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Solution of contact problem for a plane weakened by a variable width
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Abstract. By the methods of elasticity theory we construct a mathemat-
ical model of partial closure in isotropic medium of a variable width
slot. It is assumed that the interaction of surfaces of the slot under the
action of applied volumetric and surface loads may lead to origination
of the contact zones of their surfaces. We study the case of origination
of several contact areas of the slot faces. Herewith it is assumed that at
some part of the contact area there arises stick of faces, in the remain-
ing part there may happen slippage. The problem on equilibrium of a
slot with partially contacting faces is reduced to the problem of linear
conjugation of analytic functions. Definition of the unknown parameters
characterizing the partial closure of a variable width slot is reduced to
the solution of the system of singular integral equations. The contact
stresses, the sizes of the contact zones were determined.
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contact zones · contact stresses.
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1 Introduction

Consider the fracture of an isotropic medium weakened by a rectilinear variable width slot
h(x) whose surface is under the action of gas. The quasistatic deformation process is in-
vestigated. Recently, there have been published a number of papers devoted to investigation
of bodies with cracks with regard to existence of cohesive forces between the faces and
possibility of their contact [1-15].

As is known, to get the solution of a fracture mechanics problem with regard to contact
of faces is considerably difficult. This is connected with increase of the amount of unknown
parameters of the problem such as contact stresses, contact boundaries, etc. At the same
time, these problems, with regard to partial contact of crack faces are of great interest by in-
vestigating the fracture of composite materials, rocks, stick-slip effect and so on. To present
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day, the problems of partial contact of faces of variable width slots have not been studied
enough.

We can say that accounting of variability of the slot width at the contact of its faces
has not been investigated. In the present paper we give general statement of the problem in
which the variability of the slot width and friction and action of body forces are taken into
account. The contact stresses are determined by quadrature that is convenient for practical
application in engineering calculations.

2 Formulation of the problem.

Assume that in the isotropic medium occupying the plane xOy these is a variable width slot
h(x) comparable with elastic deformations. The slot’s length is accepted as 2l = b−a (Fig.
1). It is assumed that the body forces F = X+iY (X(x, y), Y (x, y) are the given functions,
i2 = −1) act on the particles of the medium. As x → ∞, y → ∞ the displacement vector
and stress tensor components tend to zero.
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Fig. 1. Computational diagram of contact problem for a plane with a variable width slot.

In the process loading of the body at some ratio of physical and geometrical parameters
of medium and acting volumetric and surface loads, there appear the contractive stresses
zones in which the slot’s faces may get in contact, and this will reduce to appearance of
contact stresses on the given area of the slot faces. We assume that in the deformation
process the slot faces get in contact on the areas (αk, βk) (k=1,2,. . . ,n). It is accepted that
each contact area consists of areas of stick of faces (ck, dk) and two areas (αk, ck), (dk, βk)
on which there may happen slippage.

Denote by L1 the totality of stick areas, by L2 the totality of slippage areas, by L3 the
totality of areas on which the gas pressure p(x) acts.

In the process of loading of the body, in the areas where the slot’s faces get in contact,
there arise normal py (x) and tangent pxy (x) stresses whose values are not known in ad-
vance and to be defined. The boundary conditions on the slot’s faces for the problem under
consideration with stresses vanishing at infinity, have the form:

σy − iτxy = py − ipxy onL1, σy − iτxy = (1− if (x)) py onL2 (2.1)

σy − iτxy = −p (x) onL3,

∂

∂x

(
υ+ − υ−

)
= −h′ (x) onL1 + L2, (2.2)
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∂

∂x

(
u+ − u−

)
= 0 onL1. (2.3)

Here it is accepted that on the slippage areas there hold the dry friction forces (the fric-
tion law is accepted in the Amonton-Coulomb form); f(x) is the friction factor; (u+ − u−)
is a tangential, (υ+ − υ−) is a normal component of the opening of the slot’s faces.

A model of a contact with friction and stick was first considered by L.A. Galin [16, 17].
The contact zone sizes are not known in advance and to be determined.

3 The method of the boundary value problem solution.

We represent the stress state in the plane with a slot in the form of the sums

σx = σ0
x + σ1

x, σy = σ0
y + σ1

y , τxy = τ0xy + τ1xy, (3.1)

where σ0
x, σ0

y , τ0xy is any particular solution of the equations of plane theory of elasticity in
the presence of body-forces; σ1

x, σ1
y , τ1xy is the solution of the equations of plane theory of

elasticity in the absence of body-forces.
For the stresses σ0

x, σ0
y , τ0xy we have the relations

σ0
x + σ0

y = − 2

1 + κ

∂Q

∂z
, z = x+ iy, (3.2)

σ0
y − σ0

x + 2iτ0xy =
1

1 + κ

∂

∂z

(
κQ̄− F̄1

)
that contain the two functions Q (z, z̄) and F1 (z, z̄) that represent any particular solutions
of the equations

∂2Q

∂z∂z̄
= F (z, z̄) ,

∂2F1

∂z2
= F (z, z̄). (3.3)

Here κ is the Muskhelishvili constant, κ = 3 − 4ν for plane strain; κ = (3− ν)/(1 + ν)
for plane stress (ν is the Poisson’s ratio of the material).

Allowing for formulas (3.1) we write boundary conditions (2.1) in the form

σ1
y − iτ1xy = py − ipxy − f0 on L1, σ

1
y − iτ1xy = (1− if) py − f0 on L2, (3.4)

σ1
y − iτ0xy = −p (x)− f0 onL3,

where f0 =
(
σ0
y − iτ0xy

)
= − 1

1+κRe∂Q∂z + 1
2(1+κ)

∂
∂z

(
κ∂Q̄

∂z − ∂F̄1
∂z

)
for y = 0.

We express the components stress tensor σ1
x, σ1

y , τ1xy and displacement vector u1, υ1 by
two complex variable piecewise-analytic functions Φ (z) and Ω (z)

σ1
y − iτ1xy = Φ (z) +Ω (z̄) + (z − z̄)Φ′ (z), (3.5)

2µ
∂

∂x
(u1 + iυ1) = κΦ(z)−Ω(z̄)− (z − z̄)Φ′(z),

where µ is the shear modulus of the material. Following [18] Muskhelishvili N.I., based on
boundary conditions (3.4) we arrive at the linear conjugation problem with discontinuous
coefficients

[Φ (t) +Ω (t)]+ + [Φ (t) +Ω (t)]− = 2f0 (t) , (3.6)
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[Φ (t)−Ω (t)]+ − [Φ (t)−Ω (t)]− = 0,

where f0(t) =

py − ipxy − f0 on L1

(1− if)py − f0 on L2

−p(x)− f0 on L3

.

We write the solution of boundary value problem (3.6) in the form

Φ(z) = Ω(z) =
1

2πiX(z)

∫ b

a

X(t)f0(t)

t− z
dt, (3.7)

X (z) =
√

(z − a1) (z − b1).

As z → ∞ X (z) → z+O (1/z). The root under the integral sign represents the value
of the branch of the corresponding function distinguished by the reduced condition on the
upper face of the slot.

Relations (3.6) and (3.7) contain unknown contact stresses py(x), pxy(x). Let us con-
struct integral equations for determining the unknown functions py(x), pxy(x). The rela-
tions (2.2), (2.3) are the conditions that determine the listed unknown functions. Using the
second formula in relations (3.5), and boundary values of the functions Φ (z), Ω (z) on the
segment y = 0, a ≤ x ≤ b we get

Φ+ (x)− Φ− (x) =
2µ

1 + κ

[
∂

∂x

(
u+ − u−

)
+ i

∂

∂x

(
υ+ − υ−

)]
. (3.8)

Using the Sokhotsky-Plemelj formula [18] and taking into account formula (3.7), we
find

Φ+(x)− Φ−(x) = − i

πX+(x)

∫ b

a

X+(t)f0(t)

t− x
dt. (3.9)

Taking into account relations (2.2), (2.3), (3.8), (3.9), after some transformations we get
the system of integral equations with respect to unknown functions py(x), pxy(x):

− 1

πX+
1 (x)

[∫
L1+L2

X+
1 (t)py(t)dt

t− x
−

∫ b

a

X+
1 (t)σ0

y(t)dt

t− x
− (3.10)

−
∫
L3

X+
1 (t)p(t)dt

t− x

]
= − 2µ

1 + κ
h′(x).

∫
L1

X+
1 (t)pxy(t)dt

t− x
+

∫
L2

X+
1 (t)fpy(t)dt

t− x
−

∫ b

a

X+
1 (t)τ0xy(t)dt

t− x
= 0. (3.11)

where X+
1 (t) =

√
(t− a1) (b1 − t).

4 Calculation method and analysis of results.

As might be expected, the stated problem decays into two independent problems: for a
opening mode slot (see (3.10)), and sliding mode (the transverse shear slot) (see (3.11)).

The solution of integral equation (3.10) may be obtained by solving the appropriate
Riemann problem [18, 19]. We represent integral equation (3.10) in the form∫

L1+L2

p∗y(τ)

τ − t
dτ = f∗(t),
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where
p∗y(t) = py(t)X1(t),

f∗(t) =
2µh′(t)X1(t)

1 + κ
+

∫ b

a

X+
1 (τ)σ0

y(τ)dτ

τ − t
+

∫
L3

X+
1 (τ)p(τ)dτ

τ − t
.

Introduce the piecewise-analytic function F∗(z) given by the Cauchy integral whose
density is the sought-for solution of the integral equation

F∗ (z) =
1

2πi

∫
L1+L2

p∗y (τ)

τ − z
dτ.

The analytic function F∗(z) represents the solution of the problem of linear conjugation
of boundary values

F+
∗ (z) + F− (τ) =

f∗ (τ)

πi
. (4.1)

The solution of boundary value problem (4.1) in the class of everywhere bounded func-
tions has the form

F∗(z) =
Xi(z)

2πi

∫
L1+L2

f1
∗ (τ)

X+
2 (τ)(τ − z)

dτ,

where

X2 (z) =

n∏
k=1

√
(z − αk) (z − βk), f

1
∗ (τ) =

f∗ (τ)

πi
,

X+
2 (τ) =

n∏
k=1

√
(τ − αk) (τ − βk).

Allowing for Sokhotsky-Plemelj formulas, we get the solution of integral equation (3.10)

p∗y(t) = F+
∗ (t)− F−

∗ (t),

F+
∗ (t) = X+

2 (t)

(
1

2

f1
∗ (t)

X+
2 (t)

+
1

2πi

∫
L1+L2

f1
∗ (τ)

X+
2 (τ)(τ − t)

dτ

)
,

F−
∗ (t) = X−

2 (t)

(
−1

2

f1
∗ (t)

X+
2 (t)

+
1

2πi

∫
L1+L2

f1
∗ (τ)

X+
2 (τ)(τ − t)

dτ

)
.

Taking into account X−
2 (t) /X+

2 (t) = −1, we have

p∗y(t) =
X+

2 (t)

πi

∫
L1+L2

f1
∗ (τ)

X+
2 (τ)(τ − t)

dτ,

from which it follows

py(t) = X+
1 (t)

X+
2 (t)

πi

∫
L1+L2

f1
∗ (τ)

X+
2 (τ)(τ − t)

dτ. (4.2)

For determining the parameters αk and βk, we have the equations∫
L1+L2

f∗(t)

X+
2 (t)

tk−1dt = 0k = 1, 2, . . ., n. (4.3)

We get the missing n equations for determining the coordinates of the ends of the contact
areas of the slot faces from the conditions
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υ+ (αk)− υ− (αk) = −h (αk) k = 1, 2, . . ., n.

We have
υ+ (x)− υ− (x) =

1

4πiγ

∫ x

α1

G (t) dt,

where
γ =

µ

π(1 + κ)
, G (t) =

[
Φ+ Φ̄

]+ −
[
Φ+ Φ̄

]−
.

Using the previous formulas, we find the sought-for equations∫ α1

a1

G (t) dt = −4πiγh (α1) , (4.4)∫ αk+1

βk

G (t) dt = −4πiγ [h (αk+1)− h (βk)] k = 1, 2, . . ., n− 1.

In the same way, by solving singular integral equation (3.11), we get

pxy(x) =
X+

1 (x)X+
3 (x)

π2

∫
L1

fxy(τ)

X+
3 (τ)(τ − x)

dτ, (4.5)

where

X+
3 (x) =

m∏
k=1

√
(x− ck) (x− dk),

fxy (x) = −
∫
L2

fpy (t) dt

X+
1 (t) (t− x)

+

∫ b1

a1

τ0xy (t) dt

X+
1 (t) (t− x)

−
∫
L4

qxy (t) dt

X+
1 (t) (t− x)

.

For determining the unknowns ck and dk, we have∫
L1

fxy(t)

X+
3 (t)

tk−1dt = 0 k = 1, 2, . . . ,m. (4.6)

We get the missing m equations for finding the coordinates of the ends of the contact
areas, from the conditions

u+ (ck)− u− (ck) =

∫ ck

a1

∂

∂t

(
u+ − u−

)
dt = 0 k = 1, 2, . . . ,m.

We have ∫ c1

a1

[
Φ+ − Φ−] dt = −2πiγh (c1) , (4.7)∫ ck+1

dk

[
Φ+ − Φ−] dt = −2πiγ [h (ck+1)− h (dk)] k = 1, 2, . . . ,m− 1.

For determining the stick parts we have the complete system of equations.
The joint solution of equations (4.2)-(4.4), (4.5)-(4.7) permits to determine the contact

stresses py(x), pxy(x) and the sizes of contact zones.
For simplifying calculations, the functions X (x, y) and Y (x, y) were expanded into

Taylor series in the vicinity of the origin of coordinates, and this expansion was limited by
several first members. As a result of integration of equations (3.3), we have

Q (z, z̄) =

∫ z

dz

∫ z̄

F (z, z̄) dz̄, F1 (z, z̄) =

∫ z

dz

∫ z

F (z, z̄)dz. (4.8)
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Using the functions Q (z, z̄) and F1 (z, z̄), according to (3.2) we find the function f0 (x).
The results of calculations of absolute values of contact stresses py/F0 of the slot along

the contact zone (α1, β1) for different values of relative slot size l∗ = (b− a) /R are
depicted in Fig. 2.
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Fig. 2. Distributions of the normal contact stresses py/F0 for different relative slot sizes

Here F0 are body forces per unit area (MPa), R is a typical linear size of the plane. In
calculations the dimensionless coordinate x′ connected with x by the following relation

x =
α1 + β1

2
+

β1 − α1

2
x′

was used.
The largest values of contact stresses are attained in the middle part of the contact zone

where the slot faces interlock.
The character of change of tangential contact stresses pxy(x) along the contact zone

is similar to change of normal contact stresses py(x), but the absolute value of tangential
stresses are significantly less.

5 Conclusions.

The effective calculation scheme of a variable width slot partially closed by body forces
under the action of internal pressure is suggested. Analysis of the model of partial closure
of a variable width slot in the isotropic medium in the existence of body forces is reduced
to parametrical investigation of the system of singular integral equations at different geo-
metrical and physical parameters of the medium. The contact stresses py(x), pxy(x) and
the sizes of contact zones are immediately determined from the solutions of the obtained
systems. The obtained relations permit to find the solution of the inverse problem, i.e. to de-
termine the parameters of body forces and the stress state of the isotropic medium at which
the given contact domain of variable width slot’s faces holds.
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