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Determination of vibrations frequencies of a rectangular orthotropic
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Abstract. Following the continual theory, in the paper we study fre-
quency and form of natural vibrations of a rectangular orthotropic plate
made of laminated materials with curved structures. The considered
composite material consists of alternating layers of two isotropic ma-
terials. Solving the problem, for determination frequencies of natural
vibrations and eigen functions we get an analytic equation where we
can find character of dependence of frequencies of natural vibrations
on the parameters of the material and on the curvaturefunction in the
structure.
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1 Introduction

The elements of parts and structures made of anisotropic materials are widely used in ma-
chine building, construction and in other fields of modern technology. As is known in me-
chanics of composite materials, the issues related to the features of their structure occupy
important place. One on the principal features of the structure of composite materials is
the curvature of reinforcing elements [1,2]. Curvature in the structure of a composite ma-
terial occurs during technological processes as a result of various factors [3]. Therefore it
is important to develop the methods to determine the stress strain state and other issues of
mechanics of such materials from observations of sections of various composite materials
it follows that curvatures in the structure are periodic and local [5].

2 Problem statementin the general form and a method of solution

In the paper we study frequency and form of natural vibrations of a rectangular orthotropic
plate made of laminated materials with curved structures. The considered composite ma-
terial consists of alternating layers of two isotropic materials. It is assumed that the main
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direction of the plate is parallel to its edges. Mechanical relations of the material are de-
scribed within the continual theory (1,2). The take the equation of the middle surface of the
selected curved layer in the form:

x3 = F (x1, x2) = εφ (x1x2) (2.1)

Here ε is a dimensionless small parameter that is determined for every specifically given
function of the curvature form F (x1x2) [4,6,7,8]. We assume that for the plate, the equa-
tions of the Hooke generalized law with reduced moduli in the matrix form are valid and
we write it in the form ∥∥∥∥∥σ11σ22

σ12

∥∥∥∥∥ =

∥∥∥∥∥A11 A12 0
A21 A22 0
0 0 A66

∥∥∥∥∥
∥∥∥∥∥ε11ε22
ε12

∥∥∥∥∥ , (2.2)

where

Asp = Aspo +
∞∑
q=1

ε2qAspq [Aspo, φ (x1x2)] (s : p = 1, 2) (2.3)

where Aspo are elasticity constants of a homogeneous rectilinear orthotropic plate; Aspq are
determined by Aspo and the parameters of the curvature of the layers [1,2].

Denote by h the thickness of the plate, by u1 and u2 displacements of any points in the
direction of the axes x1and x2, by w (x1x2) deflection of the median plane. The form of the
function w determines the shape of the curved middle surface. The components of middle
surface strains have the form:

ε11 =
∂u1
∂x1

= −x3
∂2w

∂x21
; ε22 =

∂u2
∂x2

= −x3
∂2w

∂x22
;

ε12 =
∂u1
∂x2

+
∂u2
∂x1

= −2x3
∂2w

∂x1∂x2
. (2.4)

Taking into account the inertia force, the equation of motion will by [2].

∂2M11

∂x21
+ 2

∂2M12

∂x1∂x2
+

∂2M22

∂x22
+

hγ

g

∂2w

∂t2
= 0 (2.5)

Here M11, M22 are bending moments, M12, is twisting moment, γ is specific weight of the
plate’s material, g is acceleration of gravity.

M11 =

h
2∫

−h
2

σ11x3dx3, M22 =

h
2∫

−h
2

σ22x3dx3, M12 =

h
2∫

−h
2

σ12x3dx3 (2.6)

Allowing for (2.2) and (2.4), and with regard to curvature of the structure in the direction
x1 the differential vibration equation in the matrix form will be:

hγ

g
· ∂

2w

∂t2
+

h3

12

∥A11 2 (A12 + 2A60) A22∥

∥∥∥∥∥∥∥∥
∂4w
∂x4

1
∂4w

∂x2
1∂x

2
2

∂4w
∂x4

2

∥∥∥∥∥∥∥∥ +

+2

∥∥∥∥∂A11

∂x1
2

(
∂A12

∂x1
+ 2

A66

∂x1

)∥∥∥∥
∥∥∥∥∥

∂3w
∂x3

1
∂3w

∂x1∂x2
2

∥∥∥∥∥+

∥∥∥∥∂2A11

∂x21

∂2A12

∂x21

∥∥∥∥
∥∥∥∥∥

∂2w
∂x2

1
∂2w
∂x2

2

∥∥∥∥∥
}

= 0 (2.7)
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Flexure w should satisfy boundary conditions dependent on the method of fixing the
plate, and initial conditions for

t = 0 w = w0 (x1x2)
∂w

∂t
= v0 (x1x2) (2.8)

where w0, v0 is the given initial flexure and initial velocity for the point (x1x2). We look
for the solution of the equation (2.8) in the form of the product

w = (C cosωt+D sinωt)W (x1x2) (2.9)

where ω is the frequency of natural vibrations. Introducing solution of (2.9) in equation
(2.7), for W we get the equation

h3

12

[
A11

∂4W

∂x41
+ 2 (A12 + 2A66)

∂4W

∂x21∂x
2
2

+A22
∂4W

∂x42
+ 2

∂A11

∂x1

∂3W

∂x31
+

+2

(
∂A12

∂x1
+ 2

∂A66

∂x1

)
∂3W

∂x1∂x22
+

∂2A11

∂x21

∂2W

∂x21
+

∂2A12

∂x21

∂2W

∂x22

]
−ω2W

hγ

g
= 0. (2.10)

To equation (2.10) it is necessary to attach the boundary conditions of hinge support
for x1 = 0, x1 = a W = 0, M11 = 0,
for x2 = 0, x2 = b W = 0, M22 = 0.
We look for the solution of equation (2.10) in the form for:

Wmn = sin
mπx1
a

sin
nπx2
b

(2.11)

where mand n are integers.
Substituting (2.11) in (2.10), we get

ω2hγ

g
sin

mπx1
a

sin
nπx2
b

=
h3

12

{[
A11

(mπ

a

)4
+ 2 (A12 + 2A66)×

×
(
mπ2

a

)(
nπ2

b

)
++A22

(nπ
b

)2
]
sin

mπx1
a

sin
nπx2
b

−

−
[
∂2A11

∂x21

(mπ

a

)2
+

∂2A12

∂x21

(nπ
b

)2
]
sin

mπx1
a

sin
nπx2
b

−
[
2

(
∂A12

∂x1
+ 2

∂A66

∂x1

) (mπ

a

)(nπ
b

)2

+ 2
∂A11

∂x1

(mπ

a

)3
cos

mπx1
a

sin
nπx2
b

]}
. (2.12)

Accepting
Asp = Aspo + ε2A2 (x1)Asp1,

we use the Bubnov-Galerkin method. Multiply the both hand sides of equality (2.12)

sin
rπx1
a

sin
sπx2
b

and integrate in the entire area of the plate, and taking into account
a∫

0

sin
mπx1
a

sin
rπx1
a

dx1 =

{
0 for m ̸= r
a
2 for m = r
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b∫
0

sin
mπx2

b
sin

rπx2
b

dx2 =

{
0 for n ̸= s
b
2 for n = s

we get

ω = ω0 +
επ2

b2

√
g

hγ

2

a

[
C1

∫ a

0
A2 (x1) sin

2 mπx1
a

dx1−

−C2

∫ a

0

∂2A2 (x1)

∂x21
sin2

mπx1
a

dx1 − C3

∫ a

0

∂A2 (x1)

∂x1
sin 2

mπx1
a

dx1

] 1
2

(2.13)

ω0 =
π2

b

√
g

hγ
C0 (2.14)

Here A (x1) =
∂φ(x1)
∂x1

.

C0 =
h3

12

[
A110

(m
c

)4
+ 2 (A120 + 2A660)n

2
(m
c

)2
+A220n

4

]
C1 =

h3

12

[
A111

(m
c

)4
+ 2 (A121 + 2A661)n

2
(m
c

)2
+A221n

4

]
C2 =

b2

π2

h3

12

(
A111

m2

c2
+A121n

2

)
C3 =

b

π

h3

12

[
(A121 + 2A661)

m

c
n2 +A111

(m
c

)3
]
,

ω0
mn is the frequency of natural vibrations of a straightly laminated orthotropic rectangular

plate hingely supported around the entire contour [4].
The expressions for the constants Asp0 and Asp1 are given in the papers [1, 2, 6, 9].

Solving the problem for determining frequencies of natural vibrations, we found an analytic
equation where one can find the character of dependence of the parameter of the material
and function of curvature in the structure.
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