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Abstract. It is shown that the distribution of basic physico-mechanical-
elastic properties and parameters of the medium (such as elasticity
moduli, density, pressure, etc.) in modern models of the Earth is not
consistent with the requirements of mechanics. These distributions are
only coordinated with integral criteria relative to the total mass of the
Earth, its moments of inertia and the data on its natural oscillations
in the existing models. It is suggested in the paper that more fundamen-
tal local criteria of mechanics of continuum media concerning strength,
stability, and elastic wave propagation in deformable media should also
be carried out along with these requirements.
It is found that under the conditions of the accepted distributions of
basic physical parameters of the Earth, the existence of the solid core
of the Earth as a sphere becomes questionable, i.e. all of the indicated
three criteria of mechanics are not carried out. The pressure level ex-
ceeds as the tensile strength of the medium, and the critical values of
the equilibrium state of buckling at the surface of the Earth’s core on
geometric forming and ”internal” instabilities. Elastic waves with true
velocity can’t be propagated in the core too.
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1 Introduction

Physical parameters of deformable solid media - such as the elasticity moduli, Pois-
son’s ratio, the velocity of propagation of body elastic waves in mechanics are determined
under specific conditions (Lyav, 1935; Sedov, 1970). It is required to comply with the con-
ditions of smallness of uniformly distributed homogeneous deformation ε << 1 and the
smallness of the ratio P

µ (where P is a parameter of loading, in particular, pressure; µ
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are moduli of the medium shift; εis deformation parameter) in classical linear theory of
elasticity of isotropic homogeneous media within the framework of which the indicated
parameters are interpreted in all theoretical models of the Earth. The condition of uniform
distribution of homogeneous deformation should also be controlled in the process of defor-
mation of specific structures (sphere in the considered case). First of all, it is necessary to
achieve simultaneous fulfillment of commonly accepted requirements of the mechanics for
the media and constructions in solving the problems on distribution of physical and mechan-
ical properties in the Earth’s interior, in particular in the solid core. Specific data (Fig.1b)
on violating the requirements of the mechanics are suggested for pressure P = 329 GPa
and shear modulus µ = 157 GPa at a level of the sphere surface shown in publications
(Bullen, 1978; Dziewonski and Anderson, 1981; Anderson, 1995; Anderson, 2007; Litasov
and Shatskiy, 2016). It can be seen that the value P exceeds the value µ more than 2 times.
According to Avsyuk (1973, 2001), Adushkin et al. (2000), Levin (2001) the sphere of solid
core takes part in movements within the liquid outer core due to the rotational motion of the
Earth and tidal influences. Pressure value can nonuniformly be increased even more due to
the resistance to this movement.

Fig.1.

The conditions of carrying out the requirements concerning uniform distribution of ho-
mogeneous deformation are observed in standard laboratory experimental studies of physi-
cal and mechanical properties. Methods for conducting experiments, smallness of geomet-
ric dimensions of model samples, the actual impossibility of considering the mechanisms
of long-term (over geological time) deformation and a number of other reasons don’t allow
providing possible violations of conditions of the mechanics under conditions of natural
occurrence, as well as to exclude from the results of interpretations of influence of uncon-
trolled perturbations related to the mechanisms of long-term deformability of the structure
of the sphere under the conditions of huge value of compression.

2 Problem statement

This paper presents the results of geomechanical analysis of the data of geophysical studies
within the non-classical linearized approach (NLA) (Abasov et al., 2000; Guliyev, 2010).
At the same time the numerical data PREM (Dziewonski and Anderson, 1981) are used
taking into account the fact that the parameters of the inner core provided in this work taken
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as a basis in all pre-proposed theoretical models of the medium (Bullen, 1978; Kennett
and Engdahl, 1991; Morelli and Dziewonski, 1993; Kennett et al, 1995; Anderson, 2007;
Pushcharovsky and Pushcharovsky, 2011). There are only minor differences which have not
significant meaning for the conducted geomechanical analysis in various models.

The purpose of geomechanical analysis is to determine the conditions for pressure and
strain ensure the correctness of the calculations of physical and mechanical properties of
the model of solid core of the Earth on the basis of complex of geophysical data. The
pressure and strain values should satisfy certain conditions in determining the physical and
mechanical parameters of the medium. Only the results of measurements and calculations
obtained in compliance with the conditions of uniform distribution of homogeneous strain
is considered reliable. This condition may be violated in different situations.

3 Achievements of theoretical limit of strength

Let’s consider the case when the medium is evenly and uniformly deformed prior to the
beginning of fracture. In this case, all calculations on the physical and mechanical parame-
ters are correct, if the pressure value does not exceed the theoretical limit of strength. It is
shown in NLA (Kuliev, 1988a) that the value of the theoretical limit of the strength of the
medium is defined as P = µ under the conditions of compression (we are interested in this
variant of deformation) for a perfect elastic isotropic material. Theoretically, it is the max-
imum (limit) pressure until the achievement of which the medium is deformed evenly and
uniformly without fracture. It is determined from the condition of the loss of the ellipticity
of motion equations (4.2). In this case, the conditions µ > 0; λ + 2

3µ > 0 of classical lin-
ear theory of elasticity (here λ, µ are Lame’s elasticity moduli) are preserved. It should be
noted that the value of the ultimate strength on classical theories of strength is even lower
(Rabotnov, 1988), which dramatizes the situation even more. Naturally, proof strength is
significantly less than ultimate strength.

4 Instability of equilibrium state

The uniform distribution of strain in the medium may also be violated as a result of the
instability (in various forms), without fracture.

NLA allows defining the limits of change of strain within the framework of which the
equilibrium of uniformly deformed states is stable. In case of violation of the stability con-
ditions, the change of the equilibrium state of initially homogeneous uniform strain occurs.
As a result, the strain in the body is unevenly distributed before reaching the limit strength
of the material.

The questions of density distribution of the medium depending on the change of the
strain were studied (Guliyev and Askerov, 2007; Guliyev, 2010, 2011, 2013). It is shown
that, this dependence is not continuous due to the instability of strain under compression.
Therefore, the change of the medium density in the deformable body is not monotone, but
spasmodic in certain situations.

Let’s consider the problem of stability of solid sphere to concretize the discussion. It
is necessary to determine the highest values of surface compressive loads in which the
equilibrium state of solid sphere remains stable. Previous theoretical studies (Guz, 1979)
shows that this load is determined by solving the problem of axisymmetric form of buckling
of isotropic homogeneous sphere. Let’s assume that the sphere is filled with homogeneous
isotropic medium within the continuum approximation. The external compressive load is
given on the surface of the sphere.

The questions of stability of equilibrium state of isotropic sphere under the influence of
uniform surface loadings were studied in detail (Guz, 1979, 1986 a). Studies were carried
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out within the framework of a three-dimensional non-classical linearized theory (NLA),
sources of which date back to the incremental theory of mechanics of deformable solid
body (Biot, 1965). At the present time, three-dimensional NLA is developed greatly and is
used to study various problems of mechanics (Guz, 1979; 1986a,b, 1989; Kuliev, 1988b;
Akbarov, 2013, 2015).

The two states of deformable body are considered in NLA. The first state (motion, equi-
librium, strain process) is primary or nonperturbed. The second condition is perturbed. All
values relating to the second condition are presented as the sum of the corresponding val-
ues of the first and second state. Perturbations are considered to be small values compared
to the corresponding values of the first (nonperturbed) state. Natural (undeformed) state,
which corresponds to the case of lack of pressure and strain in the body is also used to
describe the strain in the Lagrangian method.

Deformation is taken in the following form under the uniform initial state

u0m = (λm − 1)Xm. (4.1)

Here um are displacement components along the coordinate axis; λm are coefficients of
elongation (shortening) along the coordinate axis; %m are the Cartesian coordinates.

In homogeneous initial state, equation systems of motions take the form within the com-
pressible medium in the Lagrangian coordinates (which coincide with the Cartesian coordi-
nates in the natural state) (Guz, 1986 a,b):(

ωimαβ
∂2

∂xi∂xβ
+ ρΩ2δmα

)
uα = 0, i, β, α,m = 1, 2, 3, 4;ωimαβ = Const. (4.2)

Boundary conditions at the surface of the domain S1 in terms of stress

Niωijαβ
∂uα
∂xβ

= Pj . (4.3)

Here uα are vector components of disturbance of displacement; Pj is disturbance of surface
forces; ρ is the medium density; Ni are components of unit normal vector to the surface of
the body in the natural state; δmα is the Kronecker symbol; ωimαβ are covariant components
of the tensor of the fourth rank characterizing linear, non-linear physical -mechanical prop-
erties of the medium and its initial state of stress. In considering the problems of the static,
inertial component ρΩ2δmα is omitted in the equation (4.2) where Ω is cyclic frequency of
harmonic wave.

Various classifications are possible in the formulation of problems of NLT. ”Follower”
(non-conservative) and ”dead” (conservative) surface forces are distinguished depending on
the nature of the action of surface loads. Surface ”follower” forces are those forces which
keep up changes of configurations of body surface in the process of deformation, i.e. they
can change the direction of an action and value according to deformation process. An action
of liquid and gas is modeled as ”follower” loads in the calculation practice. Surface ”dead”
forces retain their original direction and value in the process of deformation. Three various
variants of theory are also distinguished in the NLT depending on values of deformation in
the initial state (Guz, 1986a) a) theory of large (finite) initial strain; b) the first variant of the
theory of small initial strain (shifts and elongation are small in comparison to the unit); c)
the second variant of the theory of small initial strain (it is considered that the relationship
between the components of the strain tensor and the first derivatives from displacements are
linear in addition to the first variant of the theory of small initial strain). Two cases are also
distinguished to provide plane harmonic wave. The variation of distance isn’t considered be-
tween material particles due to initial strain, and the velocity of wave propagation is called
”natural” in the first variant (Thurston and Brugger, 1964; Guz, 1986b). The variation of
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distance isn’t considered between material particles due to the initial strain, and the veloc-
ity of wave propagation is called ”true” in the second variant. The formulations of buckling
problem are also distinguished for compressible and non-compressible models in the de-
formable bodies. The problems are considered only for compressible and non-compressible
media and case of ”true” velocities in the present paper. The generalization of results is of
technical nature for other cases.

In the case of the uniform homogeneous deformation of singly connected isotropic me-
dia λ1 = λ2 = λ3 for all the above-mentioned variants of the theory of the initial strain
ωijαβ in a single form (Guz, 1986a)

ωijαβ = λ0δijδαβ + µ0 (δiαδjβ + δiβδjα) + S0 (δijδαβ − δiαδjβ) , (4.4)

where the designations are respectively introduced for the theory of large initial strain and
the first variant of small initial strain theory and the second variant of small initial strain
theory

λ0 = λ2
100 − S0;µ0 = λ2

1b0 + S0; (4.5)

λ0 = λ2
100 − S0;µ0 = λ2

1b0 + S0;S0 = σ0; (4.6)
λ0 = 00 − S0;µ0 = b0 + S0;S0 = σ0. (4.7)

Values 00, b0, S0 and σ0in terms of λ1 = λ2 = λ3 are determined from expressions

a0 = Aβi − 2µij ; b0 = µij ;S0 = S0
ββ ;σ0 = σ0

ββ .

The summation isn’t conducted on indices in these formulae; σ0
ββ are normal compo-

nents of the stress tensor in the initial state.
Explicit algebraic expressions for Aβi, µij and S0

ββ are obtained in considering the con-
crete elastic potentials (Guz, 1986a).

Considering (4.4) the equation (4.2) and condition (4.3) take the form

(λ0 + 2µ0)grad div u− µ0rot rotu+ ρΩ2u = 0 (4.8)

[N(λ0 + S0divu+ (2µ0 − S0)N · ∇u + (µ0 + S0)N × rotu] = P. (4.9)
In setting ”follower” load at the surface the right side of the condition (4.9) takes the

form:
P = S0(Ndivu−N∇u−N × rotu) (4.10)

Equation (4.8) completely coincides with Lame’s equation of classical linear theory of
elasticity, if replace Lame’s parameters λ and µ to the parameters λ0 and µ0 according to
(4.5) - (4.7).

It follows from the structure (4.9) and (4.10) that in general such an analogy is absent
in the linear theory under the boundary conditions. The analogy holds only in the case of
”follower” loads.

Thus, the mathematical problem of stability of an isotropic sphere under uniform com-
pression is formulated in the form of equation (4.8) and the boundary condition (4.9). It is
necessary to take ≡ 0 in the case of setting the external load on the surface of the sphere in
the form of ”dead” loads in the right side of the boundary conditions (4.9).

In such formulation, the problem of stability of the equilibrium state of the body of
an arbitrary geometrical shape from the compressible media was studied in detail under
uniform compression (Guz, 1979, 1986a). It is shown that in case of setting ”follower”
loads on the whole body surface, state of equilibrium defined by the expression (4.1) is
stable under the fulfillment of conditions

λ0 +
2

3
µ0 > 0;µ0 > 0. (4.11)
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Conditions (4.11) should always be fulfilled, and therefore, they are considered as the
restriction on the structure of the equation of state. It is considered as specific models of the
medium a) elastic isotropic body with potential of harmonic type within the theory of large
initial strain and stability conditions are obtained in the form:

0 < λ1 < 1;

(
λ+

2

3
µ

)(
λ+

4

3
µ

)−1

< λ1 < 1. (4.12)

b) an elastic body with a quadratic potential within the second variant of small initial
strain theory and stability condition is obtained in the form:

(2− λ1)

(
λ+

2

3
µ

)
> 0;µ+ 3 (λ1 − 1)

(
λ+

2

3
µ

)
> 0. (4.13)

c) elasto-plastic body (deformation theory) within the second variant of small initial
strain theory and stability condition is obtained in the form:

P < µ. (4.14)

d) elasto-plastic body (Prandtl- Reuss theory of plasticity) within the second variant of
small initial strain theory

P < λ2
1µ. (4.15)

It is shown for all the considered models of the medium that equilibrium state is stable in
case of setting follower loads on the surface of an isotropic sphere under the fulfillment of
conditions (4.11)-(4.15). Herein, the distribution of homogeneous deformation is uniform.

Considering the body in the form of a sphere (medium material is given as: quadratic
elastic potential, deformation theory of small elasto-plastic deformation and Prandtl-Reuss
theory of plasticity; hereditary-elastic linear body of ageless type; viscous elasto-plastic
body), it is shown that in case of ”dead” surface loads, there is a critical load Pkp (according
to the value this load is less than the value µ) in reaching of which the equilibrium state of
the sphere defined by the expression (4.1) is unstable. As a result, the distribution becomes
uniform in the body of homogeneous deformation. Similar results have also been obtained
within the theory of large initial strain using various elastic potentials.

In this case, in general terms it is impossible having taken the inequality for λ0, µ0 and
S0, and so that it is ensured the fulfillment of the condition (4.11) regardless of the body
shape. Therefore, the following standard equation (Guz, 1979, 1986a) is obtained to define
low values of the critical load in the considered problem providing general homogeneous
solutions of the equation (4.8) similar to the classical theory of elasticity and requiring the
fulfillment of the boundary conditions (4.9) (it is necessary to take P ≡ 0 in the right side)

2µ0 (λ0 + µ0) + S0 (λ0 + 3µ0) = 0. (4.16)

Critical forces or strain leading to the buckling of the equilibrium state (4.1) of the sphere
are calculated using the formulae (4.5) - (4.7) from equation (4.16).

We obtain within the second variant of small initial strain theory for elastic isotropic
body from (4.16) considering (4.7)

Pkp =
µ

4 (1− 2ν)

(
5− 4ν −

(
16ν2 − 8ν + 9

) 1
2

)
, (4.17)

where ν is Poisson’s coefficient of the medium.
In case of large initial strain theory and application of harmonic elastic potential using

(4.5) from the equation (4.16) we define the critical value of shortening as follows
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(λ1)∗ = 1 +
−5 + ν (3 + 2ν) +

(
[5− ν (3 + 2ν)]2 − 4 (1− 2ν) [4− ν (1 + 2ν)]

) 1
2

8− 2ν (1 + 2ν)
(4.18)

or

(λ1)∗ =
(3− 2ν) (1 + ν)

(3− 2ν) (1 + ν) + (1− 2ν)
.

Similarly, we can obtain the calculation formulae for the case of quadratic, Murnaghan
and other forms of elastic potentials. Formulae (4.17) and (4.18) indicate that the buckling
of the equilibrium state is implemented for both small and large deformations and is general
in nature.

4.1. Internal instability

Critical values of stress and strain leading to violation of conditions (4.11) cause the
phenomenon in the body, which is called the ”internal” instability in theory (Biot, 1965;
Guz, 1986a,b). In the case of initially isotropic media, as if the initial pressure plays the
role of an internal structure similar to the internal structure of the composite media in the
anisotropic approximation within the phenomenological (continuum) approach.

”Internal” instability is studied for an infinite body in the continuum description of mate-
rials when a certain load is given on ”infinity”. At the same time the instability is not related
to the influence of boundary conditions and geometrical dimensions of the body or struc-
tural elements. The critical values of the stress and strain are determined from the study of
system types of differential equations (4.2), (4.8) in an infinite domain. The equation system
(4.2) loses the property of ellipticity under the conditions of occurrence of the phenomenon
of ”internal” instability. In this case, the condition of uniqueness of the solution (4.11) of
the linearized problems is violated. The limit value of coefficient of elongation (shortening)
is determined from (4.11) λ∗

1 by setting the structure of the elastic potential. In the case of
the modeling of the deformation process using harmonic elastic potential within the theory
of large initial strain (4.5) and (4.11) we get

λ∗
1 =

1 + ν

2− ν
, ε∗0 =

3

2

2ν − 1

(2− ν)2
. (4.19)

We obtain in case of quadratic elastic potential from (4.11) and (4.12) within large initial
strain theory

λ∗
1 =

(
1 + ν

2− ν

) 1
2

, ε∗0 =
1

2

2ν − 1

2− ν
. (4.20)

We obtain in case of linear elastic isotropic material within the second variant of small
initial strain theory

Pkp = µ, ε∗0 =
1

2

2ν − 1

1 + ν
. (4.21)

ε0 is a parameter of uniform deformation in the formulae (4.19) - (4.21). It follows from the
above mentioned formulae (4.11) - (4.15) and (4.19) - (4.21) that the ”internal” instability
occurs within the NLA in uniform deformation (compression) of the isotropic sphere on
the level of pressure comparable in value with shear moduli for different elastic potentials
obtained within the second variant of small and large initial strain theory.
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5 Elastic wave propagation in the deformed medium

The implementation of condition (4.11) also provides validity (not negative values) veloc-
ities of propagation of small perturbations (such as the Hadamard conditions (Truesdell,
1975; Guz, 1986b)) in the form of small-amplitude waves in media with initial deforma-
tions.

Consequently, equality to zero or invalidity of velocities of propagation of acoustic
waves correspond to the phenomenon of ”internal” instability of the stressed media.

In case of uniform pre-compression of isotropic medium, the ”true” velocities of propa-
gation of elastic waves in it are defined by the expressions (Guz, 1986b)

ρC2
l = λ+ 2µ− PKR

p ; ρC
2
S = µ− PKR

S . (5.1)

Here Cl, CS are the ”true” velocities of quasi-pressure and quasi-shear elastic waves; KR
p ,

KR
S are coefficients of nonlinear action of isotropic medium (Sadovsky and Nikolaev, 1982;

Guliyev, 2009). Structures of expressions for KR
p and KR

S are concretized by assignment
the form of elastic potentials.

We derive conditions under the implementation of which the velocities of propagation
of elastic waves are true in pre uniformly strained isotropic medium using the formula (5.1)
and work results (Guliyev, 2009). Accordingly, pressure elastic wave couldn’t be propagated
with true velocity in cases of the second variant of small and large initial strain theory in
the quadratic elastic potential in terms of implementation

P

µ
≥

2
(
1− ν2

)
(1− 2ν) (3− ν)

;
P

µ
≥

2
(
1− ν2

)
(1− 2ν) (5− 3ν)

(5.2)

in the stressed isotropic medium. This condition for shear elastic waves takes the form

P

µ
≥ 1 + ν

2− ν
;
P

µ
≥ 1 + ν

3 (1− ν)
. (5.3)

It is also necessary to have numerical information on the elasticity moduli of the 3rd
order along with the data of Lame coefficients λ and µ to obtain the numerical estimation
in case of using Murnaghan potential.

6 Conclusions

Based on the results obtained in the previous sections (formulae (11) - (4.21) for the the-
oretical limit of strength and instability of the equilibrium state and formulae (5.1) - (5.3)
for propagation of elastic waves in the deformable media), the appropriate calculations are
performed. Numerical values of critical forces and elongations are shown in Table 1 cor-
responding to the buckling of the equilibrium state (4.1) in setting of ”dead” forces and
”internal” instability on the surface of the sphere. The results for P∗

µ are calculated on for-
mula (4.17), for (λ1)∗ on (4.18), and λ∗

1 on (4.19). They show that the equilibrium state of
the sphere is unstable both within the theory of small and large initial strain in the consid-
ered type of loading. The critical values of forces and coefficient of elongation (shortening)
in obtaining of which ”internal” instability is respectively implemented under small and
large initial strain in the sphere are shown (lines of 2 and 4 of Table 1). It follows from
the comparison of results of the second and fourth lines to the results of the third and fifth
lines of Table 1 that the buckling of the equilibrium state of elastic homogeneous isotropic
sphere on a geometric forming in case of influence of ”dead” loads on its surface precedes
the ”internal” instability. The equilibrium state of the sphere is stable on geometric forming
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in case of influence of ”follower” loads on the surface. Therefore, the ”internal” instability
occurs without preliminary forming in this case. It should be emphasized that it is clear
from the formulae of critical forces and elongation that they don’t depend on the geomet-
ric parameters of the sphere and buckling mode. An exhaustive explanation is given to this
case (Guz, 1986a). The boundary surface is one of the coordinate surfaces of the spherical
system of coordinates in the considered problems. Eigen-values should not depend on the
geometric parameters of the problem due to the nature of Lame’s equations (4.8) (which in-
cludes derivatives of the same order) and the indicated case. The critical loads will depend
on the geometric parameters (for example, thin-walled parameters) in case of considering
the problems of stability of bodies bounded by several coordinate surfaces. The lack of ef-
fects of plastic and viscous properties of the material (formulae (14) and (4.15)) on the value
of the critical parameters is related with the fact that inelastic deformation is incompressible
due to the adopted laws of state, and inelastic deformation does not occur due to uniform
compression in the initial state.

Calculation results implemented on formulae (5.2)-(5.3) are shown in Table 2. The data
relating to the second variant of small initial strain theory is given in the numerator but in
denominations - large initial strain theory.

The numbers given in lines 4 and 5 of the table show that if these values are exceeded, the
conditions (5.2) and (5.3) aren’t fulfilled within the considered variants of NLT, i.e. elastic
pressure and shear waves can’t be propagated in the medium with true velocity accordingly.
The subscript in P l – indicates that these values relate to pressure and S to shear waves.
Contrary to that it follows from the data of Fig. 1a, b that velocities of pressure and shear
elastic waves in the sphere are true in PREM in conditions P ≥ 2µ. It shows once again
that the data on the physical and mechanical, acoustic and density characteristics in the
theoretical models should be distributed in accordance with relevant requirements of the
mechanics of deformable media with initial stress considering nonlinear laws of state. The
obtained results relate to the data of the inner core. At the same time, they predict that it
is necessary to process and interpret the relevant geological and geophysical data on the
basis of non-linear (at least within NLT) theories considering preliminary deformation of
the medium in solving the problem on the distribution of mantle and lithosphere parameters.

Data on the composition of the inner core material indicate its anisotropy (Fig. 1b)
(Litasov and Shatskiy, 2016). Naturally, phenomenon of ”internal” instability will occur at
much lower levels of loads and strain than in the isotropic approximations in the anisotropic
medium because of the smallness of the shear stiffness.

It should be noted that the results presented in this article are obtained without consid-
ering the influence of temperature, the distribution of which is shown in Fig. 1a. The con-
sideration of temperature influence on critical values of instability worsens the situation.
Buckling process is implemented at significantly lower pressure level under the influence
of temperature fields. Therefore, the consideration of temperature will not provide a qual-
itative impact on the conclusion on the insufficiency of interpretation of geophysical data
within the classical theory. The consideration of temperature is necessary to solve specific
problems of the local distribution of the considered parameters.
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Table 1.

ν 0 0.1 0.2 0.3 0.4 0.41 0.45
P ∗

µ 1 1 1 1 1 1 1
P∗
µ 0.5 0.53 0.57 0.60 0.64 0.64 0.65
λ∗
1 0.5 0.58 0.67 0.76 0.88 0.89 0.94

(λ1)∗ 0.75 0.79 0.84 0.89 0.94 0.94 0.97

Table 2.

ν 0 0.1 0.2 0.3 0.4 0.41 0.45

KR
P

−1.5

−2.5

−1.3182

−2.1364

−1.1668

−1.8333

−1.0385

−1.5769

−0.9286

−1.3571

−0.9184

−1.3369

−0.8793

−1.2586

KR
S

−1

−1.5

−0.8636

−1.2273

−0.75

−1

−0.6538

−0.8077

−0.5714

−0.6429

−0.5638

−0.6277

−0.5345

−0.569
Pl

µ

0.6667

0.4

0.8534

0.5266

1.1429

0.7273

1.6852

1.1098

3.2308

2.2105

3.5689

2.4518

6.2549

4.3699
PS

µ

0.5

0.3333

0.5789

0.4074

0.6667

0.5

0.7647

0.6190

0.875

0.7778

0.8868

0.7966

0.9355

0.8788

Fig. 1. a - profiles of the density distribution, velocities of sonic waves in the Earth’s
core on model PREM [Dziewonski, Anderson, 1981] and also the temperature [Nimmo,
2015].The numbers show the change in density and VP at the boundary of the inner core in
%.b - scheme of structure of the Earth’s core reflecting the main results of the seismological
researches.

F - layer with the reduced velocities VP , isotropic structure of the upper layer of the
inner core with the differences in the hemispheres, the presence of an additional inner core
(in question) are shown. The amplitude of the anisotropy of seismic waves is indicated by
icons in the polar and equatorial directions according to the data of papers [Deuss, 2014;
Souriau, Calvet, 2015] with changes. 1 - low velocity, light damping; 2 - high velocity,
heavy damping. [Fig. 1a, b taken from Litasov, Shatskiy, 2016].
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