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Abstract. All real fluids are viscous in this or other extent, in other
words, they have the property of internal friction. Origin of viscosity
forces should be sought in molecular nature of mater’s structure. The
quantities that we deal with in hydraudynamics, are mean quantities
obtained as a result of total account relating to very great quantity of
molecules. Taking into account what has been said, the finite differences
method for solving viscous fluid motion equations is used.
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1 Introduction

The relevant literature gives references, the solution of some problems of viscous fluid
hydromechanics in exact form. Integration of hydromechanics equations in the exact form
is succesded very seldom; besides, it should be noted that many exact solutions of viscous
fluid hydromechanics equations are of negligible interest, since they may be realized in the
presence of boundary conditions hand, a great majority of viscous fluid motions important
from point of view of experiments or observations in nature are not amenable to exact
hydromechanical analysis. It is quite natural that when it is impossible to solve exactly any
problem, for solving this problem approximate methods are used.

All approximate methods of hydromechanics are characterized by one general sign: in
these methods, in the main equation or in boundary conditions, a part pf terms or terms or
terms are rejected or are not taken account in full measure.

At those cases of viscous fluid low motions, three categories of forces are considered:
inertia forces, viscousity forces and pressure forces. The latter forces are internal forces
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and order of their quantity is determined by order of quantity of the first two categories of
forces.

As for comporative quantities of inertia forces and viscousity forces, in this direction
we are oriented by the Reynold number equal to the R = lV /ν ratio of the product of
characteristic velocity V by the characteristic length l to kinematic viscosity coefficient ν.

According to this, we can speak about two types of approximate solutions of viscous
fluid mechanics equations.

The cases of flow wherein the inertia forces are small in comparison with viscosity
forces and for which the Reynold number containing kinematic viscosity coefficient in de-
nominator is small belong to the first type. But the Reynolds number will be small in three
cases: 1) when the characteristic length l is very small or 2) when characteristic velocity
V is very small, or finally, 3) when kinematic viscosity coefficient ν is very large. Thus,
for example, the chases of low motions of small particles in comparatively viscous fluids is
related to the considered type. Approximate interpretation of motion of hydromechanics of
members giving the inertia forces or in simplification of the type of these members.

The another opposite types of flow cover the cases when viscosity forces are small in
comparison, with inertia forces and when the Reynold number is very large. For that ei-
ther characteristic length or characteristic velocity should be very great or fluid’s viscosity
should be very low. Thus, the cases of rapid motions of great size bodies in low viscous
fluids are related to the second type of flows. If in under approximate consideration of the
second type flows the viscosity forces are rejected we obviously arrive to ideal fluid mo-
tions equations. Therefore, we should consider only that interpretation of second order flows
when we partly take into account viscous forces and in the equations we leave only principal
members giving viscous forces.

Now we consider a number of specific cases of first type motions, i.e. the motions with
Reynold’s small numbers.

2 Problem formulation

Let’s consider flow of very viscous fluid between two parallel plates and the distance h
between them is very small. If we assume that the values of mean velocities of fluid are also
small, then the Reynolds number R = V h/ν will be very small. We assume that there are
no external forces.

Therefore, writing acceleration projection in the perfect form, we get the following vis-
cous fluid flow equations:

∂υx
∂t + υx

∂υx
∂x + υy

∂υx
∂y + υz

∂υx
∂z = X − 1

ρ
∂p
∂x + ν

3
∂divυ
∂x + ν∆υx,

∂υy
∂t + υx

∂υy
∂x + υy

∂υy
∂y + υz

∂υy
∂z = Y − 1

ρ
∂p
∂y + ν

3
∂divυ
∂y + ν∆υy,

∂υz
∂t + υx

∂υz
∂x + υy

∂υz
∂y + υz

∂υz
∂z = Z − 1

ρ
∂p
∂z + ν

3
∂divυ
∂z + ν∆υz.

 (2.1)

To these equations we can adjoin the continuity equation

∂ρ

∂t
+

∂ (ρυx)

∂x
+

∂ (ρυy)

∂y
+

∂ (ρυz)

∂z
= 0. (2.2)

If we deal with flow of incompressible viscous fluid, then four equations (2.1) and (2.2)
are not sufficient for determining five unknown functions p, ρ, υx, υy, υz . In this case, it is
necessary to take into account thermodynamical properties of the studied processes.

We can impart different forms of equations to viscous incompressible fluid flow equa-
tions: in one cases it is suitable to use one form equations, in other cases the another one.
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First of all, equations (2.1) and (2.2) for the case of incompressible fluid are simplified
as follows:

∂υx
∂t + υx

∂υx
∂x + υy

∂υx
∂y + υz

∂υx
∂z = X − 1

ρ
∂p
∂x + ν∆υx,

∂υy
∂t + υx

∂υy
∂x + υy

∂υy
∂y + υz

∂υy
∂z = Y − 1

ρ
∂p
∂y + ν∆υy,

∂υz
∂t + υx

∂υz
∂x + υy

∂υz
∂y + υz

∂υz
∂z = Z − 1

ρ
∂p
∂z + ν∆υz,

∂υx
∂x +

∂υy
∂y + ∂υz

∂z = 0.

 (2.3)

Under these conditions, in the main equations of fluid mechanics (2.3) we may neglect
inertia forces in the left hand of these equations, then we get the equations:

∂p
∂x = µ

(
∂2υx
∂x2 + ∂2υx

∂y2
+ ∂2υx

∂z2

)
,

∂p
∂y = µ

(
∂2υy
∂x2 +

∂2υy
∂y2

+
∂2υy
∂z2

)
,

∂p
∂z = µ

(
∂2υz
∂x2 + ∂2υz

∂y2
+ ∂2υz

∂z2

)
,

∂υx
∂x +

∂υy
∂y + ∂υz

∂z = 0.


(2.4)

Assume that the axis Ox and Oy lie in one of boundary planes, the axis Oz is directed
along the perpendicular to these planes so that the boundary plane equations are
z = 0 and z = h.

Then we accept that velocity of each particle is direct in a parallel way to boundary
planes so that

υz = 0.

Finally we note that because of smallness of h change of velocities υx and υy in direction
of the axis Oz will happen more rapidly change of this derivative ∂υx/∂z is greater in
comparison with orders of derivatives ∂υx/∂x and ∂υx/∂y; just in the same way, order of
the derivative ∂2υx

/
∂z2 is greater in comparison with order of the derivatives ∂2υx

/
∂x2

and ∂2υx
/
∂y2. Under these conditions, equations (2.4) take the form:

∂p

∂x
= µ

∂2υx
∂z2

,
∂p

∂y
= µ

∂2υy
∂z2

,
∂p

∂z
= 0,

∂υx
∂x

+
∂υy
∂y

= 0. (2.5)

The third one from the obtained equations show that p depends only on x and y; but then
the first equation may be easily integrated:

µυx =
z2

2

∂p

∂x
+ zA (x, y) +B (x, y) ;

The functions A and B may be determined from the boundary conditions
υx = 0 for z = 0 and z = h.
These conditions give us

B (x, y) = 0, A (x, y) = −h

2

∂p

∂x

and therefore,

υx = − 1

2µ

∂p

∂x
z (h− z) . (2.6)

Just in the same way easily get

υy = − 1

2µ

∂p

∂y
z (h− z) . (2.7)
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Finally, the last equation of system (2.5) immediately gives that after substitution of
values (2.6) and (2.7), the equation for determining the function p (x, y):

∆p =
∂2p

∂x2
+

∂2p

∂y2
= 0. (2.8)

Note that form formulas (2.6), (2.7) and (2.8) it immediately follows that

∂2υx
∂x2

+
∂2υx
∂y2

= 0,
∂2υy
∂x2

+
∂2υy
∂y2

= 0.

But then it is clear that the formal solution strongly satisfies equations (2.4), because the
members that we ignored in these equations vanish identically.

As the first example we consider flow of incompressible fluid between two parallel plane
walls. Let the equations of these planes will be

z = −h, z = h;

respectively. Assume that there are no external forces, the motion is stationary and happens
in a parallel way to the axis Ox, such that

X = Y = Z = 0, υy = υx = 0, υx = υ (x, y, z) .

Under the made assumptions, the main equations of hydromechanics are strongly sim-
plified:

∂p

∂x
= µ

(
∂2υ

∂y2
+

∂2υ

∂z2

)
,

∂p

∂y
= 0,

∂p

∂z
= 0,

∂υ

∂x
= 0. (2.9)

The final of these equations shows that υ may depend only on y and z; the middle
equations show that p may depend only on x; but then the first equation of (2.9) at whose
left hand side there is a function on x, and in the right hand side a function on y and z,
may be fulfilled only in the case if the left and right hand sides of this equation are constant
variables. So there should be:

∂p

∂x
= const.

For determining υ we have the equation:

∂2υx
∂y2

+
∂2υx
∂z2

=
1

µ

∂p

∂x
(2.10)

and the boundary conditions
υ = 0 for z = 0, z = h (2.11)

following from the requirement of adhesion of fluid to restricting fixed walls. It is easy to
find the solution of equations (2.10) and (2.11) dependent only on z; in fact, in this case we
have:

d2υ

dz2
=

1

µ

∂p

∂x
,

and integration of this equation gives us:

υ =
1

2µ

∂p

∂x
z2 +Az +B

and therefroe:
υ =

1

2µ

∂p

∂x

(
z2 − h2

)
.



P.F. Gahramanov, G.G. Bagirova 15

It is easy to prove that the obtained solution is the solution of equations (2.10) and (2.11)
that we need. In fact, assume

υ =
1

2µ

∂p

∂x

(
z2 − h2

)
+ u (y, z) ;

then it is clear that the function u (y, z) should satisfy the Laplace equation

∂2u

∂y2
+

∂2u

∂z2
= 0 (2.12)

and the two boundary conditions

u = 0 or z = ±h. (2.13)

But if we demand that υ and consequently u should stay bounded in the considered
domain, then u ≡ 0 will be the unique solution of equations (2.12) and (2.13).

So, under the made assumptions, the fluid’s flow is determined by the following depen-
dence:

υ = − 1

2µ

∂p

∂x

(
h2 − z2

)
. (2.14)

3 Method of solution

Now we will construct numerical algorithms for solving the following boundary value prob-
lems:

∆υ ≡ ∂2υ

∂x2
+

∂2υ

∂y2
= −f (x, y) , (3.1)

υ = φ (x) (3.2)

Obviously, the will-posedness of the statement of problem (3.1)-(3.2) doesn’t give raise
to doubts.

For the given partial equation and the given finite-difference mesh, finite-difference ana-
logue of this equation may be constructed by different methods: 1) expansion of functions
in Taylor’s series; 2) interpolation of functions by polynomials; 3) integral method; 4) the
control volume method. Sometimes all these methods reduce to one and the same finite-
difference analogue of the imput equation. There exist different finite-difference schemes
by means of which one can solve simplest model equations. The main method for solv-
ing equations are physical laws of conservation for example the mass, momentum and en-
ergy conservations laws. Partial equations described these conservation laws at a point. Of
course, the difference scheme prove close approximation of partial equations in some small
domain containing some knots of difference mesh. Convergence of difference scheme to
exact solution of partial equations may be considered as convergence in approximation or-
der and convergence in round off errors. Very often, when solving stationary problems,
the Gauss-Zeidel iteration methods are used. The error that arises when changing partial
equation by its finite-difference analogue is called the approximation error. If equals the
difference of exact solutions of the input differential equation and its finite-difference ana-
logue.

In the net domain Ωh = ω̄h
∪

(OB)h, where

D̄h = ω̇h

∪ ∗
ω
h

∪
Γh,

where ω̇h and
∗
ω
h

are regular and irregular meshes, respectively.
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We approximate problem (3.1), (3.2) in the following way:
For any (x, y) ∈ ω̇h, equation (3.1) is approximated by the following difference equation

L̄hυh ≡ υhx̄x + υhȳy = −f̄h, (3.3)

and for any (x, y) ∈ ∗
ω
h

we have the following approximation

L̄hυh ≡ υhx̄x̂ + υhyȳ = −f̂h. (3.4)

For (x, y) ∈ Γh the take the approximation

υh

∣∣∣∣Γh
= φh. (3.5)

Therefore, by (3.3)-(3.5) we get the following difference scheme:

Rhυh = −fh, (3.6)

υh

∣∣∣∣Γh
= φh, (3.7)

where

Rhυh =

{
L̄hυh, if (x, y) ∈ ω̇h,

L̄hυh, if (x, y) ∈ ∗
ω
h

fh =

{
f̄h, if (x, y) ∈ ω̇h,

f̂h, if (x, y) ∈ ∗
ω
h
.

Assume that u ∈ C(4) (ω̄), then by the Taylor formula we get

∆υ −Rhυh = O
(
h2

)
.

We represent difference scheme (3.6)-(3.7) in the canonical form:

Sυh ≡ A (t)uh (t)−
∑

ξ∈(′(t)

B (t, ξ)uh (ξ) = fh, (3.8)

υh

∣∣∣∣Γh
= φh, (3.9)

where the arbitrary point t = (x, y) ∈ ω̄h,

A (t) ≡

{
Ā (t) = 4

h2 , 5A; 8 t ∈ ω̇h,

Â (t) = h+h∗

~hh∗ + h+h1
~1h1h

, if t ∈ ∗
ωh.

B (t, ξ) =

{
B̄ (t, ξ) = 1

h2 or 1
h2 or 1

h2 if 5 ∈ ω̇h, ξ ∈ (′(t) ,

B̂ (t, ξ) = 1
~h or 1

~h∗ or 1
~1h1

or 1
~1h if t ∈ ∗

ωh, ξ ∈ (′(t) .

Therefore,
A (t) > 0, B (t, ξ) > 0, ∀t ∈ ωh, ∀ξ ∈ (′(t)

D (t) ≡ A (t)−
∑

ξ∈(′(t)

B (t, ξ) ≥ 0. (3.10)
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Obviously, (3.8), (3.9) is a monotone scheme, then the maximum principle holds for
this problem and this principle admits to establish solvability of the mesh problem, and in a
number of cases to get a priori estimation of its solution, i.e. to prove the scheme’s stability.

Let Dh be a mesh domain, S be an operator given on Dh by the relation

Sυh ≡ A (t) υh (t)−
∑

ξ∈(′(t)

B (t, ξ) υh (ξ) .

Let Dh be a connected-domain, while D′
h ≤ Dh a connected sub-domain, on which the

coefficients of the operator S satisfy conditions (3.10). Then if the mesh function given on
Dh is not constant on D′

h and Sυh (t) ≤ 0 (Sυh (t) ≥ 0) for t ∈ D′
h, then υh (t) may not

accept positive maximum (negative minimum) value on D′
h.

Since the coefficients of difference scheme (3.8) – (3.9) satisfy all requirements of type
(3.10), obviously holds the maximum principle for problems (3.8) – (3.9).

Difference problem (3.8), (3.9) is uniquely solvable.
By theorem 1, difference problem (3.8), (3.9) in the case fh ≡ 0, φh ≡ 0 has only a

zero solution. Then the approximate inhomogeneous problem has a unique difference from
identical zero solution.

Let Dh =
o
D
h

∪ ∗
D
h

, where
o
D
h

is a connected domain, and D (t) ≥ 0 on
o
D
h
, D (t) > 0 on

∗
D
h

. Then for the solution of problem (3.8), (3.9) it holds the following estimation:

max
D̄h

|υh (t)| ≤ max
Γh

|υh (t)|+max
D̄h

|U (t)|+max
∗
D
h

∣∣∣∣fh (t)D (t)

∣∣∣∣ , (3.11)

where U (x, y) is a majorant function being the solution of the following problem:

SU (t) = Fh (t) , t ∈ Dh, υ ≥ 0, t ∈ Γh,

Fh (t) ≥ |fh (t)| for t ∈
o
D
h
, Fh (t) ≥ 0 for t ∈

∗
D
h
.

We can solve problem (3.8)-(3.9) by the Zeilded iterative method. For that we enumerate
the modal points contained in ω̄h as follows.

We enumerate arbitrarily all nodal points that are on the straight line with maximal
ordinate and parallel axis OX , i.e.

υh1,1, υh2,1, ..., υhN1,1 (on the first line).
We enumerate nodal points on the second line in the same way, i.e.
υhN1+1,2, υhN1+2,2, ..., υhN2,2 , and etc.
Assume that Dh has P parallel lines in all. Then on the P -th line we have the following

enumeration of nodal points:

υhNp−1+1,p, υhNp−1,2, ..., υhNp,p.

Therefore, for regular and irregular nodal points we have the following numerations:

υh1,1, υh2,1, ..., υhNp,p.

Then we can write equations (3.8), (3.9) in the form:

υhn,m =

n−1∑
k=1

ankυhk,m +

Np∑
k=n+1

ankυhk,m + fhn,m.
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The Zeidel algorithm is of the form:

υ
(i)
hn,m =

n−1∑
k=1

ankυ
(i)
hk,m +

Np∑
k=n+1

ankυ
(i−1)
hk,m + fhn,m (n = 1, Np, 1, p)

For any
{
υ
(0)
hk,m

}
(k = 1, Np, m = 1, p)

V
(i)
hk,m = υ

(i)
hk,m − υhk,m → 0 where i → ∞.

Numerical experiment was performed in accordance with above formulas by virtue of
the Zeidel scheme.

The obtained results are on the following table:

Nodal points Exact solution Numerical so-
lution

Absolute error Relative error

υ(1,3) 0,0001 0,00009 0,00001 10,0000
υ(1,5) 0,0016 0,0015 0,0001 6,2500
υ(1,7) 0,0081 0,0079 0,0002 2,4691
υ(1,9) 0,0257 0,0253 0,0004 1,1713
υ(1,11) 0,0623 0,0621 0,0002 0,6400
υ(3,3) 0,1443 0,1440 0,0003 0,2079
υ(3,5) 0,1111 0,1107 0,0004 0,3600
υ(3,7) 0,1000 0,1009 0,0009 0,9000
υ(3,9) 0,1074 0,1070 0,0004 0,3724
υ(5,5) 0,2099 0,2092 0,0007 0,3334
υ(5,7) 0,1909 0,1904 0,0005 0,2619
υ(5,9) 0,1937 0,1933 0,0004 0,2065
υ(5,11) 0,2229 0,2226 0,0003 0,1345
υ(7,7) 0,2817 0,2813 0,0004 0,1419
υ(7,9) 0,3194 0,3190 0,0004 0,1252
υ(7,11) 0,2861 0,2855 0,0006 0,2097
υ(7,13) 0,3907 0,3902 0,0005 0,1279
υ(9,9) 0,3902 0,3900 0,0002 0,0512
υ(9,11) 0,4329 0,4322 0,0007 0,1617
υ(9,13) 0,5165 0,5160 0,0005 0,0968

The performed experiment shows that a priori properties of exact solution completely
affirmed and numerically converges.
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