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Abstract. The process of nonstationary flow of an incompressible vis-
cous fluid through a pipeline, described by a one-dimensional equation
of parabolic type, is considered. First, by integrating and replacing the
variable, and then using the time discretization, the original equation is
transformed to a semi-discrete equation with the corresponding condi-
tions. Within the framework of the model obtained, an inverse problem
is posed in the variational formulation for determining the hydraulic
characteristics of a pipeline with an unknown boundary condition on
the pipeline wall. For the numerical solution of the variational prob-
lem, a computational.
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1 Introduction

In modern technology, pipelines are used to move a variety of fluids, with the smallest quan-
tities used in laboratory equipment and instrumentation, to trunk lines. Typically, when de-
signing pipelines, flow fluids are set which provide the main characteristics of the pipeline’s
performance in accordance with its purpose, and the position of the pipeline’s starting and
ending points. One of the main tasks is to determine the hydraulic characteristics of the
pipeline, i.e. Determination of the pressure drop, flow rate for the passage of the specified
flow rate of the liquid through this pipeline. Darcy-Weisbach [2], [6], [11]

2
U
AP = A\—I 1.1
5q (1.1)
where AP - is the pressure drop across the pipeline the length of [, d - is the diameter of
the pipeline, X - is the coefficient of hydraulic resistance, p - is the density of the fluid, w -
the average velocity along the pipeline section.
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Formula (1.1), as well as an explicit expression for the coefficient of hydraulic resis-
tance for a laminar regime, can be obtained from the exact solution of the stationary flow
equation for homogeneous incompressible liquids through a pipeline with the correspond-
ing rheological laws. The so-called “sticking condition” is used as the boundary condition
on the pipeline wall. Thus a known parabolic velocity profile arises in stationary flows of
viscous fluids under the action of a pressure drop. However, in recent years, numerous ex-
perimental and numerical studies have shown that there is a slip condition on the solid wall
of the pipeline [8], [13], [7]. Three models of interaction of liquids with a solid wall are con-
sidered in the literature, which correspond to the following boundary conditions: adhesion,
slippage according to Navier’s law and slippage with limited voltage [9], [3], [12]. In this
regard, it is necessary to note a very important circumstance regarding the boundary condi-
tion on the pipeline wall. The fact is that the velocity of the fluid flow on the pipeline wall
is not available to direct measurement and cannot be controlled. Consequently, an accurate
representation of the condition on the pipeline wall is practically not possible.

Therefore, for the practice of pipeline transport, research is important to determine the
hydraulic characteristics of the pipeline for non-stationary flows of transported viscous lig-
uids with an unknown boundary condition on the pipeline wall.

In this paper, the problem of determining the hydraulic characteristics of a pipeline is
represented as a combined inverse problem for the equation of the nonstationary flow of an
incompressible viscous fluid in a pipeline in a variational setting.

2 Formulation of the problem

Let there be a horizontally located simple pipeline with rigid walls, length of [, radius of
R, and a viscous incompressible fluid is pumped through it. It is assumed that the Oz axis
is directed along the axis of the pipeline and the flow is directed along the axis of the tube
so that only one of the three velocity components (u;, %y, u,) remains, u, # 0, u, = 0
and u, = 0. Assuming the flow of the fluid to be axisymmetric, a complete system of
differential equations describing a given flow can be represented in the form [6]:

ou, Oou, v O ( 8uz> B 10P

R = T -——,0 R, 0<t<T,
ot o 0z r Oor rar p 0z TS <
ou, ou, 10P 10P
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where P- is the pressure, v— is the kinematic viscosity of the liquid. From the second
and third equations of system (2.1) it follows that u, represents a function only 7 and ¢, and
of the last two, independence of the pressure P of r and ¢, i.e.

uy = uy(r,t), P = P(z,t).

Then from the system (2.1) we arrive at the following form of the equation of the nonsta-
tionary flow of a viscous incompressible fluid through a pipeline

Ou, v O ( 8uz) _ 1op

“ror \'or p 0z

ot r or

Let us pay attention to the following singularity of the last equation: the left-hand side
of it does not depend on z, and the right-hand side does not depend on r. This is possible
only if %—f is a function of time. Assuming

oP AP (t)

u(r,t) = uy(r,t), e T
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the mathematical model of the flow of a viscous incompressible fluid in a pipeline can be
written in the form

ou v o [ Ou 1 AP (t)

I (=) =2 t<t. 22

ot ror <T8r> p 1 <<k O<tsth (2.2)

The initial and boundary conditions for equation (2.2) can be represented in the form

uli=o = (1), (2.3)
ou
e =0 24
87‘ ’7’70 ’ ( )
ulr—r = n(t). 2.5)

The boundary condition (2.4) is equivalent to the boundedness condition of the solution of
equation (2.2) while r = 0.

Obviously, knowing the laws of changing the pressure drop AP(t¢) and the velocity of
the fluid flow on the pipeline wall 7(¢) in time, while solving problem (2.2) - (2.5), one can
find the law of variation of the volumetric flow of liquid in time through the pipeline

R
Q(t):/ 2rrudr. (2.6)
0

Equation (2.2), conditions (2.3) - (2.5), and also ratio (2.6) can be represented in dimen-
sionless form. Let us introduce the following dimensionless variables
T=—,t=

—— AP
CC;*) AP:F7¢:§7ﬁ:%
where u*, t*, P*, Q* are the characteristics dimensional quantities.

Omitting the dashes over the dimensionless variables of equation (2.2) and condition (2.3)
- (2.5), we write in the form

_ U =
7u:7*7Q:
u

==
F|

ou 190 ou R?p*
= \|\r= AP 1 <T 2.
ot r Or (T8r>+ypu*l (1),0<r<1, 0<t<T, 2.7
u(r,0) = o(r), (2.8)
ou
. Ir=0 = Y, 2.
or Ir=0 =0 2.9
ulro1 = n(t). (2.10)
In this case ratio (2.6) takes the form
1
Q= /rudr. (2.11)
0

We multiply both sides of equation (2.7) by r and integrate the result on the interval [0, ]
with respect to the variable r. Integrating by parts and taking into account condition (2.9),

we obtain 5 5 5o

T uw  reR°P*
— dé = r— AP(t
815/0 usde "or * vpu*l ®)

Denoting

/T u€dé = w(r,t), (2.12)
0
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The last integral relation is written in the form

ow  ?w  10w 9
—_— s —— —— < i .
o "oz oy TPrAPDO<r<l 0<tsT (2.13)

In this case, the initial and boundary conditions for equation (2.13) take the form

w =0 = ¥(r), (2.14)
w |p=p =0, (2.15)
ow
s =n(t 2.16
87’ |7"—1 77( )7 ( )
and the integral ratio (2.11) is written in the form
w =1 = Q(1), 2.17)

where ¢(r) = frf@(g)d& D= T;zﬁi]:;‘

0
Equation (2.13) is discretized by time ¢. To this end, we introduce a uniform difference
grid in the [0 < ¢ < T'] area with respect to the variable ¢

in At = % increment. The derivative %" in equation (2.13), while ¢;, j = 1,m, is approx-

imated by the difference “backward”

ow w (rytj) —w(r,tj—1)
E (th]') ~ At

Introducing the notation w’(r) = w (r,t;), we can write the equation (2.13), conditions
(2.14) - (2.16), and the additional ratio (2.17) in the form

w! (r) — w1t (r)  dPwl B ldwj

Dr?API 1 2.1

At dr? r dr T 0<r <1, (2.18)
w? (r) = (r), (2.19)
w |,—g =0, (2.20)
dw’ .
i 221
o lr=1 =7 (2.21)
w2 = @7, (2.22)

j=1 2, ...m,

where Q7 = Q (t;), APJ ~ AP (t;), 17 =~ n(t;).

Now, on the basis of the obtained model (2.18) - (2.21), we set the following problem of
determining the hydraulic characteristics of the pipeline: ‘

Let the law of the change in the volumetric flow rate of the fluid 7,5 = 1,m be
known and it is required to find a law of change in the pressure drop AP’ j = 1, m , that
would ensure that a given flow rate of liquid is passed through the pipeline with unknown
,j=1m.

It should be noted that in [4] the problem of determining the hydraulic characteristics
of a pipeline for a nonstationary flow of nonlinear viscous liquids was investigated with
specifying the sticking condition on the pipeline wall.

This problem belongs to the class of combined inverse problems connected with the re-
construction of the right-hand sides of partial differential equations and boundary conditions

(11, [10], [5].
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3 Solution method

We formulate the inverse problem for the semi-discrete equation (2.18) as a variational
problem with the use of local regularization [1]. To this end, in accordance with (2.22), we
introduce a smoothing functional in the form

J(AP?, ) = [w =1 — @] ) +m (Ap‘j)2 + 72 (77j)2, (3.1)

where 1, y2- are the regularization parameters.

Thus, at each time layer j = 1, 2, ., m, the minimum of the smoothing functional (3.1)
is sought to determine the pressure drop along the length of the pipeline AP’ and the
boundary condition on the pipeline wall 77 under conditions (2.18) - (2.21).

The solution of problem (2.18) - (2.21) on each time layer j = 1, 2, .. .,m can be
represented in the form

w’ (r) =67 (r) + AP ¢ (r) + P/ A(r), (3.2)

where 67 (r), ¢(r), A(r) are unknown functions. Substituting (3.2) into equation (2.18), we

have ) ) ) ) ) )
07 (r)+ APi¢ (r) + P A(r) —wi ™ (r)  d?¢7  1d¢9

At dr? r dr
d?¢ 1do . A2\ -1dA
J _ J— 2 J J _J
+AP = AP T + DreAP? + 1 = 7 S

Hence we obtain the following boundary-value problems with respect to unknown functions
07(r), o(r), Alr): , , , 4
679 (r) —wi=t(r)  d*¢7 1d¢Y

At dr2  rdr’
07 |,—0 =0, (3.3)
de’
ar =1 =0

¢ lr=0 =0, (3.4)
do
% |r—1 =0.

Alr=0 =0, (3.5)
d\

— |p= 1.

dr Ir=1
7=12,....m.

Substituting (3.2) into the functional (3.1), we have

J(API i)y = [07(r) =1 + APIG (r) ;=1 +

FA) et — Q7]+ 1 (APT) 475 (1)
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The minimum of this functional is achieved when
[07(7) lr=1 + AP ) (r) lr=1 + A1) |p=1 — Q7] ¢ () lr=1 + MAP? =0,
[gj(r) lr=1 + APj(b () lr=1 + 77j)‘(r) lr=1 — Q]] A(r) |r=1 + 7277j =0.

From the resulting system of equations, we can determine AP’ and 1’

72 (Q1 = 07(r) [r=1) ¢ (1) [r=1
Y2(P (1) [r=1)2 + 1 (A (r) lr=1)* + 1172’

S (@ =) ) A() [
Y2(¢ (1) lr=1)? + 1 (A (1) [r=1)2 + 1172
Thus, the proposed method of local regularization for the solution of the inverse problem
(2.18) - (2.21), (3.1) by defining AP’ and 7/, j = 1,2, ..., m based on the solution of the
direct problems (3.3), (3.4), (3.5), calculation of AP’ and 7 according to (3.6), (3.7) and
using the representation (3.2) for the solution of problem (2.18) - (2.21).
For the numerical solution of problems (3.3), (3.4) and (3.5), the finite difference method
can be used. We introduce a uniform difference grid in the [0 < r < 1] area with respect to
the variable r

API = (3.6)

3.7

wp, = {n:iAr, i:O,n}

with Ar = % step. Applying the integral method, the discrete analogs of problems (3.3),
(3.4) and (3.5) on the difference grid wy, can be represented as

At Ar? ri  Ar
6] =0, (3.8)
05, — 6’
o mel ),
Ar
Oi  Qiy1 —20i+Pi1 1 ¢ — i 9 .
R — Dr: =1,2,3,....n—1
At Ar? ri  Ar +Dri,1=1,23,...n-1,
¢0 =0, (3.9)
¢n — an—l

Pn = On-l _
Ar ’

PV VIR ) VINES VPR D VR VIS
= +l AT;F 1—571, i=1,2,3,...,n—1,
Ao = 0, (3.10)
)\n*)\nfl
Ar
i=1,2,...m,

. o o
0wl :egﬂ—zegwgﬂ_lelﬂ.—egﬂ’ 193t

=1,

J

%

where w! ~ w’(r;), 677" = 09(r;), NimA(r), b= ().

The resulting difference problems (3.8), (3.9), and (3.10) are a linear system of algebraic
equations with a tridiagonal matrix in which the approximate values of the unknown func-
tions 67 (r), ¢(r), A(r) in the inner nodes of the difference grid, i.e. 67, ¢, A;ji =1,n — 1.
The solutions of the difference problems (3.8), (3.9) and (3.10) can be found by the usual
method of sweeping.
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4 Results of numerical calculations

On the basis of the proposed numerical algorithm, numerical experiments were carried out
for model problems. The numerical experiment is carried out according to the following
scheme: for given functions ¢ (r), AP(t) and n(t), the direct problem (2.13) - (2.16) is
solved. To this end, we construct a discrete analogue of the problem (2.13) - (2.16) on the
difference grid tw; X wy,
. - A A ) A .

w! — w) :w‘g+1—2w‘l7+w§_1_ lwg_wg_1+Dr2APj

At Ar? ri  Ar ’ ’

1=1,2,3,...n—1,5=1,2,3,...,m,

0 0
w; :?ﬁzﬂ:o’na

Jjo_
wy = 0,
Ar

and the resulting system of difference equations is solved by the sweep method. The depen-
dence found Q7 = wy,, j = 1,2,...,m is taken as the exact data for recovery of AP’ and
n,i=1,2,..,m.

The results of the numerical experiment carried out for the case of ;1 = 1073 Pa’s;
p = 1000kg/m3; R = 0.6 m; () = 0; AP(t) = 1-0.2sin 3t; n(t) = 0.02; At = 0.002;
Ar = 0.05; 71 = 0.08; 79 = 0.008 are presented in the table; AP? ' are the exact
values of the functions AP(t) and 7(t), AP, 7 are the calculated values of AP(t) and
n(t) respectively.

An analysis of the results of a numerical experiment indicates that the proposed com-
putational algorithm allows us to restore the required functions with a sufficiently high
accuracy.

Table.

t AP? AP nt | 7

0.5 | 0.8005 | 0.8005 | 0.02| 0.1997
1.0 | 0.9718 | 0.9718 | 0.02| 0.0210
1.5 | 1.1955 | 1.1955 | 0.02] 0.0202
2.0 | 1.0559 | 1.0559 | 0.02] 0.0203
2.5 1 0.8124 | 0.8124 | 0.02| 0.0200
3.0 | 09176 | 0.9176 | 0.02| 0.0210
3.5 | 1.1759 | 1.1759 | 0.02| 0.0209
4.0 | 1.1073 | 1.1073 | 0.02| 0.0203
4.5 | 0.8392 | 0.8392 | 0.02| 0.0204
5.0 | 0.8699 | 0.8699 | 0.02] 0.0210
5.5 | 1.1424 | 1.1424 | 0.02| 0.0208
6.0 | 1.1502 | 1.1502 | 0.02] 0.0202
6.5 | 0.8789 | 0.8789 | 0.02| 0.0207
7.0 | 0.8327 | 0.8327 | 0.02| 0.0205
7.5 | 1.0974 | 1.0974 | 0.02] 0.0207
8.0 | 1.1811 | 1.1811 | 0.02| 0.0209
8.5 1 0.9282 | 0.9282 | 0.02| 0.0212
9.0 | 0.8087 | 0.8087 | 0.02| 0.0199
9.5 | 1.0447 | 1.0447 | 0.02] 0.0205
10 | 1.1976 | 1.1976 | 0.02| 0.0209
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5 Conclusion

The inverse problem connected with the determination of the hydraulic characteristics of the
pipeline for a non-stationary flow of a viscous fluid with an unknown boundary condition on
the pipeline wall is considered. The computational algorithm of the problem is based on the
use of the variational formulation of the inverse problem with local regularization. Unlike
the global regularization method, where the solution of the inverse problem is determined
at all times simultaneously, the proposed approach takes into account the specifics of the in-
verse problem and the solution is determined successively at individual instants of time. An
analysis of the results of a numerical experiment indicates that the proposed computational
algorithm ensures the stability of the solution to the errors of the input data.
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