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Analysis of the second boundary value problem of elasticity theory for a
small thickness inhomogeneous transwersally-isotropic cone

Natik K. Akhmedov - Gulnaz H. Shakhverdieva

Received: 05.07.2017 / Revised: 15.09.2017 / Accepted: 25.10.2017

Abstract. The second boundary-value problem of the theory of elas-
ticity for inhomogeneous transversely isotropic cone of small thickness
have been studied using the method of asymptotic integration of the
equations of the theory of elasticity. Non-uniform solutions are con-
structed. The nature of the homogeneous solutions constructed is stud-
ied. It is shown that for an inhomogeneous transversally isotropic cone
with a fixed lateral surface, the stress-strain state is made up only from
a solution having the nature of a boundary layer.
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1 Introduction

The papers [1, 2] concentrates on the asymptotic method axially symmetric problems of
elasticity theory for a variable thickness conical shell. In the papers [3, 4] the general theory
of a transversally isotropic conic shell is developed. The axisymmetric problems of the
theory of elasticity for a conic shell were investigated on the basis of the asymptotic method
in this paper.
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2 Problem statement

We consider an axially symmetric problem of elasticity theory for an inhomogeneous transver-
sal cone that is an isotropic body with two conic and two spherical boundaries. Lets classify
the cone as a spherical coordinate system 7, 6, ¢ and denote the domain occupied by the
cone by I' = {r € [r1;72],0 € [01;602]; ¢ € [0;27]}. Equilibrium equations at the absence
of mass fores in spherical system of coordinates has the form [7]:

2.1

{do‘m + 1507»9 + 207+ —0pp—0a9+0rectgl =0
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do .0 + :‘dggg + 30'T9+(O'(.)9r U‘{“P) Ctg9 0

where 01,09, Oy, Ory, 0,9, are stress tensor components expressed by the displacement
vector components u, = u,(r, ), ug = ug(r, ) in the following way [8]:
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Substituting (2.2) in (2.1) we get an equilibrium equations in displacements
(Lo +€01Ly +£°0{Ly) w =0 (2.3)
where Lj, are matrix differential operators of the form
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W = (W,, Wo)T, W, = W,(p;n), Wy = Wa(p;n).

There n = 9;90, p = % are new dimensionless variables; ¢ =

02401
2

- characterized

02—01
2

the cone’s thickness; g = is the opening angle of the median surface of the cone;
n € [-L1; p € o1 00 € (0;5); W, = 32 Wy = 12, biy = @1 bia = G2,
boo = ‘%, bog = Cé%g, byy = ‘gg - are dimensionless variables; GG -as some characteristic
parameter having the size of elasticity modulus a;;.

It is assumed that elasticity module b;; = b;;(n) are arbitrary positive conditions func-

tion of variable 17 whose values may change about one order
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Let on the lateral surfaces of the cone the following boundary conditions are given
Wl _, =3(p). (24)

Here 5 (p) = (f*(p), h*(p))""
We assume that f*(p), h*(p) are sufficiently smooth functions and relatively ¢ hand
the order O(1).

3 Construction of inhomogeneous solutions

Let us construct inhomogeneous solutions, i.e. the solutions of equation (2.3) satisfying
boundary conditions (2.4).
We look for the solution of (2.3), (2.4) in the form:

Wy=Wpy +eWp +---

Wy =Wyo+eWp1 +--- G.D

Substitution of (3.1) in (2.3), (2.4) reduces to the system whose successive integration gives
the relations for the expansion coefficients of (3.1):

f(p)

1(n) + £ (p), (3.2)

upo =

w0 = ") + (o), (33)

n
h( ) (z) ph'(p) [ ta(x)
o = ( bas(x) der /w2 ) T /b;(:c)dx_

f()

—ctgbyo (1(n) +¢s(n) + (n+ 1)k~ (p)—

_ph'(p)

n
/ ba(@)dz — (n+ 1)p(h=())' + Ca(p)n (n); (3.4)

gy — 20 ;pf’(p))(w(n) () + h(,o):;g@ox

F () [
x(/ bos dzx — 6(n) — Pa2(n) — bzzwz() )
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!
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¥1(n) .

n
y b12($)¢1( 779 (/¢ )dx +/b23($)¢1(:ﬁ)dﬂc) + Ca(p)h2(n); (3.5)

—ctgbo - h™ (p)br(n) — p(f~(p)) Pa(n) = f~(p) (W7 (n) + 1+ 1) —
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1
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n) /1 ™ Ye(1) /1 b by

The stress with respect to & have the order O(s~ 1) .
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4 Construction and analysis of homogeneous solutions
Assume in (2.4) gF(p) =0 :
Wl _., =0. 4.1)
Any solution of equation (2.3) satisfying the conditions (4.1) is said to be a homogeneous

solution.
Looking for the solution of (2.3), (4.1) in the form

W (p,n) = p*~7u(n) 4.2)

we get the spectral problem

(o2 (z—3) (L1 — L) 4 &2 (= — 3)* L) ) = 0 “3)
u(n) =0 as n==+1

where
a(n) = (a(n), c(n))"

As € — 0 for the solution (4.3) we apply the asymptotic method based on there iterative
processes [6]. The homogeneous solutions of (4.3), corresponding to the first asymptotic
process can be obtained from (3.1) (3.7), if we substitute in the equation g (p) = 0. In this
case we get trivial solutions correspond to the first asymptotic process.

There is no solution that has the edge effect characterize and corresponds to the first
asymptotic process for a cone with fastened lateral surface.

According to the asymptotic process we look of for the solution of (4.3) in the form:

a®(n) = e(azo + cazy + ....),
A3(n) = e(ezp +eczp + ....), (4.4)
z = 5_1(ﬁ0 +efb1 + )

After substitution (4.4) in (4.3) for the first expansion terms, we get the spectral problem
L(,B)ﬂo = {lo(ﬁo)ﬂo; ﬂ0|n=:t1 = 6} =0 4.5)

where
10(Bo) = Loo + BoL1o + B2 La; o = (aso; cz0)”

_ || 0(bsa0) O
Loo = ‘ 0 Abxd) |
Lo — 0 8(()44) + blga
10 = 8(()12) + by 0

(4.5) describes potential solution of plate transversely isotropic inhomogeneous in thick-
ness’s [5, 9, 10].

At the following stage, for determining w7 = (asq, 031)T (51 we get the boundary value
problem:

{ (Loo + BoL1o + S5 La)ur = —B1(Lio + 280 La)uo — Bo Lo — Lato, 4.6)
Tl‘r]:il =0 '

where
[11 H ( 44 12)0 gvo

Y
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byactghoO (b12 by — b23)0 — 30(bas)
O(baa — bog — 22) — 3b440 O(baz)ctgby + (b — b23)0t9903
The solubility condition of (4.6) is orthogonality of the right hand side of the solution of
the associated problem
L*(Bo)ug = L(—Bo)u =0

|

[e=]

where @ = (a%y; c50)? -
Satisfying the solubility conditions for 3; we have:

Dy
/81 E)
where )
dch dao Ldco da*
Dy = [ |bizag—2 —b —b b 0
1 /[12610 dn 44— dn 12a0d + 440 d77

— 2 (b440058 + bnaoﬁg)] dn;

dag de b
Dy = / [ baaCy— a + (ba2 — 523)67;)00015990 - (bz2 + baz — ;2) X

—%

d d
% di;ag 4 Ozo(b44 + blz)coagctgeo + b44—d6;;)a§ctg00 — bascg di;) ctgby—
b1a dej 3 daj
_ Az — — Zhyco - dn.
<b22 + b3 > > T

By means of the substitution
azo(n) = By 901" (n) — g1.f (),

cao(n) = =By (g0 " () + By (g2 (m) + By (91 (m))’
the problem (4.5) is reduced to the Popkovich generalized spectral problem [5, 9, 10]:

(g0f"(m)" = BE[(gr.f )" + 91" () + (g2.£'(n)'] + Bigsf(n) =0
gof"(n) = Bggrf(n) =0 as n==+l. 4.7)
(90" (M) = BE[g2f'(n) + (g1.f(m))] =0 as n=+1.

where

go = 71)22 g1 = 71)12 192 = i g3 = 7b11
b3y — biibas’ b3y — bi1bas’ bas’ b3y — bi1baa

The solution corresponding to the third integrating process have the form:

u () = ep™2 YDy [By290 8 () — g1 fu(n)+

k=1

+0(e)] - exp ((ﬁgk + ﬁug) -1n p> , (4.8)

ug (pym) = ep Zm —Boi (90.f8 () + Boy g0 fi () +
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B3 (g fi(m)) + O(e)] exp ((ﬁ% ; ﬁlk) n p> |

Solutions of (4.8) have the boundary lager character and the first terms of (4.8) equiva-
lent to Saint-Venant’s edge effect of inhomogeneous transversally-isotropic plate [5, 9].

Assume that on the spherical part of the boundary of the shell the boundary conditions
are given

Opp = fis(n), Opo = fas(m) p=ps (s =1;2)
where f15(n), f2s(n) are sufficiently smooth functions satisfying the equilibrium conditions.

For determining the constants Dy, based on Lagrange’s variational principle, we get the
infinite system of linear algebraic equations:

ngnDnO =hi; (k=1,2,...,). (4.9)

where
Dy = Dyo + eDja1+, ...,

1
Gkn = / (=80 fo [Bogofr — gifx] + o [Bor(91fx) + Bog-g2.ft — Bor (g1fe)'] } dnx
e}

2
x ;exp ((m 4 Bu + w> 1nps) ,

Zp3/2 exp <( +ﬁ1k> -1nps> /{fls [5% gofr — glfk} +

+fas(0) [= By (g0 ) + B g2 fr + Boit (g1 fx)] } dn

Definition of Dy; (j = 1,2,...) invariably reduces to inversion of one and the same
matrices that coincide with the matrices of system (4.10)
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