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Abstract. This paper studies some particularities of the fluid viscosity
on the frequency response of the hydro-viscoelastic system consisting of
a viscoelastic plate which is in contact with this fluid.The model con-
sisting of the viscoelastic plate and half plane filled with compressible
viscous fluid, is employed. The motion of the fluid is described by utiliz-
ing linearized Navier-Stokes equations, however the motion of the plate
by employing the exact equations of dynamics for viscoelastic bodies.
Numerical results are presented and discussed for the case where the
viscoelasticity of the plate material is modeled with the use of the frac-
tional exponential operators by Rabotnov. Glycerin is taken as a fluid
in these numerical investigations which relate to the normal stress act-
ing on the interface plane between the constituents and on the normal
velocity of the fluid on this plane. All the investigations are made for the
plane-strain state in the plate and corresponding plane-parallel flow of
the fluid.
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1 Introduction

Investigations of the problems related to the vibration of plate + fluid hydro-elastic
systems were subject a lot of investigations the review of which is given in the paper by
Akbarov and Ismailov (2015). According to this review, in the sense of the accuracy of the
employed theories these investigations can be divided into two groups the first of which con-
tains the investigations carried out within the scope of approach plate theories and within
the scope of an incompressible inviscid fluid model. However, the second group investiga-
tions are made within the scope of the exact equations of motion for the plate and linearized
Navier-Stokes equations for the flow of the compressible viscous fluids. At the same time,
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the second group investigations can also be classified as the wave propagation and forced
vibration ones. The wave propagation problems under existence of the initial stresses in the
plate are made in the papers by Bagno (2015), Bagno et al. (1994) and others, a review
of which is given in the survey paper by Bagno and Guz (1997). Detailed consideration of
related results was made in the monograph by Guz (2009).

However, the investigations related to the forced vibration of the plate + fluid hydro-
elastic systems was started recently and as the subject of the present paper relates to these
investigations we consider a brief review of those. Note that the first attempt in this field was
made in the work by Akbarov and Ismailov (2014) in which the two-dimensional (plane-
strain state) problem on the forced vibration of the pre-strained highly elastic plate + com-
pressible viscous fluid system, was studied. The forced vibration of the system consisting
of the elastic plate, compressible viscous fluid and rigid wall was considered in the paper by
Akbarov and Ismailov (2015a). Moreover, in the paper by Akbarov and Ismailov (2015b),
the dynamics of the moving load acting on the hydro - elastic system considered in the pa-
per by Akbarov and Ismailov (2015b)were investigated. Note that the results obtained in the
paper by Akbarov and Ismailov (2014a)were also detailed in the monograph by Akbarov
(2015).

Recently, in the paper by Akbarov and Panakhli (2015) the discrete-analytical solution
method is proposed for the solution to problems related to the dynamics of the hydro-elastic
system consisting of an axially-moving pre-stressed plate, compressible viscous fluid and
rigid wall. The concrete numerical results are also presented and discussed.

However, all the investigations reviewed above, were focused on the interaction between
an elastic plate and fluid, and therefore, in general, cannot be employed to understand the
forced vibration of hydro - viscoelastic systems, such as, the polymer plate loaded with
fluids. At the same time, investigations of the vibration of hydro - viscoelastic systems
have a great significance because at present polymer composite materials are intensively
used in various branches of modern industry related to the building of boats, ships, offshore
structures, etc. under the building of which, their interaction behavior with fluids must be
takeninto account. In connection with this in the paper by Akbarov and Ismailov (2014b)
the first attempt is made in this field and the problem related to the forced vibration of
the system consisting of the plate made of a linear viscoelastic material and compressible
viscous fluid is considered. However, in the paper by Akbarov and Ismailov (2014b)the
related numerical analysis is made for some particular cases and the fluid is modeled as a
compressible viscous fluid only. Consequently, the results given and discussed in the paper
by Akbarov and Ismailov (2014b)do not allow us to make any conclusion on the influence
of the fluid viscosity on the frequency response of the viscoelastic plate + fluid system.

Taking this statement into consideration, in the present paper, the investigations started
in the work by Akbarov and Ismailov (2014b)are developed and an attempt is made to
explain how the fluid viscosity acts on the frequency response of the hydro-viscoelastic
system consisting of a viscoelastic plate which is in contact with this fluid-filled half-plane
and how this action depends on the rheological parameters of the plate material. Under
this investigation the plate material is described throughRabotnov’s fractional exponential
operators (Rabotnov, 1980) and plane-strain state in the plate and corresponding plane-
parallel flow of the fluid takes place.

2 Formulation of the problem

Consider a hydro - viscoelastic system consisting of the plate with h thickness made of
viscoelastic material and a half-plane filled by compressible viscous fluid. We introduce
the Cartesian system of coordinates Ox1x2x3 (Fig. 1) which is associated with the up-
per free face plane of the plate. Assume that the system is perturbed by the lineal-located



M.I.Ismailov, S.A. Aliyev 39

time-harmonic normal force with P 0 amplitude which acts on the plate’s free face plane,
according to which, the plane-strain state in the plate and the plane flow of the fluid in the
Ox1x2 plane, occur.

Fig.1. The sketch of the hydro-viscoelastic system.

We investigate the forced vibration of the foregoing hydro-viscoelastic system. For this
purpose, first we write the governing field equations for the plate motion.

Equation of motion:

∂σ11
∂x1

+
∂σ21
∂x2

= ρ
∂2u1
∂t2

,
∂σ21
∂x1

+
∂σ22
∂x2

= ρ
∂2u2
∂t2

, (2.1)

Constitutive relations:

σ11 = λ∗ε+ 2µ∗ε11, σ22 = λ∗ε+ 2µ∗ε22, σ12 = 2µ∗ε12, (2.2)

where λ∗ and µ∗ are the following operators:{
λ∗

µ∗

}
η(t) =

{
λ0
µ0

}
η(t) +

∫ t

0

{
λ1
µ1

}
(t− τ)η(τ)dτ. (2.3)

In Eq. (2.3), λ 0 and µ 0are the instantaneous values of Lame’s constants at t = 0, λ 1(t) and
µ1(t) are the corresponding kernel functions for describing the hereditary – viscoelastic
properties of the plate material.

Strain-displacement relations:

ε11 =
∂u 1

∂x1
, ε22 =

∂u 2

∂x1
, ε12 =

1

2

(
∂u2
∂x1

+
∂u1
∂x2

)
, ε =

∂u1
∂x1

+
∂u2
∂x2

(2.4)

The equations (2.1) – (2.4) are the complete system of equations of the theory of viscoelas-
ticity for isotropic bodies and the notation used in these equations is conventional.

According to Guz (2009), we consider the governing field equations of motion of the
Newtonian compressible viscous fluid: the density, viscosity constants and pressure of which
are denoted by the upper index (2.1). Thus, we write the equation of motion and other field
equations for the fluid.

Linearized Navier-Stokes equations:

ρ
(1)
0

∂v1
∂t

− µ(1)∆v1 +
∂p(1)

∂x1
− (λ(1) + µ(1))

∂e

∂x1
= 0,

ρ
(1)
0

∂v2
∂t

− µ(1)∆v2 +
∂p(1)

∂x2
− (λ(1) + µ(1))

∂e

∂x2
= 0, (2.5)
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Linearized equation of continuity:

∂ρ(1)

∂t
+ ρ

(1)
0

(
∂v1
∂x1

+
∂v2
∂x2

)
= 0, (2.6)

Constitutive relations:

T11 = (−p(1)+λ(1)e)+2µ(1)e11, T22 = (−p(1)+λ(1)e)+2µ(1)e22, T12 = 2µ(1)e12, (2.7)

Deformation rate and velocity relations:

e11 =
∂v1
∂x1

, e22 =
∂v2
∂x2

, e12 =
1

2

(
∂v1
∂x2

+
∂v2
∂x1

)
, e =

∂v1
∂x1

+
∂v2
∂x2

, (2.8)

State equation

a20 =
∂p(1)

∂ρ(1)
(2.9)

In the equations (2.5) and (2.6),ρ(2.1)
0 is the fluid density before perturbation and

∆ =
∂2

∂x21
+

∂2

∂x22
(2.10)

The other notation in equations (2.5) - (2.9) is conventional.
According to Guz (2009), the solution of the system equations (2.5)-(2.10) is reduced to

finding the two potentials φ and ψ which are determined from the following equations:[(
1 +

λ(1) + 2µ(1)

a20ρ
(1)
0

)
∆− 1

a20

∂2

∂t2

]
φ = 0,

(
ν(1)∆− ∂

∂t

)
ψ = 0, (2.11)

where ν(2.1) is the kinematic viscosity, i.e. ν(2.1) = µ(2.1)
/
ρ(2.1)
0 .

The velocities v1, v2 and the pressure p(2.1) are expressed by the potentials φ and ψ
through the following expressions:

v1 =
∂φ

∂x1
+
∂ψ

∂x2
, v2 =

∂φ

∂x2
− ∂ψ

∂x1
, p(1) = ρ

(1)
0

(
λ(1) + 2µ(1)

ρ
(1)
0

∆− ∂

∂t

)
φ. (2.12)

Assuming that p(2.1) = −(T11 + T22 + T33)/3, we obtain:

λ(1) = −2

3
µ(1). (2.13)

It is also assumed that

|vi| < const. |∂vi/∂xj | < const, i; j = 1, 2 asx2 → −∞ (2.14)

and there are no reflected waves from x2 = −∞.
Moreover, the following boundary and contact conditions are satisfied:

σ21|x2=0 = 0, σ22|x2=0 = −P0e
iωt,

∂u1
∂t

∣∣∣∣
x2=−h

= v1|x2=−h ,

∂u2
∂t

∣∣∣∣
x2=−h

= v2|x2=−h , σ21|x2=−h = T21|x2=−h , σ22|x2=−h = T22|x2=−h . (2.15)
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We recall that the main goal of the present investigations is to determine how the vis-
cosity of the fluid affects the vibration of the system under consideration. To achieve this
goal we must compare the results obtained within the scope of the foregoing equations and
relations for the viscous fluid with the corresponding ones obtained within the scope of
the equations and relations for the compressible inviscid fluid. The latter equations and re-
lations are obtained from the equations (2.5) - (2.14) by substituting into these equations
λ(2.1) = µ(2.1) = 0. Consequently, for the inviscid fluid the potential ψ in (2.11) and (2.12)
disappears, i.e. for the inviscid fluid it must be taken that ψ ≡ 0, the equations (2.6), (2.8)
and (2.9) remain as they are, but the equations (2.5), (2.7), (2.11) and (2.12) are transformed
into the equations (2.16), (2.17), (2.18) and (2.19), respectively, as given below.

ρ
(1)
0

∂v1
∂t

+
∂p(1)

∂x1
= 0, ρ

(1)
0

∂v2
∂t

+
∂p(1)

∂x2
= 0, (2.16)

T11 = T22 = −p(1), T12 = 0, (2.17)[
∆− 1

a20

∂2

∂t2

]
φ = 0, (2.18)

v1 =
∂φ

∂x1
, v2 =

∂φ

∂x2
, p(1) = −ρ(1)0

∂φ

∂t
. (2.19)

For the inviscid fluid, the decay conditions in (2.14) also remain as they are. Moreover,
for the inviscid fluid the condition ∂u1/∂t|x2=−h = v1|x2=−h in (2.15) disappears and,
according to (2.17), the condition σ21|x2=−h = T21|x2=−h in (2.15) is replaced with the
condition σ21|x2=−h = 0.

This completes the formulation of the problem.

3 Method of solution

We represent the displacements and the components of the strain tensor related to the plate,
and the velocities and components of the strain rate tensor related to the fluid as follows.

uk(x1, x2, t) = ūk(x1, x2)e
iωt, ..., vk(x1, x2, t) = v̄k(x1, x2)e

iωt, ...,

e(x1, x2, t) = ē(x1, x2)e
iωt, k;n = 1, 2. (3.1)

Below the over-bar on the amplitudes in (3.1) will be omitted.
Using the presentation in (3.1) and the dynamic correspondence principle(Fung, 1965)we

obtain the following constitutive relations for the amplitudes for the quantities related to the
plate.

σkn = (Λ(ω)ε(x1, x2)δ
n
k + 2M(ω)εkn(x1, x2)) e

iωt, (3.2)

where
Λ(ω) = λ0 + λ1c(ω)− iλ1s(ω),M(ω) = µ0 + µ1c(ω)− iµ1s(ω),

λ1c(ω) =

∫ ∞

0
λ1(s) cos(ωs)ds, λ1s(ω) =

∫ ∞

0
λ1(s) sin(ωs)ds,

µ1c(ω) =

∫ ∞

0
µ1(s) cos(ωs)ds, µ1s(ω) =

∫ ∞

0
µ1(s) sin(ωs)ds. (3.3)

We substitute the expressions in (3.1) and (3.2)into the corresponding equations and rela-
tions, and replace the derivatives ∂(·)/∂t and ∂2(·)

/
∂t2with iω((̄·)) and −ω2((̄·)), respec-

tivelywe obtain the corresponding equations, boundary and contact conditions for theam-
plitudes. For solution to these equations we employ the Fourier transformation to these
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equations with respect to the x1 coordinate and taking the problem symmetry with respect
to x1 = 0 into account, the amplitudes of the sought values can be represented as follows.

{T12, σ12, v1, u1, ψ} (x1, x2) =
1

π

∫ ∞

0
{T12F , σ12F , v1F , u1F , ψF } (s, x2) sin(sx1)ds,

{T22, T11, σ22, σ11, v2, u2, φ} (x1, x2) =
1

π

∫ ∞

0
{T22F , T11F , σ22F , σ11F , v2F , u2F , φF } (s, x2) cos(sx1)ds (3.4)

The equations in terms of the Fourier transformation of the displacements u1F and u2F are
obtainedas follows

Au1F −B
du2F
dx2

+ C
d2u1F
dx22

= 0, Du2F +B
du1F
dx2

+G
d2u2F
dx22

= 0, (3.5)

where

A = X2 − s2(Λ(ω) + 2M(ω)), B = s(Λ(ω) +M(ω)), C =M(ω),

D = X2 − s2M(ω), G = Λ(ω) + 2M(ω), X2 = ω2h2
/
c22, c2 =

√
µ0/ρ. (3.6)

Introducing the notation

A0 =
AG+B2 + CD

CG
,B0 =

BD

CG
, k1

=

√
−A0

2
+

√
A2

0

4
−B0, k2 =

√
−A0

2
−
√
A2

0

4
−B0, (3.7)

we can write the solution of the equation (3.5) as follows.

u2F = Z1e
k1x2 + Z2e

−k1x2 + Z3e
k2x2 + Z4e

−k2x2 ,

u1F = Z1a1e
k1x2 + Z2a2e

−k1x2 + Z3a3e
k2x2 + Z4a4e

−k2x2 , (3.8)

where

a1 =
−D −Gk21

Bk21
, a2 = −a1, a3 =

−D −Gk22
Bk22

, a4 = −a3. (3.9)

Using the equations (3.8), (3.4) and (3.2), we also write expressions for the Fourier transfor-
mations σ12F and σ22F of the corresponding stresses which enter the boundary and contact
conditions in (2.15):

σ12F = Z1M(ω) (k1a1 − s) ek1x2 + Z2M(ω) (−k1a2 − s) e−k1x2

+Z2M(ω) (k2a3 − s) ek2x2 + Z4M(ω) (−k2a2 − s) e−k4x2 ,

σ22F = Z1 (sΛ(ω)a1 + k1(Λ(ω) + 2M(ω))) ek1x2

+Z2 (sΛ(ω)a2 − k1(Λ(ω) + 2M(ω))) e−k1x2

+Z3 (sΛ(ω)a3 + k2(Λ(ω) + 2M(ω))) ek2x2

+Z4 (sΛ(ω)a4 − k2(Λ(ω) + 2M(ω))) e−k2x2 . (3.10)

This completes consideration of the determination of the Fourier transformation of the
values related to the plate-layer.
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Now we consider the determination of the Fourier transformations of the quantities re-
lated to the fluid flow. First, we consider the determination of φF and ψF from the Fourier
transformation of the equations in (2.11), which takes the relations (2.13) and

φF = ωh2φ̃F , ψF = ωh2ψ̃F (3.11)

into account and can be written as follows

d2φ̃F

dx22
+

(
Ω 2

1

1 + i4Ω 2
1

/
(3N 2

w)
− s2

)
φ̃F = 0,

d2ψ̃F

dx22
−
(
s2 + iN2

w

)
F
ψ̃F = 0, (3.12)

where

Ω 1 =
ωh

a0
, N2

w =
ωh2

ν(1)
. (3.13)

The dimensionless number Nw in (3.13) can be taken as a Womersley number and charac-
terizes the influence of the fluid viscosity on the mechanical behavior of the system under
consideration. The dimensionless frequency Ω 1 in (3.13) can be taken as the parameter
which characterizes the compressibility of the fluid on the mechanical behavior of the sys-
tem under consideration.

Thus, taking the condition (2.14) into consideration, the solutions to the equations in
(4.2) are found as follows

φ̃F = Z5e
δ1x2 , ψ̃F = Z6e

γ1x2 . (3.14)

where

δ1 =

√
s2 − Ω 2

1

1 + i4Ω 2
1

/
(3N2

w)
, γ1 =

√
s2 + iN2

w. (3.15)

Using (3.14) and (3.15) we obtain the following expressions for the velocities, pressures
and stresses of the fluid from the Fourier transformations of the equations (2.5) – (2.12).

v1F = ωh
[
−Z5se

δ1x2 + Z6e
γ1x2

]
, v2F = ωh

[
Z5δ1e

δ1x2 − Z6se
γ1x2

]
,

T22F = µ(1)ω

[
Z5

(
4

3
δ21 +

2

3
s2 −R0

)
eδ1x2 + Z6

(
−sγ1 −

2

3
sγ1

)
eγ1x2

]
,

T21F = µ(1)ω
[
Z5sδ1e

δ1x2 + Z6

(
s2 + γ21

)
eγ1x2

]
, p

(1)
F = µ(1)ωR0Z5e

δ1x2 , (3.16)

where

R0 = −4

3

Ω 2
1

1 + i4Ω 2
1

/
(3N2

w)
− i ∗N2

w (3.17)

Substituting expressions (3.8), (3.10) and (3.16) into the boundary and contact conditions in
(2.15) we obtain a system of equations with respect to the unknowns Z1, Z2, . . . , Z6through
which the sought values are determined.

This completes the consideration of the solution method.
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4 Numerical results and discussions

Again, using the over-bar notation for the amplitudes of the south values we can represent
the stresses, displacements and velocities as follows.

{T11, σ11, .., v2} (x1, x2, t) = Re
{
eiωt

{
T̄11, σ̄11, .., v̄2

}
(x1, x2)

}
, (4.1)

where T̄11, σ̄11, .., v̄2 are calculated through the integrals given in (3.4). We recall that the
over-bar is omitted in (3.4).

Under calculation of the improper integrals∫∞
0 f(s) cos(sx1)ds and

∫∞
0 f(s) sin((s)x1)ds1

which enter into foregoing expressions are replaced by the corresponding definite integrals∫ S∗
1

0 f(s) cos(sx1)ds and
∫ S∗

1
0 f(s) sin((s)x1)ds1,

respectively. The values of S∗
1 are determined from the convergence requirement of the nu-

merical results. Note that under calculation of the latter integrals, the integration intervals
are further divided into a certain number of shorter intervals, which are used in the Gauss
integration algorithm. The values of the integrated expressions at the sample points are cal-
culated through the equations (3.10), (3.16) and (2.15). All these procedures are performed
automatically with the PC programs constructed by the authors in MATLAB.

Assuming that the volumetric expansion-compressionof the plate material is purely elas-
tic, i.e.(λ∗+2

3µ∗)φ(t) = (λ0+
2
3µ0)φ(t),according to which the relation, the viscoelasticity

of this material can be expressed only with the

µ ∗ φ(t) = µ0

[
φ(t)− 3β0

2(1 + ν0)
Π ∗

α

(
− 3β0
2(1 + ν0)

− β∞

)
φ(t)

]
, (4.2)

operator, where(Rabotnov 1980)

Π ∗
α(x)φ(t) =

∫ ∞

0
Πα(x, t− τ)φ(τ)dτ,Πα(x, t)

= t−α
∞∑
p=0

(x)ptp(1−α))

Γ ((1 + p)(1− α))
, 0 ≤ α < 1. (4.3)

In (4.3) Γ (x )is the gamma function. Moreover, the constantsα, β0and β∞ in (4.2) are the
rheologicalparameters of the plate material.

According to Rabotnov (1980), it is obtained that

µc = µ0

[
1− 3

2(1 + ν0)
(d + β01)

−1Παc(−β01 − β∞, ω)

]
,

µc = −µ0
3

2(1 + ν0)
(d + β01)

−1Παs(−β01 − β∞, ω), (4.4)

where

Παc(−β01 − β∞, ω) =
ξ2 + ξ sin πα

2

ξ2 + 2ξ sin πα
2 + 1

,

Παs(−β01 − β∞, ω) =
ξ cos πα

2

ξ2 + 2ξ sin πα
2 + 1

, β01 =
3

2(1 + ν0)
. (4.5)

In (4.5) the following notation is used

ξ = (QΩ)α−1, Q =
c20

h(β01 + β∞)
1

1−α

,Ω = k1R
c

c2
, c2 =

√
µ0/ρ0. (4.6)
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Moreover, in the works by Akbarov and Ismailov (2014b) and Akbarov (2014) it is
established that the long-term value of the shear modulus for the selected operator are de-
termined as follows:

µ∞ = lim
t→∞

µ∗ = µ0

(
1− 3

2(1 + ν0)

1

(3/(2(1− ν0)) + d)

)
, (4.7)

where the notation
d =

β∞
β0

. (4.8)

is used. The expressions (4.7) and (4.8) show that the constant d characterizes the long-term
values of the elastic constants.

Considerable discussions of the mechanical meaning of the parametersQ(4.6) and d(4.8)
are given in the papers by Akbarov (2014) and Akbarov and Ismailov (2014b)where it was
established that Q and d can be taken as the characteristic creep time and the parameter
characterizing the long term values of the viscoelastic material, respectively.

It follows from the foregoing discussions that the problem under consideration is char-
acterized not only with the dimensionless rheological parameters Q and d, but also with the
dimensionless parameters Ω 1, Nw in (3.13). Moreover, it is also introduced the parameter
Mµ = µ(2.1)ω

/
µ0. Note that the case where Ω 1 = 0corresponds to the case where the

fluid is incompressible, but the case where 1/Nw = 0corresponds to the case where the
fluid is inviscid.

In the numerical investigations we assume that the instantaneous values of the Lame
constants and the density of the plate material are taken as those related to Lucite, i.e.
according to Guz and Makhort (2000) we assume that µ0 = 1.86 × 109Pa, λ0 = 3.96 ×
109Pa and the density ρ0 = 1160kg

/
m3, but the material of the fluid is Glycerin with

viscosity coefficient µ(2.1) = 1, 393kg/(m · s), density ρ = 1260kg
/
m3and sound speed

a0 = 1927m/s (Guz, 2009).
Thus, after selection of these materials, the dimensionless parameters Ω 1, Nw and Mµ

can be determined through the following two quantities: h (the thickness of the plate-layer),
and ω (the frequency of the time-harmonic external forces). The numerical results, which
are discussed below, relate to the normal stress T22 acting on the interface plane between
the fluid and plate and to the velocity v2 of the fluid on the interface plane in the direction
of the Ox2 axis.

Making investigations on the convergence of the numerical results it is established that
the case where S∗

1 = 5 andN∗ = 100 (the number of shorter intervals into which is divided
the integrated interval [0, S∗

1 ] ) is quite sufficient for obtaining verified numerical results.
Therefore, in the present numerical investigation we assume that S∗

1 = 5 and N∗ = 100.
Thus, we consider the graphs of the frequency response of the dimensionless stress

T22h/P0 given in Fig. 2 which are obtained in the cases where h = 0.005m, respectively,
and graphs of the frequency response of the dimensionless velocity v2µh/(P0c2) given in
Fig. 3which are also obtained in the case where h = 0.005m.

In these figures the graphs grouped by the letter a (b) show the influence of the rheolog-
ical parameter Q(d) under a fixed value of the rheological parameter d(= 1) (Q(= 10)).
Under construction of the foregoing graphs it is assumed that ωt = 0 and x1/h = 0. Note
that in these figures and in others which will be considered below, the results related to
the viscose (solid lines) and inviscid (dashed lines) cases are given simultaneously in order
to compare these results and, according to this comparison, to make corresponding con-
clusions on the influence of the fluid viscosity on the studied frequency responses. Note
that here and below under ”viscous fluid case” (”inviscid fluid case”) it is assumed that the
fluid, i.e. Glycerin, which is selected for the present investigations, is modeled through the
constitutive relations in (2.7) (through the constitutive relations in (17)).
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Thus, it follows from Fig.2 that for all the cases under consideration the absolute val-
ues of the stress T22h/P0 increase monotonically with ω. Moreover, it follows from these
results that in the inviscid fluid case the absolute values of the stress T22h/P0 decrease
with increasing of the rheological parameters Q and d. This conclusion occurs for the vis-
cous fluid case with respect to the influence of the parameter d on the values of T22h/P0.
However, in the viscous fluid case the character of the influence of the parameter Q on the
values of the stress T22h/P0 has complicated (i.e., non-monotonic) character. With all this,
the magnitude of the influence of the rheological parameters Q and d on the values of the
stress T22h/P0 in the inviscid fluid case is greater significantly than that in the viscous fluid
case.

Fig. 2. Frequency response of T22h/P0 for various values of the rheological parameters Q
(a) and d (b) in the case where ωt = 0 and h = 0.005m.
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Consequently, according to the foregoing results, we can conclude that as a result of
the fluid viscosity the absolute values of the stress T22h/P0 in the viscoelastic plate case
decrease significantly. The results obtained for the inviscid and viscous fluid cases approach
to each other with increasing of the rheological parameters and in the case where the plate
material is purely elastic one the absolute values of the T22h/P0 obtained for the inviscid
fluid case become less than the corresponding ones obtained for the viscous fluid case.

Fig. 3. Frequency response of v2µh/(P0c2) for various values of the rheological
parameters Q (a) and d (b) in the case where ωt = 0 and h = 0.005m.

Now we consider the graphs given in Fig. 3 which illustrate the influence of the rheologi-
cal parametersQ and d on the frequency response of the dimensionless velocity v2µh/(P0c2).
According to Akbarov and Ismailov (2015a), we recall that under inviscid fluid loading of
the purely elastic plate and under ωt = 0 it is obtained that v2µh/(P0c2) = 0 for each ω,
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h and x1/h. But under viscous fluid loading of the purely elastic plate, the noted values
of v2µh/(P0c2) are different from zero. Consequently, Fig. 3 shows that as a result of the
viscoelasticity of the plate material, the values of v2µh/(P0c2) in the inviscid fluid case
become different from zero. Moreover, Fig. 3a shows that the dependence of these values
of v2µh/(P0c2) on the rheological parameter Q under fixed d (= 1), is non-monotonic,
i.e. at first, to a certain value of Q, an increase in its value causes an increase in the values
of v2µh/(P0c2). However, after the ”certain value” of Q, further increases of Q cause the
absolute values of v2µh/(P0c2) to decrease and these values approach the corresponding
values of v2µh/(P0c2) obtained for the purely elastic plate case.

It follows from the results illustrated in Fig. 3b that the dependence between the rheo-
logical parameter d and v2µh/(P0c2) under fixed Q (= 10) is monotonic, i.e. a decrease in
the values of d causes an increase in the absolute values of v2µh/(P0c2).

With this we restrict ourselves to consideration of the numerical results.

5 Conclusions

Analysis of the presented numerical results allows us to draw the following concrete con-
clusions:

1 The influence of the fluid viscosity on the frequency response of the stress and velocity
depends significantly of the values of the rheological parameters Q (4.6) and d (4.8);

2 The magnitude of the mentioned influence increases with decreasing of the rheological
parameters Q and d;

3 The magnitude of the fluid viscosity on the absolute values of the studied quantities in
the relatively small values of the rheological parameters Q and d is very significant and
it is necessary to this take into consideration under corresponding applications.
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