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Analysis of torsional vibrations of radially non-homogeneous cylinder
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Abstract. In the paper, by the method of homogeneous solutions,
we study torsional vibrations of a radially-nonhomogeneous hollow
isotropic cylinder when lateral surfaces are free of stresses. Variance
equation is constructed and its roots are studied. Asymptotic formulas
for displacements and stresses allowing to calculate stress-strain state
at different values of forcing forces frequency are obtained.
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1 Introduction

Investigations of nonhomogeneous constructions hold a prominent place in theory of shells. Com-
plexity of phenomena arising under deformation of nonhomogeneous constructions has lead to creation
of different applied theories each of which was constructed on the basis of certain system of conjec-
tures and whose fields of applicability were not studied enough. Existence of different applied theories
for nonhomogeneous constructions requires its critical analysis based on strong mathematical approach,
i.e. from the position of three-dimensional equations of elasticity theory. It is especially important when
studying nonstationary and stationary vibrations in rather wide frequency range, when researching stress
concentrations near boundary and local loadings and in many other cases.

N.K. Ahmedov
Institute of Mathematics and Mechanics, Baku, Azerbaijan
9, B.Vahabzade str., AZ 1141, Baku, Azerbaijan
Baku State University
Zahid Xalilov str. 23, AZ 1148, Azerbaijan
E-mail: anatiq@gmail.com

A.A. Mehdiyeva
Baku State University
Zahid Xalilov str. 23, AZ 1148, Azerbaijan
E-mail: azada.abdullayeva@mail.ru



16 Analysis of torsional vibrations of radially non-homogeneous cylinder

2 Problem statement

Let us consider stationary torsional vibrations of a radially-nonhomogeneous hollow isotropic cylin-
der. We assume that the shear modulus is a quadratic function of radius. Denote by
Γ = {r ∈ [R1;R2] , φ ∈ [0; 2π] , z ∈ [−L;L]} a domain occupied by the cylinder in cylindric system
of coordinates.

Equations of motion have the form [1]:

∂σρφ
∂ρ

+
∂σφξ

∂ξ
+

2

ρ
σρφ =

gR2
0

G∗

∂2u

∂t2
. (2.1)

Here ρ = r
R0

; ξ = z
R0

are dimensionless coordinates; u =
uφ

R0
; σρφ =

σrφ

G∗
, σφξ =

σφz

G∗
are di-

mensionless quantities; uφ = uφ (ρ, ξ, t) is a displacement vector component; g is the density of the
cylinder’s material; σrφ, σφz are stress tensor components; G∗ is some typical parameter with dimension
of shear modulus; R0 = R1+R2

2 is the radius of cylinder’s median surface; ρ ∈ [ρ1, ρ2] , ξ ∈ [−l; l] ,

l = L
R0

, ρs = Rs
R0

(s = 1, 2).
Stress tensor components are expressed by vector displacements components in the following way

[1]:

σρφ = G

(
∂u

∂ρ
− u

ρ

)
, σφξ = G

∂u

∂ξ
, (2.2)

where G = G0ρ
2, G0 is a constant.

Substituting (2.2) in (2.1), we get an equation of motion in displacements

G0 ·
(
ρ2

∂2u

∂ρ2
+ 3ρ

(
∂u

∂ρ
− u

ρ

)
+ ρ2

∂2u

∂ξ2

)
=

gR2
0

G∗

∂2u

∂t2
. (2.3)

Suppose that the lateral part of the cylinder is free from stresses, i.e.

σρφ = G0ρ
2

(
∂u

∂ρ
− u

ρ

)∣∣∣∣
ρ=ρs

= 0, (2.4)

and on the endfaces of the cylinder the following boundary conditions are fulfilled:

σφξ = G0ρ
2 ∂u

∂ξ

∣∣∣∣
ξ=±l

= f± (ρ) · eiωt , (2.5)

where ω is oscillations frequency.

3 Problem solution

We will look for the solution of (2.3) in the form:

u (ρ, ξ, t) = v (ρ)m (ξ) eiωt , (3.1)

where the function m (ξ) is subjected to the condition

m′′ (ξ)− µ2m (ξ) = 0 , (3.2)

and the parameter µ is determined after fulfilling boundary conditions on lateral surface.
After substitution of (3.1) in (2.3), (2.4) allowing for (3.2) we have:

v′′ (ρ) +
3

ρ
v′ (ρ) +

(
µ2 +

λ2

G0
− 3

ρ2

)
· v (ρ) = 0, (3.3)

G0ρ
2

(
v′ (ρ)− v (ρ)

ρ

)∣∣∣∣
ρ=ρs

= 0, (3.4)



N.K. Ahmedov, A.A. Mehdiyeva 17

where λ2 =
gR2

0ω
2

G∗
is a dimensionless frequency parameter.

We can represent boundary value problem (3.3), (3.4) in the form

Av = µ2v, (3.5)

where

Av =

{
−
[
d2v (ρ)

dρ2
+

3

ρ

(
dv (ρ)

dρ
− v (ρ)

ρ

)
+

λ2

G0

v (ρ)

ρ2

]
; G0ρ

2

(
dv (ρ)

dρ
− v (ρ)

ρ

)∣∣∣∣
ρ=ρs

= 0

}
.

A is a self-adjoint operator in Hilbert space L2 (ρ1, ρ2) with the weight ρ3. All eigen-values µ2
k are real,

and corresponding eigen functions are orthonormed:

(vk, vn) =

∫ ρ2

ρ1

vk (ρ) vn (ρ) ρ3dρ = δkn. (3.6)

The general solution of (3.3) is of the form:

v (ρ) =
1

ρ

[
C1J√

4− λ2

G0

(µρ) + C2Y√
4− λ2

G0

(µρ)

]
, (3.7)

where J√
4− λ2

G0

(µρ) , Y√
4− λ2

G0

(µρ) are first and second order Bessel functions, respectively; C1, C2

are arbitrary constants.
By means of (3.7), satisfying boundary conditions (3.4), with respect to C1 and C2 we get homoge-

neous linear system of algebraic equations. From the condition of existence of nontrivial solutions of this
system, we have the variance equation:

∆ (µ, λ, ρ1, ρ2) = µ2ρ1ρ2L
(1;1)√

4− λ2

G0

(µ)

−2µ

ρ1L
(1;0)√

4− λ2

G0

(µ) + ρ2L
(0;1)√

4− λ2

G0

(µ)

+ 4L
(0;0)√

4− λ2

G0

(µ) = 0, (3.8)

where L
(i;j)√

4− λ2

G0

(µ) = J
(i)√
4− λ2

G0

(µρ1)Y
(j)√
4− λ2

G0

(µρ2)− J
(j)√
4− λ2

G0

(µρ2)Y
(i)√
4− λ2

G0

(µρ1) ; (i; j = 0; 1).

The left hand side of (3.8) as an entire function of the parameter µ, has a denumerable set of zeros
with a concentration at infinity. The following solutions correspond to the denumerable set of zeros with
a concentration at infinity. The following solutions correspond to the denumerable set of the roots of
equation (3.8)

u =

∞∑
k=1

1

ρ

µkρ2L
(0;1)√

4− λ2

G0

(µkρ; µkρ2)− 2L
(0;0)√

4− λ2

G0

(µkρ; µkρ2)

mk (ξ) e
iωt, (3.9)

σρφ =

∞∑
k=1

G0

µ2
kρ2ρL

(1;1)√
4− λ2

G0

(µkρ; µkρ2)− 2ρ2µkL
(0;1)√

4− λ2

G0

(µkρ; µkρ2)

−2ρµkL
(1;0)√

4− λ2

G0

(µkρ; µkρ2) + 4L
(0;0)√

4− λ2

G0

(µkρ; µkρ2)

mk (ξ) e
iωt, (3.10)

σρξ =

∞∑
k=1

G0ρ

µkρ2L
(0;1)√

4− λ2

G0

(µkρ; µkρ2)− 2L
(0;0)√

4− λ2

G0

(µkρ; µkρ2)

m′
k (ξ) e

iωt , (3.11)
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where L
(i;j)√

4− λ2

G0

(µkρ; µkρ2) = L
(i)√

4− λ2

G0

(µkρ)Y
(j)√
4− λ2

G0

(µkρ2) − L
(j)√

4− λ2

G0

(µkρ2)Y
(i)√
4− λ2

G0

(µkρ) ,

(i, j = 0, 1) ; mk (ξ) = Dke
µkξ + Fke

−µkξ; Dk, Fk are arbitrary constants.
Based on (3.11) from (2.5) we get:

∞∑
k=1

G0 ρ2vk (ρ)m
′
k (ξ) e

iωt
∣∣∣
ξ=±l

= f± (ρ) eiωt . (3.12)

Multiplying (3.12) by ρv̄n (ρ), and integrating within [ρ1; ρ2], allowing for (3.6), we have:

m′
n (ξ)

∣∣
ξ=±l

= t±n

i.e. (
µne

µnξDn − µne
−µnξFn

) ∣∣∣
ξ=±l

= t± (ρ) . (3.13)

Here t±n = 1
G0

∫ ρ2

ρ1
ρf± (ρ) v̄n (ρ) dρ.

From the system (3.13) we determine the unknown constants Dn and Fn:

Dn =
t+n eµnl − t−n e−µnl

2µnsh (2µnl)
, Fn =

t+n e−µnl − t−n eµnl

2µnsh (2µnl)
.

The case µ = 0 is special and corresponds to thickness resonance [3]. In the case, boundary value problem
(3.3), (3.4) takes the form:

v′′ (ρ) +
3

ρ
v′ (ρ) +

(
λ2

G0
− 3
)

ρ2
· v (ρ) = 0 (3.14)

G0ρ
2

(
v′ (ρ)− v (ρ)

ρ

)∣∣∣∣
ρ=ρs

= 0. (3.15)

The solution of (3.14) has the form:

v (ρ) = A1ρ
−1−

√
4− λ2

G0 +A2ρ
−1+

√
4− λ2

G0 .

Satisfying (3.15), we get:

sh

(√
4− λ2

G0
ln

(
ρ2
ρ1

))
= 0 . (3.16)

Equation (3.16) determines denumerable set of frequencies of thickness resonance

λ2k = G0

4 +
π2k2

ln2
(
ρ2
ρ1

)
 ; (k = 0, 1, 2, ...) .

Assume that the cylinder has a small thickness. Study the asymptotic behavior of the problem solution.
Let us analyze the roots of the variance equation (3.8). For studying its roots we put

ρ1 = 1− ε; ρ2 = 1 + ε, (3.17)

where ε = R2−R1
2R0

is a small parameter characterizing the cylinder’s thickness.
Substituting (3.17) in (3.8), we have:

D (µ, λ, ε) = ∆ (µ, λ, ρ1, ρ2) = 0. (3.18)

Expand D (µ, λ, ε) in series with respect to ε:

D (µ, λ, ε) =
4ε

π
< µ2 +

λ2

G0
+ ε2

[(
16

3
− 4

3
· λ

2

G0

)
µ2 − 2

3
µ4 + 3

λ2

G0
− 2

3

λ4

G2
0

]
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+ε4
[
2

15
µ6 +

(
6

15

λ2

G0
− 2

)
µ4 +

(
32

3
− 64

15

λ2

G0
+

2

5

λ4

G2
0

)
µ2 + 5

λ2

G0
− 26

15

λ4

G2
0

+
2

15

λ6

G3
0

]
+...... >= 0 .

(3.19)
For finite λ (λ = O (1) as ε → 0) the function D (µ, λ, ε) has the following two groups of zeros:

a) the first group consists of two zeros with asymptotic properties µk = O (1) as ε → 0 (k = 1, 2) ;

b) the second group contains a denumerable set of zeros that are of order O
(
ε−1
)
.

For constructing the asymptotics of the zeros of the first group, we look for µk in the form of the
following expansion:

µk = µk0 + εµk1 + ε2µk2 + ... . (3.20)

Substituting (3.20) in (3.19), we have:

µk0 = ±i
λ√
G0

, µk1 = 0, µk2 = ∓ 7iλ

6
√
G0

, ... .

For constructing the asymptotics of zeros of the second group, we look for µk in the form:

µk =
δk
ε

+O (ε) . (3.21)

After substitution of (3.21) in variance equation (3.18), using asymptotic expansion of the Bessel
function for large µ [3], for δk we get the following equation:

sin 2δk = 0. (3.22)

(3.22) coincides with the equation that determines the indices of Saint-Venant’s fringe effects in the statics
of the shell [2].

Let us consider the case λ → 0 as ε → 0. Such vibrations are called super lower frequencies [2].
Assume that the principal terms of the asymptotics λ have the form:

λ = λ0ε
q (q > 0) . (3.23)

In this case the function D (µ, λ, ε) has two restricted zeros with asymptotic properties µk → ∞ as
ε → 0.

Suppose that the principal terms µk have the form:

µk = µk0ε
β (β > 0) . (3.24)

Substituting (3.23), (3.24) in (3.19), we get that only the case β = q is possible. Finally we find:
µk0 = ± iλ√

G0
.

Consider the case λ → ∞ as ε → 0. Such vibrations are called superhigher frequency [2]. Here the
following variations are possible: a) λε → 0 as ε → 0; b) λε → const as ε → 0.

Define µk when λε → 0 as ε → 0. Suppose that the principal members of the asymptotics λ have the
form:

λ = λ0ε
−q, λ0 = O (1) , 0 < q < 1. (3.25)

In this case equation (3.18) has only unbounded roots µk → ∞ as ε → 0. Suppose that

µk = µk0ε
−β , µk0 = O (1) , 0 < β < 1; (3.26)

Substituting (3.25), (3.26) in (3.19), from the condition of consistency of the constructed asymptotic
process we get that only the case q = β is possible.

Assuming (3.25) we look for µk in the form (3.26). After substitution of (3.25), (3.26) in (3.19), we
get:

µ2
k0 = − λ20

G0
.

Subject to condition (3.25), we look for µk in the form:

µk =
δk
ε

+O
(
ε1−β

)
. (3.27)
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After substitution of (3.25), (3.27) in variance equation (3.8) and transformation if by means of
asymptotic expansions of the Bessel functions for large µ [3], for δk we get equation (3.22).

Let us study the roots of equation (3.18) when λε → const as ε → 0. In this case all roots of (3.18)
increase and only the case λ∼µ, i.e. µε → const as ε → 0 is possible.

Giving

λ = λ0ε
−1, (λ0 = O (1) as ε → 0) (3.28)

we look for µk in the following from:
µk =

γk
ε

+O (ε) (3.29)

Substituting (3.28), (3.29) in (3.18) and transforming it by means of asymptotic expansion of the
Bessel function for large values of the argument [3], for γk we have:

sin 2

√
γ2k +

λ20
G0

= 0 . (3.30)

We give asymptotic formulas for displacements and stresses. Assuming ρ = 1 + εη (−1 ≤ η ≤ 1)

and expanding in small parameter of ε, from (3.9)-(3.11) we get the following asymptotic formulas:

1. For the roots of (3.20)

u =
2

π

∞∑
k=1

[
1 + (η − 2) ε+ (3− 2η) ε2 +O

(
ε2
)]

mk (ξ) e
iωt,

σφξ =
2G0

π

∞∑
k=1

[
1 + (3η − 2) ε+ 3 (1− η)2 ε2 +O

(
ε2
)]

m′
k (ξ) e

iωt,

σρφ =
2G0ε

2

π

∞∑
k=1

[
− λ2

G0

(
1− η2

)
+O (ε)

]
mk (ξ) e

iωt.

2. For the roots of (3.24)

u =

∞∑
k=1

2

π

[
1 + ε (η − 2) +O

(
ε2
)]

mk (ξ) e
iωt,

σφξ =

∞∑
k=1

2G0

π

[
1 + ε (3η − 2) +O

(
ε2
)]

m′
k (ξ) e

iωt,

σρφ =

∞∑
k=1

2G0

π

[
λ20
G0

(
η2 − 1

)
ε2+2β +O

(
ε3+2β

)]
mk (ξ) e

iωt .

3. For the roots of (3.26)

u =

∞∑
k=1

2

π

[
1 + (η − 2) ε+O

(
ε2−2β

)]
mk (ξ) e

iωt,

σφξ =

∞∑
k=1

2G0

π

[
1 + (3η − 2) ε+O

(
ε2−2β

)]
m′

k (ξ) e
iωt,

σρφ =

∞∑
k=1

2G0

π

[
λ20
G0

(
η2 − 1

)
ε2−2β +O

(
ε3−2β

)]
mk (ξ) e

iωt
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4. For the roots of (3.21), (3.27)

u =

∞∑
k=1

(δ0k cos δ0k (1− η) +O (ε))mk (ξ) e
iωt,

σρφ =
G0

ε

∞∑
k=1

(
δ20k sin δ0k (1− η) +O (ε)

)
mk (ξ) e

iωt,

σφξ = G0

∞∑
k=1

(δ0k cos δ0k (1− η) +O (ε))m′
k (ξ) e

iωt .

5. For the roots of (3.29)

u =

∞∑
k=1

√γ2k +
λ20
G0

cos

√γ2k +
λ20
G0

(1− η)

+O (ε)

mk (ξ) e
iωt,

σρφ =
G0

ε

∞∑
k=1

(γ2k +
λ20
G0

)
sin

√γ2k +
λ20
G0

(1− η)

+O (ε)

mk (ξ) e
iωt,

σφξ = G0

∞∑
k=1

√γ2k +
λ20
G0

cos

√γ2k +
λ20
G0

(1− η)

+O (ε)

m′
k (ξ) e

iωt.
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