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Abstract. This paper studies the electro-mechanical energies of the PZT/Elastic/PZT sandwich circular
plate with interface penny-shaped cracks under action on the cracks edges opening uniformly distributed
normal forces. The axisymmetric stress-strain state is considered and the investigations are made by
utilizing the exact field equations and relations of electro-elasticity for piezoelectric materials. The cor-
responding boundary value problem is solved numerically by employing the finite element method (FEM)
and aforementioned energies are calculated for various PZT materials of the face layers and for various
elastic materials of the core layer. It is made attempt to indicate the influence of the coupling effect of the
mechanical and electrical fields on the total electro-mechanical potential energies. Moreover, the effect
of the geometrical parameters such as face layers thickness, crack’s radius and etc. on the energies under
consideration is also analyzed.
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1 Introduction.

The information and knowledge on the electro-mechanical strain energies of the piezoelec-
tric + metal layered systems with interface cracks have a great significance for estimation
of the load carried capacity of these systems. Moreover, the values of the stress intensity
factors (SIF) and energy release rate (ERR) at crack tips are calculated through these ener-
gies, according to which, the fracture of the piezoelectric or piezoelectric + metal layered
materials are determined. It is evident that for determination of the aforementioned energies
it is necessary to solve the corresponding boundary value problems for the PZT + Metal
layered system with interface cracks. Note that under formulation and solution to these
problems one of the main question is the construction of the electrical conditions across the
crack’s edges. Consider a brief review of the related investigations and the formulation of
the aforementioned conditions on the crack edges. We begin this review with the paper by
Kudryatsev et al. (1975) in which a special solution of the stress and displacement fields is
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obtained for the penny shaped crack embedded in a piezoelectric material. Under mathe-
matical formulation of the problem, the so-called permeable condition on the crack edges
is considered, i.e. it is assumed that the electrical potential and the normal components of
the electrical displacements are continuous across the crack edge surfaces. In the papers by
Parton (1976), Yang (2004) and other ones listed therein the same type of conditions on the
crack’s edge are also used. Analyses of the various types of conditions on the crack edges
in the piezoelectric materials, which is differ from the permeable condition, are discussed
in the papers by Li, McMeeking and Landis (2008) and Li, Feng and Xu(2009),

An axisymmetric penny-shaped crack problem for the infinite piezoelectric layer in the
case where the crack is in the middle plane of the layer is studied in the paper by Li and Lee
(2012).It is assumed that on the crack’s edge surfaces the impermeable boundary conditions
are satisfied, according to which, the electric displacements on the crack’s edge surfaces are
equal to zero. Moreover, in the crack problems for the piezoelectric materials considered in
the papers by Zhong (2012), Eskandari et al. (2010) and others, the energetically consistent
boundary condition, which was proposed by Landis (2004), is also used.

In all the works reviewed above the case where the penny-shaped crack is embedded
completely in a piezoelectric material is considered. Therefore formulation of the perme-
able, impermeable, energetically consistent, semi-consistent and other types of conditions
for the electrical quantities across the crack’s edge surfaces, becomes necessary. However,
in the cases where the penny-shaped crack is in the interface between piezoelectric and
elastic mediums such conditions do not have any meaning. Therefore, in later cases on the
crack’s edge face which relate to the piezoelectric medium, the ordinary ”electrically-open”
(or ”open-circuit”) and ”electrically-shorted” (or ”short-circuit”) conditions are satisfied.
Note that the ”electrically-open” (or ”open-circuit”) condition coincides with the afore-
mentioned impermeable condition. In connection with this, we note that the first attempt
to study the problem related to the interface penny-shaped crack between the piezoelectric
layer and elastic half-space is made in the paper by Ren et al. (2014). This study is carried
out for the opening mode in the case where on the crack face, which is in the piezoelectric
layer, the “open-circuit” condition is satisfied.

This completes the consideration of the review of the investigations related to the penny-
shaped crack in piezoelectric materials and carried out during the last 10 years. The review
of the regarding works carried out in earlier years can be found in the papers by Kuna (2006)
and Kuna (2010).

Thus, it follows from the foregoing review that all the investigations carried out for the
penny-shaped cracks in piezoelectric materials and in the interface between piezoelectric
and elastic materials have been made within the scope of the linear piezoelectric fracture
mechanics and within the scope of the assumptions that the layers’ dimensions are infinite
in the plane on which this crack lies. Namely, this infinities allows to use the Hankel integral
transformation method for solution to the corresponding boundary value problems.

However, in the cases where the dimensions of the layers in the planes on which the
cracks are located are finite the methods based on the integral transformations, in gen-
eral, is not applicable. As an example for such cases, it can be considered the sandwich
PZT/Metal/PZT circular plate-disc the radius of which is commensurable with the radius
of the penny-shaped crack. Namely this case is considered in the present paper and for so-
lution to the corresponding boundary value problem the numerical method, i.e. the finite
element method (FEM) is employed. Note that corresponding buckling delamination prob-
lems were considered in the papers by Cafarova et al. (2017), Akbarov et al. (2017) and
Cafarova and Rzayev (2016). Moreover, note that the corresponding buckling delamination
and crack problems for the plane-strain state were considered in the papers by Aklbarov
and Yahnioglu (2013, 2016).
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2 Formulation of the problem

We consider a circular PZT/Metal/PZT sandwich plate with geometry illustrated in Fig. 1a
and assume that the thicknesses and piezoelectric materials of the face layers are the same,
and the material of the middle (core) layer is an elastic one. Moreover, assume that between
the core and face layers there are penny-shaped cracks whose locations are illustrated in
Fig. 1b. At the same time, in Fig. 1b the geometric parameters and the external opening
forces acting on the cracks edge surfaces are also indicated.

a b

Fig. 1. The sketches of the PZT/Metal/PZT plate-disc (a), the geometry of this disc, interface

cracks and external opening forces

As shown in Fig. 1a, we associate with the lower face plane of the plate the cylindri-
cal coordinate system Orθz (Fig. 1), according to which, the plate occupies the region
{0 ≤ r ≤ l/2; 0 ≤ θ ≤ 2π; 0 ≤ z ≤ h} (h = 2hF + hc) and the penny-shaped cracks oc-
cur in {z = hF ± 0 ; 0 ≤ r ≤ l0/2} and in {z = hC + hF ± 0 ;0 ≤ r ≤ l0/2}.

Thus, within this framework, we suppose that on the cracks’ edges the uniformly rota-
tional symmetric distributed normal opening forces with intensity p act and it is required to
determine the electro-mechanical energies accumulated in the sandwich plate caused with
this mechanical forces. For this purpose, first, we consider formulation of the problems for
determination of the electromechanical quantities which appear in the plate as a result of
the action of the aforementioned mechanical forces.

As we are considering the rotationally axisymmetric deformation case, therefore under
the mathematical formulation of the corresponding problem we will use the corresponding
field equations related to this case. Moreover, below we will denote the values related to
the upper and lower face layers by upper indices (2.3) and (2.1), respectively, whereas the
values related to the core layer are denoted by upper index (2.2).

Assuming that the electro-mechanical state in the sandwich plate under consideration
appears within the scope of the linear theory of piezoelectricity for the face layers and the
linear theory of elasticity for the core layer, the corresponding field equations, according to
the monograph by Yang (2005), can be written as follows.

Equilibrium and electrostatic equations:
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The electro-mechanical constitutive relations for piezoelectric materials:
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Elasticity relations for the core layer material.
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Strain-displacement relations:
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Note that in (2.1) – (2.4) the following notation is used: σ(j)
rr ,. . . , σ(j)

rz and s
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are the components of the stress and strain tensors, respectively, u(j)r and u
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We recall that the piezoelectric material exhibits the characteristics of orthotropic ma-
terials with the corresponding elastic symmetry axes and becomes electrically polarized
under mechanical loads or mechanical deformation placed in an electrical field. Accord-
ing to the monograph by Yang (2005) and other related references, the polled direction of
the piezoelectric material will change according to the position of the material constants in
the constitutive relations in (2.2). In the present paper, under numerical calculations, it is
assumed that the O z axis direction is the polarized direction. Moreover, in general, in the
theory of the piezoelectricity for simplicity the following notation is used.
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Thus, with equations and relations (2.1) – (2.5) the writing of the field equations com-
pletes. Now we consider mathematical formulation of the boundary conditions.

Boundary conditions on the cracks’ edges:
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Contact conditions between the layers in the areas which are out of the cracks:
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Boundary conditions on the face planes of the plate:
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Conditions on the lateral boundary of the plate:
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for k = 1, 3, under 0 ≤ z ≤ 2hF + hC .
This completes the formulation of all the boundary and contact conditions for the prob-

lem under consideration.
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3 Method of solution. FEM modeling of the problem

As noted above the analytical or approximate analytical solution of the problem under con-
sideration is impossible and therefore the formulated problem is solved numerical by em-
ploying FEM. For FEM modeling of the problem, according to Yang (2005) and others, the
following functional is introduced.
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where

Ω(1) = {0 ≤ r ≤ l0/2; 0 ≤ z ≤ hF } − {z = hF − 0; 0 ≤ r ≤ l0/2};

Ω(2) = {0 ≤ r ≤ l0/2;hF ≤ z ≤ hF + hC} − {z = hF + 0; 0 ≤ r ≤ l0/2};
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From equating to zero the first variation of the functional (3.1), i.e. from the relation

δΠ =

3∑
k=1

∂Π

∂u
(k)
r

δu(k)
r +

3∑
k=1

∂Π

∂u
(k)
z

δu(k)
z +

∂Π

∂ϕ(1)
δϕ(1) +

∂Π

∂ϕ(3)
δϕ(3) = 0 (3.3)

and after well-known mathematical manipulations we obtain the equations in (2.1) and all
the corresponding boundary and contact conditions in (2.6) – (2.9) with respect to the forces
and electrical displacements. In this way it is proven that the equations in (2.1) are the
Euler equations for the functional (3.1), and the boundary and contact conditions in (2.6) –
(2.9) which are given with respect to the forces and electrical displacements, are the related
natural boundary and contact conditions.

According to FEM modelling, the solution domains indicated in (3.2) are divided into a
finite number of finite elements. For the considered problem, each of the finite elements is
selected as a standard rectangular Lagrange family quadratic finite element with nine nodes
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and each node has three degrees of freedom, i.e. radial displacement u(j)r , transverse dis-
placement u(j)z (j = 1, 2, 3) and electric potential ϕ(k) (k = 1, 2). We note that under FEM
modelling of the region containing the crack’s tip, as did our predecessors, we use ordinary
(not singular) finite elements. This is because up to now finite elements with oscillating
singularity which appear at the interface crack tips have not been found. Furthermore, as
shown in the references Akbarov (2013), Akbarov and Yahnioglu (2016), Akbarov and Tu-
ran (2009), Henshell and Shaw (1975) and other ones listed therein, under calculation of
the global characteristics of the element of construction (such as the critical forces, electro-
mechanical energies, ERR, etc.) the results obtained by the use of the “ordinary” singular
finite elements coincide, with very high accuracy, with the results obtained by the use of the
ordinary finite elements.

The algorithm and the programs to obtain the numerical results are coded within the
foregoing assumptions by the author in the FORTRAN programming language (FTN77).
Employing the standard Ritz technique detailed in many references, for instance, in the
book by Zienkiewicz and Taylor (1989), we determine the displacements and electrical
potential at the selected nodes. After this determination, according to the relation
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the electro-mechanical strain enegy is calculated. Moreover, through the expression

γ =
∂U

πl0∂l0
(3.5)

the energy release rate γ (ERR) is also determined.
Table 1. The values of the mechanical, piezoelectrical and dielectrical constants of the

selected piezoelectric materials: here c
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11 ,. . . ,c(r1)66 are the elastic constants, e(r1)31 ,. . . , e(r1)15

are the piezoelectric constants, and ε
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11 and ε
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33 e

(r1)
15 ε

(r1)
11 ε

(r1)
33

PZT-4
(Yang,
2005)

13.9 7.78 7.40 11.5 2.56 3.06 -
5.2

15.1 12.7 0.646 0.562

PZT-
5H
(Yang,
2005)

12.6 7.91 8.39 11.7 2.30 2.35 -
6.5

23.3 17.0 1.505 1.302

×1010N/m C/m2 ×10−8C/V m

4 Numerical results and discussions

In the present paper we consider only the numerical results related to the electromechanical
energy Uand all the numerical results are made for the piezoelectric materials PZT - 4 and
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PZT - 5H which are selected for the face layers, however the metal materials - aluminum
(Al) and steel (St) are taken as the core layer materials. The values of the elastic, piezoelec-
tric and dielectric constants of the selected piezoelectric materials and the references used
are given in Table 1. According to the monograph by Guz (2004), the values of Lame’s
constants of the core layer material are selected as follows: for the Al: λ = 48.1GPa and
µ = 27.1GPa; and for the St: λ = 92.6GPa and µ = 77.5GPa.

In order to analyze the coupling effects of the electro-mechanical fields on the energies,
the numerical results are obtained for the following two cases:

Case 1. e
(rn)
ij = 0, ε

(rn)
ii = 0, (4.1)

Case 2. e
(rn)
ij ̸= 0, ε

(rn)
ii ̸= 0. (4.2)

Numerical results obtained in Case 1 (15) relate to the pure mechanical energies, how-
ever the numerical results obtained in Case 2 (16) relate to the total electro-mechanical
energies and comparison of the results obtained in Case 2 with the corresponding ones ob-
tained in Case 1 will give the information for estimation of the influence of the coupling
electro-mechanical effect on the studied quantities.

Under obtaining all the numerical results illustrated in the present paper, we assume
that the piezoelectric materials are polarized along the plate thickness, i.e. the polarized
direction of the PZT materials coincides with the Oz axis. Moreover, all the numerical
results are obtained in the case where h/l = 0.2.

We do not consider here the testing of the algorithm and PC programs used for obtain-
ing numerical results because the corresponding testings are already made in the papers
Cafarova et al. (2017), Akbarov et al. (2017), Cafarova and Rzayev (2016).

Thus, within the foregoing assumptions, we consider numerical results related to the
energies and under this consideration the following energies in the Case 2 are distinguished:

i) total electro-mechanical energy under calculation of which all the terms in the expres-
sion (3.4) are taken into consideration,

ii) pure mechanical energy under calculation of which the last two integral terms in the
expression (3.5) are ignored,

iii) interaction energy under calculation of which only the terms containing the mechan-
ical and electrical quantities simultaneously in the expression (3.5) are taken into consider-
ation, and

iv) pure electrical energy under calculation of which only the terms in the expression
(3.5) containing only the electrical quantities are taken into consideration.

Numerical results illustrating the influence of the crack’s radius on the values of the
foregoing energies appearing in the PZT-5H/Al/PZT-5H and PZT-5H/St/PZT-5H plates are
given in Fig. 2a and Fig. 2b, respectively. Under obtaining these results, it is assumed that
hF /l = 0.025. These results show that for all the considered lengths of the penny-shaped
interface crack’s radius, the values of the total electro-mechanical, pure mechanical and in-
teraction energies are positive numbers and these values increase monotonically with this
radius. However, in all the considered lengths of the crack radius, the values obtained for
the pure electrical energy are negative and the absolute values of this energy also increase
monotonically with the penny-shaped crack’s radius. Note that in the qualitative sense, sim-
ilar results are also obtained in the paper by Akbarov and Yahnioglu (2016) for the sandwich
plate-strip in the plane-strain state.

Consider also the influence of the change of the piezoelectric face layers thickness on
the foregoing energies. For this purpose analyze the graphs given in Fig. 3 which illus-
trate the dependencies among the pure electrical (Fig. 3a), the interaction (Fig. 3b), the
pure mechanical (Fig. 3c), the total electro-mechanical (Fig. 3d) and the dimensionless ra-
dius of the crack (l0/l) obtained for various thicknesses of the piezoelectric face layers of
the PZT-5H/Al/PZT-5H plate. These results show that for a fixed thickness of the whole
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PZT-5H/Al/PZT-5H plate, a decrease of the face layers’ thickness causes an increase in the
absolute values of all the energies under consideration.

a b

Fig. 2. Graphs of the dependencies between energies and the ratio 0l l in Case 2 for the

PZT-5H/Al/PZT-5H (a) and PZT-5H/St/PZT-5H (b) plates

a b

c d

Fig. 3 Dependence of various pure electrical (a), interaction (b), pure mechanical (c) and total

electro-mechanical (d) energies on the ratio 0l l under various Fh l for the PZT-5H/Al/PZT-

5H plate.
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For estimation of the electro-mechanical coupling effect of the piezoelectric materials
on the total electro-mechanical energy, we consider the graphs given in Fig. 4 which show
the dependence between U determined by expression (3.5) and the dimensionless length
l0/l of the crack radius under various thicknesses of the face layers for PZT-5H/Al/PZT-5H
(Fig. 4a) and PZT-5H/St/PZT-5H (Fig. 4b). Note that in Fig. 4, the graphs are constructed
for Case 2 and Case 1 simultaneously. The difference between the corresponding results
obtained Case 1 and in Case 2 namely causes the coupling electro-mechanical effect of the
piezoelectric material. We recall that, according to the expressions (4.1) and (4.2) under
obtaining the results related to Case 1, the coupling effect is not taken into consideration,
however, under obtaining the results related to Case 2 this effect is taken into consideration
completely. Thus, it follows from the results given in Fig. 4 that for all the selected values
of the layers’ thickness and crack radius the piezoelectricity of the face layers’ materials
causes to decrease the total electro-mechanical energy of the plates under consideration.

a
b

Fig. 4 The influence of the piezoelectricity of the face layers of the plates PZT-5H/Al/PZT-5H

(a) and PZT-5H/St/PZT-5H (b) on the values of the total electro-mechanical energies obtained

for various values of the ratios 0l l and Fh l .

This completes the consideration of the numerical results presented in the paper. We
recall that these results relate to the various type energies indicated above.

5 Conclusions

Thus, in the present paper, the rotationally symmetic interface penny-shaped crack problem
for the PZT/Elastic/PZT sandwich circular plate is considered by utilizing the correspond-
ing exact field equations and relations of the theory of elecro-elasticity for the piezoelectric
material. It is assumed that on the cracks edges uniformly distributed normal opening forces
act and corresponding boundary value problem is solved numerically by employing FEM.
Numerical results are presented and discussed for the various types energies determined
by expressions (13) for the PZT-5H/Al/PZT-5H, PZT-5H/St/PZT-5H and PZT-4/Al/PZT-4
plates.According to analyses of the results, it is established that the piezoelectricity of the
face layers materials causes to decrease the total electro-mechanical energies and the mag-
nitude of this influence increases with increasing of the ratio l0/l and with decreasing of the
ratio hF /l, where l0/2 (l/2 ) is the radius of the penny-shaped crack (circular disc), and hF
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is the thickness of the piezoelectric face layer. Consequently, the parameters l0/l and hF /l
characterize not only the dimensions of the penny-shaped crack and face layer thickness,
but also the dimension of the circular plate.

Numerical results obtained in the present paper in the qualitative sense agree with the
corresponding onesobtained in the related investigations carried out, for instance, in the
papers by Yang (2004), Li and Lee (2012), Akbarov and Yahnioglu (2016), and others.

At the same time, for estimation of the interface cracks grow (or fracture) in the sand-
wich plate it is necessary to consider and analyze also the numerical results related ERR
determined through the expression (14) which will be made in future papers by author.

References

1. Akbarov, S.D. Stability Loss and Buckling Delamination: Three-Dimensional Lin-
earized Approach for Elastic and Viscoelastic Composites, Springer, Heidelberg, New
York, USA.(2013).

2. Akbarov, S.D. and Yahnioglu, N.: ”Buckling delamination of a sandwich plate-strip
with piezoelectric face and elastic core layers”, Appl. Math. Model., 37,(2013), 8029 –
8038.

3. Akbarov, S.D. and Yahnioglu, N.: ”On the total electro-mechanical potential energy
and energy release rate at the interface crack tips in an initially stressed sandwich plate-
strip with piezoelectric face and elastic core layers”, Int. J. Solids Struct., 88-89, (2016)
119-130.

4. Akbarov, S.D. and Turan, A.: ”Mathematical modelling and the study of the influence
of initial stresses on the SIF and ERR at the crack tips in a plate-strip of orthotropic
material”, Appl. Math. Model., 33, (2009) 3682- 3692.

5. Akbarov, S.D., Cafarova,F.I. and Yahnioglu N.: Buckling delamination of the circu-
lar sandwich plate with piezoelectric face and elastic core layers under rotationally
symmetric external pressure. AIP Conference Proceedings 1815, 080001 (2017); doi:
10.1063/1.4976433 View online: http://dx.doi.org/10.1063/1.4976433, Published by the
American Institute of Physics: pp 080001-1 -080001-4(2017).

6. Cafarova, F.I., Akbarov, S.D. and Yahnioglu, N.: ”Buckling delamination of the
PZT/Metal/PZT sandwich circular plate-disc with penny-shaped interface cracks”,
Smart Struct. Syst., 19(2),(2017) 163-179.

7. Cafarova F.I. and Rzayev, O.A.: Stability loss of the PZT/Metal/PZT sandwich circul-
sar plate-discunder “open-circuit” condition. Transactions of NAS of Azerbaijan, Issue
Mechanics, 36(4),(2016), 50-59.

8. Eskandari, M., Moeini-Ardakani, S.S. and Shodja, H.M. ”An energetically consistent
annular crack in a piezoelectric medium”, Eng. Fract. Mech., 77, (2010),819-831.

9. Guz, A.N. Fundamentals of the Three-Dimensional Theory of Stability of Deformable
Bodies, Springer-Verlag, Berlin, Heidelberg, Germany.(1999).

10. Guz, A.N. Elastic Waves in Bodies With Initial (Residual) Stresses, “A.C.K.”, Kiev,
Ukraine.2004.

11. Henshell, R.D. and Shaw, K.G.: ”Crack tip finite elements are unnecessary”, Int. J.
Numer. Meth. Eng., 9,(1975), 495-507.

12. Kuna, M.: ”Finite element analysis of cracks in piezoelectric structures: a survey”, Arch.
Appl. Mech., 76, (2006),725-745.

13. Kuna, M.: ”Fracture mechanics of piezoelectric materials – where are we right now”,
Eng. Fract. Mech., 77, (2010) 309-326.

14. Kudryatsev, B.A., Parton, V.Z. and Rakitin, V.I.: ”Breakdown mechanics of piezoelec-
tric materials – axisymmetric crack on boundary with conductor”, Prikl. Math. Mekh.,
39, (1975),352 – 362.



22 Electro-mechanical energies of the PZT/Elastic/PZT sandwich circular plate ...

15. Landis, C.M.: ”Energetically consistent boundary conditions for electro-mechanical
fracture”, Int. J. Solids Struct., 41, (2004),6291-6315.

16. Li, Y.D. and Lee, K.Y.: ”Three dimensional axisymmetric problems in piezoelectric me-
dia: Revisited by a real fundamental solutions based new method”, Appl. Math. Model.,
36,(2012) 6100-6113.

17. Li, Y.S., Feng, W.J. and Xu, Z.H.: ”A penny-shaped interface crack between a func-
tionally graded piezoelectric layer and a homogeneous piezoelectric layer”, Mecanica,
44(4)(2009),377-387.

18. Li, W., McMeeking, R,M. and Landis, C.M.: ”On the crack face boundary conditions
in electro-mechanical fracture and an experimental protocol for determining energy
release rates”, Eur. J. Mech. A/Solids, 27,(2008), 285-301.

19. Parton, V.Z.: ”Fracture mechanics of piezoelectric materials”, Acta Astronaut, 3(9-10),
(1976),671-683.

20. Ren, J.N., Li, Y.S. and Wang, W.: ”A penny-shaped interfacial crack between piezo-
electric layer and elastic half-space”, Struct. Eng. Mech., 62(1),(2014) 1-17

21. Yang, F.: ”General solutions of a penny-shaped crack in a piezoelectric material under
opening mode loading”, Q. J. Mech. Appl. Math., 57(4),(2004) 529-550.

22. Yang, J.: An Introduction to the Theory of Piezoelectricity, Springer, New York,
USA.(2005).

23. Zienkiewicz, O.C. and Taylor, R.L.: The Finite Element Method: Basic Formulation
and Linear Problems. Vol. 1., Fourth Ed., McGraw-Hill Book Company, Oxford, UK.
(1989).

24. Zhong, X.C.: ”Fracture analysis of a piezoelectric layer with a penny-shaped and ener-
getically consistent crack”, Acta Mech., 223,(2012) 331-345.


