
solution of the corresponding linearly elastic problem. Therefore, here the question should
be formulated as follows: specify values that correspond to the same value q. Obviously,
then the numerical values of instantaneous deflections will be different.

Taking ωs/n = 3, as was borrowed from [4], where the case of geometric nonlinearity
is investigated, from the preceding arguments we have the following chain of equalities:

ωs/nq
(1)
cr = ωp/nq

(2)
cr = ωt/nq

(3)
cr ,

where in

q(1)cr =
l2h6

9R3
η−1
2 , q(2)cr =

16l2h6

45R3
η−1
2 , q(3)cr =

4l2h6

9R3
η−1
2 .

Here the upper indices correspond to different theories of nonlinearity, namely: (1.1) - sim-
ple nonlinearity, (1.2) - partial nonlinearity, (1.3) - total nonlinearity. Hence we have:

ωp/n ≈ 0, 94 , ωt/n ≈ 0, 75.

The solutions (2.14) and (3.7) obtained above are, in principle, applicable to arbitrary
values t. However, very large deflections in rings, which are elements of structures, are
inadmissible in themselves. Therefore, it is very reasonable to limit the time of operation
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of the ring by the condition that a deflection of a certain value fixed from certain physically
grounded considerations is reached and thereby determine the critical stability time tcr.
Let us ỹ = 1, assume that it corresponds to a dimensionless deflection equal to half the
thickness. According to the noted, we will write down

1 = y0

{(
1− α

λ

)
e−λ tcr +

α

λ

}
,

where we find

tcr = − 1

λ
ln

∣∣∣∣∣ λ− α y0

λ y0
(
1− α

λ

) ∣∣∣∣∣ . (4.1)

We confine ourselves to the case λ < 0 and give some results of calculations corre-
sponding to different values of the physical and geometric parameters characterizing the
ring.

We take y∨ = 10−1 and give the numerical values of the instantaneous deflection (y0)
corresponding to the same compressive force q, depending on the number of waveforms l
(Table 1). Such a choice of values ω always ensures the condition for the fulfillment of the
inequality ω

/
l2 < 1 and is suitable for any number of waveforms l.

The ring is represented by a three-layer (s = 3) and having the following periodic struc-
ture

E1 = E3, A1 = A3, δ1 = δ3.

We introduce additional dimensionless notation

E =
E1

E2
, A =

A2

A1
and ξ =

δ2
δ1
.

Proceeding from this, according to formula (1.2), for ak we have:

a0 = −h, a1 = −δ2
2
, a2 =

δ2
2
, a3 = h.

The above allows us to determine the ratio γ2/η2 that appears in the formulas for β and
is written in the form

γ2
η2

= A1
1 + 1, 5ξ + 0, 75ξ2 + 0, 125EAξ3

1 + 1, 5ξ + 0, 75ξ2 + 0, 125Eξ3
.

Now give the value for the parameters:

A 1 = 0, 8 sec−1 ; E = 0, 25 ; ξ = 4 ; A = 0, 25 ; α = 0, 005 .

We represent the results of calculations performed on the basis of the dependence (4.1)
obtained above (Table 1). Here it is important to indicate that in calculating the parameters
of the ring were chosen in such a way that the condition λ < 0 was always preserved. As
for the values α, E and A, then they are borrowed from [6].
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Table 1. Numerical values of instantaneous deflection and critical time

ω ωs/n = 3 ωp/n = 0, 94 ωt/n = 0, 75
l = 2

y0 0,4 0,13 0,12
tcr 5,3995 9,0546 12,5835

l = 4
y0 0,123 0,106 0,105
tcr 62,3997 62,3485 67,3284

l = 6
y0 0,109 0,103 0,102
tcr 174,4774 172,6963 180,3343

The values of the critical time for the homogeneous case (E = A = ξ = 1) for α =
0, 005 follow from (4.1):

at l = 2
t(1)cr = 5, 01 sec, t(2)cr = 8, 38 sec, t(3)cr = 11, 53 sec,

at l = 4
t(1)cr = 57, 56 sec, t(2)cr = 45, 32 sec , t(3)cr = 48, 85 sec,

at l = 6

t(1)cr = 159, 06 sec, t(2)cr = 120, 68 sec, t(3)cr = 125, 69 sec .

5 Conclusion

Thus, the numerical calculation allows us to conclude:
– taking into account the total nonlinearity leads to a significant increase in the critical

time, from which it follows that, other things being equal, this leads to the possibility of
more rational use of the bearing capacity of the ring;

– the critical time in various nonlinearity theories is calculated and comparisons of the
wave formation numbers within each theory are made;

– the increase in the number of waveforms has a strong influence on the value of the
critical time.
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