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Abstract. In this article, the bending and stability analysis of nonho-
mogeneous nano- and micro elements have been made by using the non-
local elasticity theory. Beam has been chosen as the structural model
type. Euler-Bernoulli beam theories have been used for beam theories.
The motion equations of Euler-Bernoulli beam theories were expressed
by using nonlocal elasticity theory, which was proposed by Eringen.
According to different boundary conditions, the bending and stability
equations of micro-nano beam have been generated. Then, in order to
observe the effect of non-local behaviour, analysis have been made over
carbon nanotube and microtubules and results have been compared
with the classical theory.
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1 Introduction

Various issues of stability and strength of one and multi-core designs elements from
homogeneous materials have been studied enough in the scientific literature. In these stud-
ies, the classic ratios of theory of elasticity are mainly used [1 - 3].

In recent years, new composite-synthetic materials are used extensively in the technique.
Therefore, these processes are put in front of designers, researchers have increased require-
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ments for assessing the strength, stability and vibration as well as in various working con-
ditions and loading conditions, a number of issues that require the new challenges of the
stress-strain state and the determination of the critical parameters. In many cases, the lay-
ered structure elements are made from a variety of non-uniformly elastic materials. The
cause of non-uniformity can be manufactured by design technology, thermal processing of
materials, heterogeneous composition, etc. Consideration of these factors in solving prob-
lems of stability and vibration of structures is very important. Therefore, it is required to
use a more refined hypothesis or theory in solving many problems of stability and vibra-
tion of structural elements from heterogeneous composite materials. One such theory is the
theory of nonlocal elasticity theory proposed by A.K. Eringen [13 10]. In the work [12]
some of the challenges and bending strength of inhomogeneous nano-micro elements were
considered. In this work, we study the problem of stability of inhomogeneous cores based
on nonlocal Eringen theory [13].

2 Formulation of the problem

It is known that the Cauchy equation of motion of homogeneous elastic bodies on the basis
of nonlocal theory of elasticity consists of the following equations [13]:

τkl,l + ρ

(
fi −

∂2ui
∂t2

)
= 0. (2.1)

Here, physical correlations are as follows:

τkl(x) =

∫
v
εklmn(x− x′)εmndv(x

′), (2.2)

where τkl - components of the stress tensor, - density of body weight, f - density of mass
force, u - component of the displacement vector, v - volume of body, t-time, kl -components
of the strain tensor, and are determined by the following formulas:

εkl =
1

2

(
∂uk
∂xl

+
∂ul
∂xk

)
. (2.3)

As seen, klmn are x− x vector functions, and stresses at the points x-depend on the defor-
mations and displacements at points x′. Connection between the components of the stress
and strain at the points x′ is determined on the basis of the generalized Hooke’s law [13]:

τ(x′) = λεmn(x
′)δke + 2µεke(x

′), (2.4)

εkl(x
′) =

1

2

(
∂uk(x

′)

∂x′l
+

∂ul(x
′)

∂x′k

)
.

Equations of state of nonlocal elasticity theory proposed by K.A. Eringen are as follows [13
- 10]:

[1− (l0a)
2∇2]υkl = τkl, (2.5)

[1− (l0a)
2∇2]τkl = λεklδkl + 2µεkl.

Here, l0 characteristic internal length, a - material constant. From equations (5) can be
obtained equation for the beam:

[1− (l0a)
2 ∂2

∂x2
]σxx = Eεxx, (2.6)
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[1− (l0a)
2 ∂2

∂x2
]τxx = 2Gεxz.

Assume that the beam material is inhomogeneous i.e.,E = E(z) (the elastic modulus
of the beam material is a continuous function of the coordinate of the thickness). If we
consider the theory of the Euler-Bernoulli beams, then we can write:

σxx = E

(
∂u

∂x
− z

∂2w

∂x2

)
. (2.7)

Here, u- moving by axis direction, w - the deflection of the axis of the beam.
In this case, the components of forces and moments are calculated according to the

formulas:

P =

∫
A
σxxdA, N =

∫
A
τxxdA, M =

∫
A
σxxzdA, (2.8)

where, S- cross-sectional area of the beam. Taking into account equation (7) from equation
(8) the following for the time is obtained:

M = KI
d2w

dx2
. (2.9)

Here, KI- generalized stiffness of the beam under consideration. If the inhomogeneity has
the form: E = E0

(
1 + γl

z2

h2 + γ2
z4

h4

)
then we get:

KI = E0I

{
1 + γ1

3

20
+ γ2

3

112

}
. (2.10)

Where, E0I bending stiffness of a homogeneous beam. After some transformations from
(6) we can get: [

1− (e0a)
2 ∂2

∂x2

]
M = −KI

d2w

dx2
. (2.11)

The equations of motion of the beam under consideration are as follows:

∂P

∂x
+ f = m0

∂2U

∂t2
(2.12)

∂2M

∂x2
+ q − ∂

∂x

(
P
∂w

∂x

)
= m0

∂2w

∂t2
−m2

∂2w

∂x2∂t2
. (2.13)

Where, P - axial compressive force, q- evenly distributed force,

m0 =

∫
S
ρds = ρs; m2 =

∫
S
z2ds = ρs

h2

12
. (2.14)

Here, the following expressions can be obtained for the time and force:

P = Ks
∂U

∂x
+ µ

∂

∂x

(
m0

∂2U

∂t2
− f

)
(2.15)

M = −KI
∂2w

∂t2
+ µ

[
∂

∂x

(
P
∂w

∂x

)
− q −m0

∂2w

∂t2
−m2

∂4w

∂x2∂t2

]
. (2.16)
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Substituting the expression for the time (16) into the equation (13) we obtain the follow-
ing equation of motion under consideration of an inhomogeneous beam:

∂2

∂x2

(
−KI

∂2w

∂x2

)
+ µ

∂2

∂x2

[
∂

∂x

(
P
∂w

∂x

)
− q +m0

∂2w

∂t2
−m2

∂4w

∂x2∂t2

]
+

+q − ∂

∂x

(
P
∂w

∂x

)
= m0

∂2w

∂t2
−m2

∂4w

∂x2∂t2
. (2.17)

By adding to this equation, the boundary conditions, we obtain the general statement of
the problem considered.

3 Solution of stability problem of a compressed beam.

In general, the solution of equation (17) is associated with great mathematical difficulties.
Therefore, we consider the case when the beam has only effective compressive load (i..
q=0). In this case, the equation (17) simplifies and turns in the form of:

d2

dx2

(
−KI

d2w

dx2

)
+

d

dx

(
P
dw

dx

)
+ µ

d2

dx2

[
d

dx

(
P
dw

dx

)]
= 0. (3.1)

Double integrating this equation, we obtain

EI
d2w

dx2
− µP

d2w

dx2
+Nw = k1x+ k2. (3.2)

Where, k1,k2- constant integration. If we consider the homogeneous equation, we get:

d2w

dx2
+ λ2w = 0. (3.3)

Here:

λ2 =
P

KI − µP
or P =

λ2

1 + µλ2
KI. (3.4)

The general solution of equation (19) is obtained in the form of:

w = c1 sinλx+ c2 cosλx+
1

λ2
(k1x+ k2) . (3.5)

Where integration constants are determined from the boundary conditions of the problem.
Consider the case where the ends of the beam are rigidly fixed. In this case the boundary
conditions are:

w = 0; and
dw

dx
= 0ifx = 0; a. (3.6)

Taking into account (22) from (23) the following transcendental equation is obtained:

λa sinλa+ 2 cosλa− 2 = 0; (3.7)

As seen from the solution, the equation (24) is a method of Newton that can be shown as
λ = 2Π . Then we get the formula for the critical load:

P = KI
4
(
nπ
a

)2
1 + 4µ

(
nπ
a

)2 . (3.8)
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Hence, from the minimum value we obtain the formula of the critical load:

Pkr =
KL

a2

(
4π2

1 + 4µπ2

)
. (3.9)

It should be noted that when =0,from (26) is obtained solution of a similar problem on
the basis of the classical theory of elasticity. Taking into account (10) from (26) we find:

Pkr =

(
1 + γ1

3

20
+ γ2

3

112

)
PkrR. (3.10)

Where PkrR = El
a2

(
4π2

1+4µπ2

)
- Reddy critical load for the considered homogeneous beam of

Euler-Bernoulli [13]. In numerical calculations for specific parameters, the following values
are taken:
p = 2300kg/m3; E0 = 1000GPA; ν = 0.19; G = 420GPA; d = 1.0 · 10−9m; I =
4.91 · 1038m4;
A = 7.85 · 1019m2; l0 = 1.5 · 109m

The results of numerical calculations are presented in Table 1.

Table 1.

a/li 10 20 30 40 50
l0 = 0.5 γ1 = γ2 = 0 0.9102 0.9758 0.9853 0.9938 0.9561

γ1 = 0.5 γ2 = 0 0.9785 1.049 1.0635 1.0683 1.0708
γ1 = 0.5 γ2 = 1 0.9788 1.052 1.0638 1.0686 1.0714

l0 = 1 γ1 = γ2 = 0 0.7172 0.9102 0.9583 0.9758 0.9844
γ1 = 0.5 γ2 = 0 0.771 0.9785 1.030 1.0489 1.058
γ1 = 0.5 γ2 = 1 0.774 0.9788 1.033 1.0492 1.062

4 Conclusions.

The article gives a general statement of the problem of stability of nano-micro elements
such as non-uniform beam of the Euler-Bernoulli equation using state of nonlocal theory of
elasticity Eringen K.A. Solutions stability problem of considered beams under axial com-
pression are obtained. When fixing the hard edges of the beam, the formula for the determi-
nation of critical load is found.
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