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Pulsating flow of two-phase viscous bubbly fluid in an elastic
semi-infinite cylindrical tapering tube
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Abstract. The problem of pulsating flow of a viscous two-phase bub-
bly fluid in an elastic semi-infinite cylindrical tube in view of narrowing
effect was considered. A linear one-dimensional equations were used.
Pulsating pressure was set at the end of the tube in order to describe the
pressure, density,fluid flow and displacement. The task was created to
resolve the Sturm-Lyuville’s singular boundary value problem, which,
in turn, is reduced to an equivalent integral equation of Volterra type,
which is solved by successive approximations method. Under the con-
dition of integrability of the potential is proved to converge to the exact
solution. For the numerical implementation a flexible tubing with con-
stant cross section and flowing glycerol containing small additions of
air bubbles was considered and their influence on wave characteristics
was numerically found.
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1 Introduction

Due to the wide spread in technology and living organisms transport phenomena, the problem of
wave propagation in fluid filled deformable tube is a very topical and is of interest in several aspects. In
the theoretical aspect - this is the problem of mathematical physics, and as the applied aspect of problem
- a necessary stage in the calculation of the system, subject to dynamic stress. To date, the totality of
these tasks, the investigation of which laid down in the fundamental works of [2, 4, 15] is a widely
developed field of hydrodynamics [7, 10, 13]. However, a number of features associated with simultaneous
consideration of two-phase fluid, alongside with viscosity and tube tapering remain understudied.

Therefore, the investigation of regularities of wave dynamics of a bubble viscous fluids flowing in
deformable tubes, caused by importance of the application of research results to problems of the aircraft
hydraulic systems, oil and gas industry, chemical engineering, hemodynamics, etc. [3,6,11].
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Basic relations
Set of equations describing the propagation of waves in two-phase bubble viscous fluid contained in

an elastic tube of variable circular cross section.
A mathematical model of fluid. Two-phase medium comprising a mixture of a liquid with fine gas bub-

bles, are a very important example of relaxing media. Experimental and theoretical studies have shown
that, solving the problem of transport of two-phase flows, it is necessary to keep in mind that such envi-
ronments differ from other two-phase environments by the fact that the heat capacity of the carrier phase
is much greater than the heat capacity of the dispersed phase due to predominant mass content of carry-
ing phase in unit volume. In this regard, the liquid can be considered as a thermostat having a constant
temperature [9]. Following [6], we put the following assumptions, which are the basis of the theory used
here to describe the flow of bubble mixtures by the methods of continuum mechanics, which simplify the
formulation and solution of the problem without distorting the essence of the phenomenon:

-in each elementary macrovolume of bubbles are present in the form of spherical inclusions of
the same radius r0, and the volume concentration of bubbles is low (the mixture is monodisperse), and
the value of r0 is much smaller than the characteristic dimensions of the problem;

-direct interactions and collisions of bubbles with each other can be neglected;
-the merge processes (coagulation), crushing and formation of new vesicles are absent;
-speed of the bubbles and the carrier phase are the same;
-bubbles have neutral buoyancy, i.e. do not settle and do not float;
-the viscosity of the carrier phase is much greater than the viscosity of gas bubbles (for example,

the viscosity of water is 10 times greater than the viscosity of air) and therefore the viscosity of the
mixture practically does not depend on volume content of bubbles.

As part of the assumptions we write the momentum equation:

ρ0
∂u

∂t
+
∂p

∂
= 0 (1.1)

and the rheological equation of state of the mixture [9]:

p = a2ρ+
ξ

ρ0

∂ρ

∂t
. (1.2)

For a one-dimensional approximation the continuity equation for a tube with variable cross section
can be obtained based on the following physical considerations. Select in the space filled with the mixture
elementary volume S(x)dx, where S(x) = πR2(x) - cross-sectional area of the tube. Calculate the dif-
ference between the rate of the liquid flowing through a time dt through the opposite plane at a distance
dx:

{[Su+
∂

∂x
(Su)dx]− Su}dt = ∂

∂x
(Su)dxdt.

On the other hand, the extra flow rate is due to deformation of the pipe walls and shown as:

L
∂w

∂t
dxdt,

where L(x) = 2πR(x) – the length of its circumference. For a compressible medium it is necessary to
take into account the charge associated with the reduction of its density:

−S 1

ρ0

∂ρ

∂t
dxdt.

Thus, the continuity equation is finally written in the form:

S
1

ρ0

∂ρ

∂t
+

∂

∂x
(Su) + L

∂w

∂t
= 0. (1.3)

In equations (1.1) - (1.3) u(x, t) - the flow rate of the mixture, p(x, t)- hydrodynamic pressure, ρ(x, t)
- density of mixture; w(x, t) - the radial throw of the wall,

a2 =
1

α20(1− α20)

(
ρ10

ρ10 − ρ10

)
p0
ρ10

(1.4)
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is the square of the equilibrium sound velocity,

ρ0 = α10ρ10 + α20ρ20 (α10 + α20 = 1) (1.5)

ξ =
4

3

µ(1− α20)

α20
(1.6)

is the bulk viscosity, where µ - dynamic viscosity of the carrier phase. Here α20 - volume fraction of
bubbles,ρ10, ρ20- the densities of the carrier and the dispersed phase, p0 – configurable static pressure. An
0 index means the value in the equilibrium state. It should be noted that in the linear setting the equilibrium
α20 are using instead of the current bulk concentration of α2, and this approach assumes a priori of the
presence of bubbles (α20 ̸= 0). If the volume fraction of bubbles is sufficiently small, (α20 << 1), the
medium can be thought as homogeneous. The peculiarity of such liquid with ρ20 << ρ10 is that:

ρ0 = α10ρ10 + α20ρ20 ≈ α10ρ10 ≈ ρ10. (1.7)

This allows with a sufficient degree of accuracy to rewrite formulas (1.4) and (1.6) as follows:

a2 ≈ p0
α20ρ10

, ξ ≈ 4

3

µ

α20
. (1.8)

In this case, as it follows from the first formula (1.8), compression of the mixture occurs due to the
gas component.

The equation of tube motion. Now, to closure equations (1.1) - (1.3) we write the equation of motion
of the tube, believing it is linear elastic, that the ratio of wall thickness h to the radius and that the tube
is rigidly attached to the environment, causing it cannot move along its axis. Under these conditions, it is
sufficient to use the following equation [14] :

p =
hE

(1− ν2)R2(x)
w + ρ∗h

∂2w

∂t2
, (1.9)

where ρ∗ - the density of wall, E - Young’s modulus, ν - Poisson’s ratio. The value (1 − ν2)−1 in the
latter equation is necessary to account for ties, which prevents axial displacement. The second term in
(1.9) expresses the inertia of the tube wall. This effect is usually considered negligible in the present case
it can be ignored [7]. So we write down

w =
(1− ν2)R2(x)

hE
p. (1.10)

So, equations (1.1) – (1.3) and (1.10) represent a closed system of hydroelasticity, which can be used
to describe the evolution of small perturbations in a tube of variable cross section containing a gas-liquid
medium.

Resolving equation. Now, without loss of generality, the function R(x) suppose by equality R(x) =
R∞g(x) and we assume that the function g(x) twice differentiable. Let’s also assume that at infinity the
tube has a constant cross-section with a radius of R∞. Hence we conclude that:

lim
x→∞

g(x) = 1. (1.11)

At the same time believe that

lim
x→∞

g′(x) = 0, lim
x→∞

g′′(x) = 0. (1.12)

Here and below, primes means differentiation with respect to x. An example of such function is [10]:

g(x) = 1 + e−αx, α > 0, (1.13)

which characterizes the tapering tube along its length. Now equation (1.1) - (1.3) can be represented as
follows:

1

ρ0

∂ρ

∂t
+ 2

g′(x)
g(x)

u+
∂u

∂x
+

2

R∞g(x)

∂w

∂t
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∂u

∂t
+

1

ρ0

∂p

∂x
= 0

p = a2ρ+
ξ

ρ0

∂ρ

∂t
(1.14)

w =
(1− ν2)R2g2(x)

hE
p.

Characteristic for this consideration is the appropriateness of reduction of system (1.14) to one equa-
tion relative to the function ρ(x, t). To this end, we proceed as follows: by means of differentiation from
the first two equations of (1.14) eliminate the function u(x, t). The result:

2

R∞g(x)

∂2w

∂t2
+

1

ρ0

g′(x)
g(x)

+
1

ρ0

∂2ρ

∂t2
− 1

ρ0

∂2ρ

∂x2
= 0.

Given the following two equations, after simple transformations, introducing for brevity the notation
recording

c20
Eh

2ρ0(1− ν2)R∞
,

finally we can write:{
1 + g(x)

a2

c20

}
∂2ρ

∂t2
+

ξ

ρ0c
2
0

∂3ρ

∂t3
− 2

g′(x)
g(x)

{
a2
∂ρ

∂x
+

ξ

ρ0

∂2ρ

∂x∂t

}
= 0. (1.15)

Hence, in particular, for g(x) = 1 case is implemented tube of constant circular cross-section.

2 A solution of the problem

With equation (1.15), we reduce it to solving of ordinary differential equation.
Boundary problem. For the description of complex pulses specific to wave motion, harmonic analysis

is used, i.e. pulses of complex shapes decomposed on the sinusoidal components that make up the Fourier
series. Because of linearity and homogeneity of the original equations is traced through each harmonic
frequency nω, where n is a natural number and for determining the pulse shape at any point in the
system are summed components, corresponding to the given point. Hence we may conclude that in the
mathematical aspect of fundamental importance is the consideration of the part of sinusoidal vibrations
with one frequency ω. Therefore, using the method of separation of variables, the solution of equation
(1.15) will be sought in the class of functions:

ρ(x, t) = φ(x) exp(iωt), (2.1)

where φ(x) - required, generally speaking, complex function, and i =
√

−(1)- the imaginary unit. As a
result, substituting (2.1) in equation (1.5), we have:

φ′′2
g′(x)
g(x)

φ′ +G(x)φ = 0. (2.2)

It is assumed here:

G(x) =

{
ω2

[
1 + g(x)

a2

c20

]
+ iω3g(x)

ξ

ρ0c
2
0

}(
a2 + iω

ξ

ρ0

)−1

. (2.3)

Using the change of Liouville [5]:

y = φ(x) exp
1

2

∫
2
g′(x)
g(x)

dx = φ(x) exp ln g(x), (2.4)

we write the reduced form of the wave equation

y′′ + I(x)y = 0 (2.5)
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at the invariant

I(x) = G(x)− 1

4

{
2
g′(x)
g(x)

}2

− 1

2

{
2
g′(x)
g(x)

}′
,

which, after simplification, becomes

I(x) = G(x)− g′(x)
g(x)

. (2.6)

For further considerations from (2.6), following (1.11) and (1.12), set the limit using the equation:

lim
x→∞

I(x) =
m1 + im2

a2 + im3
= δ2, (2.7)

in which

m1 = ω2

(
1 +

a2

c20

)
, m2 = ω3 ξ

ρ0c
2
0

,m3 = ω
ξ

ρ0
.

Transforming equation (2.5) using the substitution [1]

q(x) = 1− I(x)

δ2
, (2.8)

as a differential equation of the problem we get:

y′′ + δ2y = δ2q(x)y. (2.9)

According to the rule of square root of complex number, following the dispersion equation (2.7) and
introducing additional notation

k1 =
m1a

2 +m2m3

a4 +m2
3

, k2 =
m1m3 −m2a

2

a4 +m2
3

,

define the value of δ
δ = ±(δ0 − iδ1)

where

δ0 =

√
2 + k1

2
, δ1 =

√
r − k1

2
r =

√
k21 + k22.

Next, we use root for which
Jmδ < 0 (2.10)

i.e.
δ = δ0 − iδ2

and on the potential q(x) we impose the integrability condition

∞∫
0

|q(x)|dx < +∞. (2.11)

It is easy to show that the constructed according to the formula (2.8) the function q(x) in (1.13) meet
the conditions (2.11). To build the solution, equation (2.9) should be supplemented with the following
boundary conditions:

y(0) = y0, y → 0 y → 0, x→ ∞. (2.12)

Note that the second condition (2.12) ensures the boundedness of the desired solution. Move compute
the value of y0 depends on the mode of operation of the system. A typical case is a situation in which at
the end of the tube set to a pulsating pressure

p(0, t) = p̌ exp(iωt), (2.13)

where p̌ determined by experiment.
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From (2.4) and (2.1):

ρ =
y(x)

exp ln g(x)
exp(iωt).

Taking into account this equality, from (1.2) we obtain:

p =
y(x)

exp ln(x)
(a2 + im3) exp(iωt). (2.14)

Side-by-side comparison of (2.13) and (2.14) at x = 0 can be defined

y0 =
p̌

a2 + im3
exp ln(0). (2.15)

Thus, the solution of the problem was reduced to a singular boundary value problem of the Sturm-
Liouville problem (2.9) and (2.12) under the condition (2.11), when y(0) is determined by formula (2.15).

The equivalent integral equation. It is usually advisable solution of the stated above boundary value
problem is reduced to solution of integral equations. Homogeneous equation:

y′′ + δ2y = 0 (2.16)

has a fundamental system of solutions

y1(x) = eiδx and y2(x) = e−iδx.

Considering (2.9) as an inhomogeneous equation with known right-hand side

δ2q(x)y(x)

and, applying the method of variation of arbitrary constants, after the procedure, the solution of problem
(2.9) and (2.12) under the condition (2.10) is reduced to the equivalent integral equation

y(x,−δ) = Ce−iδx + δ

∞∫
x

sin δ(τ − x)q(τ)y(τ,−δ)dτ, (2.17)

where C is a constant of integration, which we define thus, to satisfy the first boundary condition (2.12).
It will write the expression:

C =
y0

f(0,−δ) .

The value of y we can define by the equality of the form

y(x,−δ) = y0
f(x,−δ)
f(0,−δ) .

Here a new function f(x,−δ) is determined by solving the integral equation

f(x,−δ) = e−iδx + δ

∞∫
x

sin δ(τ − x)q(τ)y(τ,−δ)dτ, (2.18) ,

which is the equation of Volterra type and can be solved by successive approximations. By definition [13]
find the solution of (2.18) as follows:

f0(x,−δ) = exp(−iδx)

......................................

fn+1(x,−δ) = exp(−iδx) + δ

∞∫
x

sin δ(τ − x)q(τ)fn(τ,−δ)dτ

|f0(x,−δ)| ≤ exp(Imδ)x.
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Furthermore, in view of (2.11), by induction we will prove the estimate

|fn(x,−δ)− fn−1(x,−ν)| ≤
Bn
δ (x)

n!
e(Imδ)x, (2.19)

in which

Bδ(x) = |δ|
∞∫
x

|q(τ)|dτ.

Thus, on the basis of (2.11)

Bδ(x) = |δ|
∞∫
x

|q(τ)|dτ ≤ |δ|
∞∫
0

|q(x)|dx = Bδ(0) < +∞

and, consequently,

|fn(x,−δ)− fn−1(x,−δ)| ≤
Bn
δ (x)

n!
e(Imδ)x. (2.20)

Further limiting only the most essential calculations and taking into account the assessment

| sin δ(x− τ)| ≤ exp(−Jmδ)(τ − x) (τ ≥ x)

for n = 1 we have:

|f1(x,−δ)− f0(x,−δ)| = |δ|
∞∫
x

∣∣∣sin(τ − x)q(τ)e−iδτ
∣∣∣

≤ |δ|
∞∫
x

e−Jmδ(τ−x))|q(τ)|eJmδτdτ = Bδ(x)e
(Jmδ)x.

Let (2.19) holds for n = m. We prove its validity for n = m+ 1 :

|fm+1(x,−δ)− fm(x,−δ)| ≤ |δ|
∞∫
x

| sin δ(τ − x)||fm(τ,−δ)fm−1(τ,−δ)||q(τ)|dτ

≤ e(Jmδ)x

m!
|δ|

∞∫
x

Bm
δ (τ)|q(τ)|dτ =

Bm+1
δ (τ)(x)

(m+ 1)!
e(Jmδ)x.

Noticing that
|f0(x,−δ)| ≤ exp(Jmδ)x ≤ 1

by (2.20) we conclude that:

f0(x,−δ) +
∞∑

n=1

{fn(x,−δ)− fn−1(x,−δ)} (2.21)

dominated in the interval [0,+∞) converging positive number series:

∞∑
n=1

Bn
δ (0)

n!

and, therefore, on the basis of Weierstrass [11] it converges uniformly for x ∈ [0,∞) and its amount is
only limited and the solution of equation (2.18). Note that from the structure of the series (2.21) it follows
that the ranks obtained his memberwise differentiation on x, also converges uniformly. Now by a direct
calculation it is easy to establish that this solution is also a solution of equation (2.9).

For practical purposes it is convenient to a different view of (2.21). Believing

fn(x,−δ)− fn−1(x,−δ) = δnψn(x,−δ) (2.22)
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note, that

f(x,−δ) =
∞∑

n=1

δnψn(x,−δ), (2.23)

where
ψ0(x,−δ) = exp(−iδx), (2.24)

and for n ≥ 1

ψn(x,−δ) =
∞∫
x

sin δ(τ − x)ψn−1(τ − δ)dτ. (2.25)

Thus, the series (2.23) combined with (2.24) and (2.25) gives a meaningful representation of the
solution.

Now, given a formula for a function y(x,−δ), and the ratio (2.1), (2.4), equation (1.14) and the
expression (2.15), after simple transformations we come to the relations

ρ = p̌
exp ln g(0)

exp ln g(x)
(a2 + im3)

−1 f(x,−δ)
f(0,−δ) exp(iωt), (2.26)

p = p̌
exp ln g(0)

exp ln g(x)

f(x,−δ)
f(0,−δ) exp((iωt), (2.27)

w = p̌
(1− ν2)R2

∞
hE

exp ln g(0)

exp ln g(x)

f(x,−δ)
f(0,−δ) exp(iωt). (2.28)

To determine the flow velocity will hold the following reasoning. As above, separating the variables,
we write

u(x, t) = U(x) exp(iωt),

and by φ(x) denote the function

ϕ(x) =
exp ln g(0)

exp ln g(x)

f(x,−δ)
f(0,−δ) .

Then from equation (1.1) we can to write an expression for the velocity distribution. It has the form:

u = p̌
1

ωρ0
ϕ′(x) exp(iωt). (2.29)

Special case. Leaving aside the factor of contraction, we will focus on the consideration of issues
of interest to hydrodynamics. This schematization aims to gain a clear dependence, allowing to estimate
influence of the concentration of bubbles on wave characteristics. In this special case we have the obvious
equality:

g(x) ≡ 1 (R = R∞), q(x) = 0,

from which follows:
f(x,−δ) = e−iδx, f(0,−δ) = 1, ϕ(x) = e−iδx.

Now the solution of (2.26) - (2.29) is simplified and, keeping the same notation can be written as
follows:

ρ = p̌(a2 + im3)
−1 exp[i(ωt− δx)],

p = p̌ exp[i(ωt− δx)]

w = p̌
R2

hE
(1− ν2) exp[i(ωt− δx)]

u = −p̌ δ

ρ0ω
exp[i(ωt− δx)].

Hence, in accordance with Euler’s formula for the amplitudes of these functions we got:

|ρ| = p̌e−δ1x√
a4 +m2

3
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|p| = p̌e−δ1x (2.30)

|w| = p̌e−δ1xR
2(1− ν2)

hE

|u| = p̌

(
e−δ1x

ρ0ω

)√
δ20 + δ1.

The formulas (2.30) can form the basis of the calculation of the unknown amplitudes of the wave
velocity c = ω/δ0 and damping of δ1, depending on α20.

A numerical example. For numerical implementation we define the parameters of the corresponding
data for the rubber tube with the following characteristics: E = 4.105H/m2; ν = 0, 5; R = 0, 002m;
ω = 10−1 with; p̌ = 14 · 10N/m2 with respect to the option of filling with a mixture of glycerol
containing small additions of air α20 = {10−2 ∼ 10−1}. Next, we define ρ0 = 13 · 102kg/m2, µ =

1, 4kg/m · s and p0 = 105N/m2.

Table

|ρ| /ρ0 c = ω/δ0 |u|/hω α20

0,00001 45,59608 11,80938 0,01
0,00003 40,45567 1330992 0,02
0,00004 36,73592 14,65763 0,03
0,00006 33,88371 15,89146 0,04
0,00007 31,60698 17,03616 0,05
0,00008 29,73505 18,10865 0,06
0,00012 8,16064 20,08252 0,07
0,00011 26,81245 21,0 0,08
0,00013 25,64103 21,87904 0,09
0,00014 24,61084 0,1

The table shows the dependence of the density amplitude |ρ| /ρ0, the speed of wave propagation c and
the speed of the mixture |u|/hω by volume content of bubbles. The corresponding value for the hydrody-
namic pressure and the displacement is not specified, since they do not depend on the size α20 and δ1 ≈ 0.

Conclusion
Therefore, for the chosen values of the parameters and mode of operation of the system can be con-

cluded:
– the wave propagation speed is significantly reduced depending on the concentration of gas

bubbles;
– the table shows that the amplitude of the dimensionless density increases an order of magnitude

depending on α20;
– it is established that the viscosity only slightly changes the nature of the flow mixture.

In conclusion, we note that the change of volume content of bubbles can be increased (decrease) the
velocity of the fluid and thus in a certain way to optimize the functioning of the system.
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