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A finite length rectangular bar under the action of axial impact forces

Nazila B. Rasulova

Received: 10.09.2017 / Revised: 07.10.2017 / Accepted: 02.11.2017

Abstract. In the article, the dynamics of an elastic parallelepiped, sub-
jected to the action of the impact forces, is studied. An exact analytical
solution for constant loading along the end section areas, and in the
presence of free side surfaces of parallelepiped, is received.
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1 Introduction

The paper is logical continuation of a cycle of works [1]-[3] of the author devoted to dy-
namic of rectangular bars.

The peculiarities of these works is that they were performed by a specially developed
method on the basis of which an exact analytic solutions of the famous three-dimensional
problems of theory of elasticity were constructed.

In the paper [3] the analytic solution on wave propagation in a semi-infinite rectangular
prism with free lateral surfaces, was constructed. The present paper is similar to this, except
that the prism’s length is finite. Emergence of two additional obstacles in the path of wave
propagation (in the form of end areas) undoubtedly even aggravates the already complicated
wave picture of the movement even more. Since in the case under consideration the body
has finite dimensions, for the existence of a unique solution the opposite ends are exposed
to opposite impact loads so that the resultant force was zero.

The exact analytic solution of the stated problem is found for the case of constancy
of impact loads in the domain of end areas. Recall that the similar statical problem on
equilibrium of a parallelepiped (a problem unsolved up to day) was stated in 1852 by G.
Lame and bears his name. Then the Paris Academy of Sciences established a prize for the
author of this solution.
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2 Statement and solution of the problem

A rectangular, elastic, finite length bar, a parallelepiped is exposed to the action of opposite
axial impact forces applied to the end areas. The lateral sides are free from forces and this
complicates the process of constructing solutions.

Obviously, the problem under consideration requires the solution of the initial boundary
value problem of mathematical physics, the motion is described by the system of three-
dimensional Lame equations that in the vector form has the form:

∂2Ū

∂t2
= (λ+ µ) graddivU + µ∆U, U = U (u, v, w) (2.1)

and it happens in the domain of the space occupied by a parallelepiped: −a ≤ x ≤ a,
−b ≤ y ≤ b, −l ≤ z ≤ l for t > 0. To this system we join the following initial boundary
conditions:

U = 0; U̇ = 0 for t = 0 (2.2)

σzz = σ0f (t) u = 0, v = 0 for z = ±l (2.3)

σxx = σxy = σxz = 0 for x = ±a, z > 0

σyx = σyy = σyz = 0 for y = ±b, z > 0 (2.4)

where U is a displacement vector, {σ} is a stress tensor, λ, µ are the Lame coefficients, t is
time, ρ is the material’s density.

Following [1], [2] the problem (2.1)-(2.4) is reduced to integration of a simpler, but this
time to a homogeneous system:µ ∂

∂zH
∗
1ψ2 − (λ+ 2µ)H∗

1φ = 0
H∗

2ψ1 = 0
∆H∗

2ψ2 = 0

where H∗
i and ∆ are three-dimensional Helmholts and Laplace operators, respectively:

H∗
i =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− p2

c2i
;

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
;

and the three new functions φ,ψ1, ψ2 are connected with transformations of three compo-
nents of displacement by the Laplace operator by the formulas:

u =
∂φ

∂x
+
∂ψ1

∂y
− ∂2ψ2

∂z∂x

v =
∂φ

∂x
− ∂ψ1

∂y
− ∂2ψ2

∂z∂y

w =
∂φ

∂z
− ∂2ψ2

∂x2
− ∂2ψ2

∂y

This system is equivalent to the following system:{
∆H∗

1φ = 0
H∗

1ψ1 = 0
∆H∗

rψ2 = 0
. (2.5)
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The solutions of the similar problem of an infinite prism will guide to determine the form
of the solutions.
We can look for the solution in the form:

φ = φ(z). (2.6)

Having substituted (2.5) in the first equation, taking into account considerations on sym-
metry, we get:

φ = Ach
p

c1
z. (2.7)

The constant A is determined from conditions (2.3) after their transformation by the
Laplace operator:

(λ+ 2µ)
∂2φ

∂z2
= σ0f (p) z = ±l.

Hence

A =
c21σ0f (p)

p2 (λ+ 2µ) ch p
c1
l
. (2.8)

Note that allowing for (2.8), solution (2.7) satisfies all end conditions (2.3).
This condition corresponds to longitudinal waves that simultaneously start from the ends

and propagate along the prism’s axis, in opposite directions.
Undoubtedly, interaction of these waves with free lateral surfaces causes first of all trans-

verse wave motions.
At first we note that all the solutions corresponding to these waves satisfy the zero end

conditions; consequently,

u = 0
v = 0
σzz = 0

}
for z = ±l. (2.9)

These waves, reflected from the lateral surfaces may be sought as the solutions of the
third equation of the system (2.5) subject to conditions (2.9). It is appropriate to note that the
conditions (2.9) can be automatically satisfied by the choice of the solution in the following
form:

ψ2 =

∞∑
m=0

ψ̄2m (x, y) sin
πmz

l
. (2.10)

Having substituted this function in the above-mentioned equation, we get

H∗
0mH

∗
2mψ̄2m = 0 (2.11)

where

H∗
0 =

∂2

∂x2
+
∂2

y2
− π2m2

l2

H∗
r =

∂2

∂x2
+
∂2

y2
−

(
π2m2

l2
+
p2

c1

)
to determine each ψ̄2m (x, y) separately.

Following [3], we shall look for the functions ψ̄2m (x, y) in the class of solutions f1 (x)+
+f2 (y). The simplest solution of this form will be:

ψ̄2m (x, y) = B1mch

√
p2

c22
+
π2m2

l2
x+B2mch

√
p2

c22
+
π2m2

l2
y.
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The constants B1m and B2m may be determined from the condition that tensile stresses
on the surfaces x = ±a and y = ±b are zero, more exactly:

σxx|x=±a = σxx (φ) + σxx (ψ2) = 0

σyy|y=±b = σyy (φ) + σyy (ψ2) = 0

2µ
σ0f (p)

λ+ 2µ
·
ch p

c1
z

ch p
c1
l
=

= −λ
∞∑

m=0

Bim
πm

l

[
p2

c2
+

(
π2m2

l2

)]
ch

√
p2

c2
+
π2m2

l2
cos

πmz

l
, i = 1, 2. (2.12)

We divide the left hand side of equation (2.12) by the functions cos πmz
l , and then com-

paring the coefficients for the same functions cos πmz
l we get:

B1m = 4µ·σ0f(p)
πλ(λ+2µ)m · (−1)mα1thα1l

ν21m(p)·ν22m(p)·chν2m(p) a
c2

;

B2m = 4µ·σ0f(p)
πλ(λ+2µ)m · c21c

2
2(−1)mα1thα1l

ν21m(p)·ν22m(p)·chν2m(p) b
c2

;

(2.13)

Here:

α1 =
p

c1
; νim (p) =

√
ρ2 +

π2m2c22
l2

.

Thus, the solutions (2.10) corresponding to the first group of reflected transverse waves
are completely determined. On the lateral surfaces these solutions cause tangential stresses
x = ±a and y = ±b. that must be canceled by additional solutions. It turns out that as it was
noted in [3], from all possible solutions of the system of equation (2.5), only the solutions
of the form

ψ̄∗
2m =

∑
k

C1mk cos

(
1

2
+ k

)
πx

a
+ C2mk

(
1

2
+ k

)
πy

b
(2.14)

are capable to neutralize the above-mentioned stresses.
Let us consider to the equations H∗

0mH
∗
2mψ̄

∗ = Dm or(
∂2

∂x2 − π2m2

l2
− p2

c22

)(
∂2

∂x2 − π2m2

l2

)
ψ̄∗
2m = D1m(

∂2

∂y2
− π2m2

l2
− p2

c22

)(
∂2

∂y2
− π2m2

l2

)
ψ̄∗
2m = D2m

(2.15)

where the unknown constants Dm = D1m + D2m be defined. Without going into details,
we give the ready formulas for these constants that were determined from the condition that
all tangential σxz and σyz stresses equal zero on the surfaces x = ±a and y = ±b:

C1km = 2D1m
(−1)k

π

[
η21k+

ν22m(p)

c22

][
η21k+

π2m2

l2

]
η1k

C2km = 2D2m
(−1)k

π

[
η22k+

ν22m(p)

c22

][
η22k+

π2m2

l2

]
η2k

(2.16)

D1m =
2

π

2µσ0c
2
1

(λ+ 2µ)λ

f (p)

ν21m (p)

(−1)m
(
p2

c22
+ 2π2m2

l2

)
(thν2m

c2
a) p

c1
th p

c1
l

∞∑
k=0

[(
η22k +

ν22m
c22

) π2m2

l2
−η22k

π2m2

l2
+η22k

]−1 (2.17)
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D2m =
2

π

2µσ0c
2
1

(λ+ 2µ)λ

f (p)

ν21m (p)

(−1)m
(
p2

c22
+ 2π2m2

l2

)
(thν2m

c2
b) p

c1
th p

c1
l

∞∑
k=0

[(
η22k +

ν22m
c22

) π2m2

l2
−η22k

π2m2

l2
+η22k

]−1

η1k =
π

a

(
1

2
+ k

)
η2k =

π

b

(
1

2
+ k

)

νim =

√
p2 +

π2m2c2i
l2

Note that the equation H∗
0mH

∗
1mψ2m = −Dm also has an obvious solution

ψ2m = − Dm(
π2m2

l2
+ p2

c22

)
π2m2

l2

; that compensates the solution (2.14) of inhomogeneous equa-

tion (2.15) and simultaneously does not cause any displacement in the body.
The obtained solutions by their form are identical with the solutions given in [3] with

only difference that the integrals over continuous parameters, q ∈ (0,∞) in solutions of [3],
(representing originals of Fourier transform) are replaced by an infinite sum for discrete val-
ues q = πm

l (m = 1, 2, 3, ...) of the similar parameter. Therefore, the methods of inversion
of the solutions-transformations by the Laplace operator, stated in [3], are also identical and
can easily be applied here too. Without dwelling on the details, we only give the solutions

for axial velocities
(

·
W = Ẇ (λ+2µ)λ

2µ·σ0·c1

)
of the parallelepiped under consideration:

f (p)
·
=
·
H (t)

·
W =

λ

2µ

∑
k

(sinπ(12 + k) zl )(sinπ(
1
2 + k) c1tl )

(12 + k)(−1)k
+

+

[∫ t

0

∑
m

(−1)m

m
Fm (t− τ) ·M

(
τ,

2nl

c1

)
dτ

]
sinπmz

l

where:
Fm (τ) = Fam (τ) + Fbm (τ) ;

Fam (τ) =
α1m

(
cos Bmx

c2

)
sinα1mt

cos βma
c2

+

+

∞∑
k=0

(−1)k
√(

α2
1m + η21kc

2
2

)
η1k · c22 (cos η1kc2x) cos η1kc2t

α
(
β2m − η21kc

2
2

)
Fab (τ) =

α1m

(
cos Bmy

c2

)
sinα1mt

cos βmb
c2

+

+

∞∑
k=0

(−1)k
√(

α2
1m + η22kc

2
2

)
η2k · c22 (cos η2kc2x) cos η2c2t

b
(
β2m − η22kc

2
2

)
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M

(
τ,

2nl

c1

)
= H (τ) + 2

∞∑
1

(−1)nH

(
τ − 2nl

c1

)
αim =

cimπ

l

βm =
√
c21 − c22

πm

l
=

√
α2
1m − α2

2m.

3 Conclusion

The exact analytic solution of non stationary dynamic problem of wave propagation in a
short length rectangular prism, known as G. Lame problem in mechanics, is found.

References

1. Rassulova, N.B.: Wave propagation in a prismatic bar exposed to the action of axial
forces, Izv. RAN MTT, 6, 171–176 (1997).

2. Rasulova, N.B.:On dynamic of bar rectangular cross section, Trans. Of ASME, J. of
Appl. Mech. 68, 662–666 (2001).

3. Rasulova, N.B., Shamilova, G.R.: Propagation of stress wave in a rectangular bar, Izv.
RAN MTT, 4, 144–152 (2016).


